

งานวิจัยนี้ศึกษาผลกระทบของเจ็ตควบคุมต่อคุณลักษณะและโครงสร้างความเร็วของเจ็ตในกระแสลมขวาง (JICF) ที่ค่าความเร็วประติทิพย์เท่ากับ 3.87 เรโนลต์นัมเบอร์เท่ากับ 23,500 โดยมีเป้าหมายเพื่อลดความสูงของเส้นทางเดินของเจ็ตและเพื่อเพิ่มการเหนี่ยวนำการทดสอบการศึกษานี้ได้ทำการทดลองเบื้องต้นเพื่อหาตำแหน่งเจ็ตและอัตราส่วนเจ็ตมวล (r_m) ของเจ็ตควบคุมที่เหมาะสม โดยพบว่า ภายใต้ขอบเขตของการทดลองที่ศึกษา ตำแหน่งเจ็ตมวลของการฉีดเจ็ตควบคุมที่เหมาะสมคือ ± 15 องศา และอัตราส่วนเจ็ตมวลที่เหมาะสมมีค่าเท่ากับ 2 เปอร์เซ็นต์ นอกจ้านั้น ยังพบว่าการฉีดเจ็ตควบคุมที่บริเวณด้านปะทะลม (windward) จะมีผลทำให้เส้นทางเดินของเจ็ตต่ำลง ในทางตรงกันข้าม เมื่อฉีดเจ็ตควบคุมที่ตำแหน่งด้านหลังลม (leeward) จะมีผลทำให้เส้นทางเดินของเจ็ตสูงขึ้นเมื่อเปรียบกับกรณี JICF

ผลการศึกษา พบว่า การฉีดเจ็ตควบคุมที่ตำแหน่งเหมาะสมข้างต้น จะทำให้เส้นทางเดินของเจ็ตต่ำลง และ การเหนี่ยวนำการทดสอบดีขึ้น ซึ่งสามารถอธิบายได้ว่า การฉีดเจ็ตควบคุมนี้ จะลดบทบาทและการพัฒนาตัวของ windward jet shear layer ในทางตรงกันข้าม จะช่วยเพิ่มบทบาทและการเสริมการพัฒนาตัวของ lateral skewed mixing layers เป็นผลทำให้เกิดการเหนี่ยวนำการทดสอบที่ดีขึ้นที่บริเวณด้านข้างของเจ็ต (suppress windward jet shear layer, promote lateral skewed mixing layers) นอกจ้านั้นแล้ว ยังส่งเสริมให้เกิดความบันป่วน (promote turbulence) ที่บริเวณ lateral skewed mixing layer นี้ด้วย

204518

Effects of azimuthal control jets on a jet in crossflow (JICF) are investigated. The goals of this study are in two folds: 1) finding the optimum azimuthal positions (θ) of the control jets as well as the mass flowrate ratio of the control jet to the main jet (r_m) such that the controlled JICF has lower trajectory and better entrainment, and 2) under this optimum condition of the control jets, investigating the effects of the controlled jets on the JICF. The experiment is conducted for the JICF with the effective velocity ratio of 3.87 and the jet Reynolds number of 23,500.

The first part of this experimental investigation, which is conducted with a limited range of the two control parameters, shows that the optimum values of the azimuthal positions of the control jets and the mass flow rate ratio are ± 15 degree and 2 per cents, respectively. In addition, the experiment also shows that, when the control jets are deployed on the windward side, the trajectory of the controlled JICF is lower than the uncontrolled JICF. On the other hand, when the control jets are deployed on the leeward side, the trajectory of the controlled JICF is higher than the uncontrolled counterpart.

In the second part of the experiment, the effects of the control jets at the aforementioned optimum condition ($\theta = \pm 15^\circ$, $r_m = 2\%$) on the JICF are investigated in more details. The result shows that, when the controlled jets are deployed, the controlled JICF has lower trajectory and better entrainment than the uncontrolled counterpart. This can be attributed to the effects of the control jets in suppressing (the development of) the windward jet shear layer while promoting (the development of) the lateral skewed mixing layers, later developing into two dominant lateral vortical structures – one on each lateral side. These result in better overall entrainment as well as higher turbulence at the locations of the two lateral vortical structures.