

APPENDIX E

COMMON PROBABILITY DISTRIBUTIONS

Definition 1: The gamma distributions

The gamma distribution is a two-parameter family of continuous probability distributions. It is that a continuous random variable Y has a *gamma* distribution with mean $\mu > 0$ and degrees of freedom $\nu > 0$, denoted by $Y \sim \gamma(\mu, \nu)$, if its p.d.f is

$$f_{\gamma}(y|\mu, \nu) = \begin{cases} c_{\gamma}^{-1} y^{\frac{\nu-2}{2}} \exp\left(-\frac{y\nu}{2\mu}\right) & \text{if } 0 < y < \infty \\ 0 & \text{otherwise} \end{cases}$$

where the integrating constant is given by $c_{\gamma} = (2\mu/\nu)^{\frac{\nu}{2}} \Gamma\left(\frac{\nu}{2}\right)$ and $\Gamma(a)$ is the gamma function. It is also common to parameterize the gamma in terms of $\alpha = \nu/2$ and $\beta = 2\mu/\nu$, in which case we denote the distribution as $Y \sim G(\alpha, \beta)$. The associated density function under this parameterization is denoted by, where

$$f_G(y|\alpha, \beta) = \begin{cases} c_G^{-1} y^{\alpha-1} \exp(-y/\beta) & \text{if } 0 < y < \infty \\ 0 & \text{otherwise} \end{cases}$$

and $c_G = \beta^{\alpha} \Gamma(\alpha)$

Theorem 1: Mean and variance of the gamma distribution

If $Y \sim G(\alpha, \beta)$ then $E(Y) = \alpha\beta$ and $Var(Y) = \alpha\beta^2$. If $Y \sim \gamma(\mu, \nu)$, then $E(Y) = \mu$ and $Var(Y) = 2\mu^2/\nu$

Notes: The gamma distribution is very important one in Bayesian econometrics as it usually relates to the error precision. Distribution related to the Gamma include the Chi-squared distribution which is a Gamma distribution with $\nu = \mu$. It is denoted by $Y \sim \chi^2(\nu)$. The exponential distribution is a Gamma distribution with $\nu = 2$

Definition 2: The inverse gamma distributions

The inverse gamma distribution is a two-parameter family of continuous probability distributions which is the distribution of the *reciprocal* of a variable distributed according to the gamma distribution. If Y has an inverse gamma distribution, then $1/Y$ has a gamma distribution. It has p.d.f. as

$$Y \sim IG(\alpha, \beta) \Rightarrow p(y) = [\Gamma(\alpha)\beta^\alpha]^{-1} y^{-(\alpha+1)} \exp(-1/[y\beta])$$

Theorem 2: Mean and variance of the inverse gamma distribution

$$\text{If } Y \sim IG(\alpha, \beta) \text{ then } E(Y) = [\beta(\alpha-1)], \text{ for } \alpha > 1 \text{ and the variance is } Var(Y) = [\beta^2(\alpha-1)^2(\alpha-2)] \text{ for } \alpha > 2.$$

Definition 3: The beta distribution

The beta distribution is a family of continuous probability distributions defined on the interval $[0,1]$ parameterized by two positive shape parameters, typically denoted by α and β . The p.d.f. of beta distribution is

$$\begin{aligned} f_B(y; \alpha, \beta) &= \frac{y^{\alpha-1} (1-y)^{\beta-1}}{\int_0^1 u^{\alpha-1} (1-u)^{\beta-1} du} \\ &= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha-1} (1-y)^{\beta-1} \\ &= \frac{1}{B(\alpha, \beta)} y^{\alpha-1} (1-y)^{\beta-1} \end{aligned}$$

where Γ is the gamma function. The beta function, B , appears as a normalization constant to ensure that the total probability integrates to unity.

Theorem 3: Mean and variance of the beta distribution

$$\text{If } Y \sim B(\alpha, \beta) \text{ then } E(Y) = \frac{\alpha}{\alpha+\beta} \text{ and the variance is } Var(Y) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}.$$

Definition 4: The normal distribution

The normal distribution, also called the Gaussian distribution, is an important family of continuous probability distributions. It is that a continuous random variable Y has a normal distribution with mean μ and variance $\sigma^2 \geq 0$, denoted by $Y \sim N(\mu, \sigma^2)$, if its p.d.f is

$$f_N(y|\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-1}{2}(\frac{y-\mu}{\sigma})^2} \quad \text{for } -\infty < y < \infty$$

Theorem 4: Mean and variance of the normal distribution

If $Y \sim N(\mu, \sigma^2)$ then $E(Y) = \mu$ and the variance is $Var(Y) = \sigma^2$.