
APPENDIX E 

 

COMMON PROBABILITY DISTRIBUTIONS 

 

 

Definition 1: The gamma distributions 

The gamma distribution is a two-parameter family of continuous 

probability distributions. It is that a continuous random variable Y has a gamma 

distribution with mean 0μ >  and degrees of freedom 0ν >  , denoted by 

( )~ ,Y γ μ ν , if its p.d.f is 
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where the integrating constant is given by ( )22 /
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 and ( )aΓ  is the 

gamma function. It is also common to parameterize the gamma in terms of 

/ 2vα = and 2 / vβ μ=  , in which case we denote the distribution as ( )~ ,Y G α β . The 

associated density function under this parameterization is denoted by , where 
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and ( )Gc αβ α= Γ  

Theorem 1: Mean and variance of the gamma distribution  

If  ( )~ ,Y G α β  then ( )E Y αβ=  and ( ) 2Var Y αβ= . If  ( )~ ,Y γ μ ν , then 

( )E Y μ=  and ( ) 22 /Var Y vμ=  

Notes: The gamma distribution is very important one in Bayesian econometrics as it 

usually relates to the error precision.  Distribution related to the Gamma include the 

Chi-squared distribution which is a Gamma distribution with v μ= . It is denot by 

( )2~Y vχ . The exponential distribution is a Gamma distribution with 2v =  
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Definition 2: The inverse gamma distributions 

The inverse gamma distribution is a two-parameter family of continuous 

probability distributions which is the distribution of the reciprocal of a variable 

distributed according to the gamma distribution. If Y has an inversed gamma 

distribution, then 1/Y has a gamma distribution. It has p.d.f. as   

 ( ) ( ) ( ) ( ) [ ]( )1 1~ , exp 1/Y IG p y y yααα β α β β
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Theorem 2: Mean and variance of the inverse gamma distribution  

If  ( )~ ,Y IG α β  then ( ) ( )1 ,   for 1E Y β α α= − >⎡ ⎤⎣ ⎦  and the variance is 

( ) ( ) ( )22 1 2   for 2Var Y β α α α⎡ ⎤= − − >⎣ ⎦ . 

 

Definition 3: The beta distribution  

The beta distribution is a family of continuous probability distributions 

defined on the interval [ ]0,1  parameterized by two positive shape parameters, 

typically denoted by α  and β . The p.d.f. of beta distribution is 
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where Γ  is the gamma function. The beta function, B, appears as a normalization 

constant to ensure that the total probability integrates to unity. 

 

Theorem 3: Mean and variance of the beta distribution  

If  ( )~ ,Y B α β  then ( )E Y α
α β

=
+

 and the variance is 

( )
( ) ( )2 1

Var Y αβ
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+ + +

. 
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Definition 4: The normal distribution 

The normal distribution, also called the Gaussian distribution, is an 

important family of continuous probability distributions. It is that a continuous 

random variable Y has a normal distribution with mean μ  and variance 2 0σ ≥ , 

denoted by ( )2~ ,Y N μ σ , if its p.d.f is 
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Theorem 4: Mean and variance of the normal distribution  

If  ( )2~ ,Y N μ σ  then ( )E Y μ=  and the variance is ( ) 2Var Y σ= . 

 


