
APPENDIX D 

 

SOLVING LINEAR RATIONAL EXPECTATION AND THE 

KALMAN FILTER  
 
 

D.1 Writing Equations as Linear Rational Expectation System. 

Linear rational expectations system (LRE System) as: 

( ) ( ) ( )
( ) ( ) ( )

1

1 1 1 1

1 1 1

0 (D1.1)
0 (D1.2)

, 0 (D1.3)
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for 0,1,2,...t =  

We can write all equations in terms of the linear rational expectations 

system as following:  

 

NON-EXPECTATIONAL EQUATIONS (6.1): 

  ( )0 1t t ts qψ α= − − − +⎡ ⎤⎣ ⎦                           (D1.4) 

  ( )1 , ,0 s
t t F t H t ts s π π ε−= − − + − +            (D1.5) 

  ( ) , ,0 1t H t F tπ α π απ= − + − +             (D1.6) 

            ( ) ( )10 1
1t t t t t tmc c hc y s a

h
σ ϕ α ϕ−= − + − + + − +
−

         (D1.7) 

                 ( ) ( ) *0 2 1t t t t ty s c yα αη α αηψ α= − + − + − + +          (D1.8) 

            ( )( )1 1 20 1 tr
t r t r t tr r yρ ρ φ π φ ε−= − + + − + +         (D1.10) 

 
** *

1 10 y
t t ty yλ ε−= − + +            (D1.11) 

             * * *
* 10 r

t r t tr rρ ε−= − + +            (D1.12) 

 

 

 

 

121 



 122

EXPECTATIONAL EQUATIONS (6.2): 

{ }*
1 10 q

t t t t t t tE q q r r π ε+ += − − + − +          (D1.13)           

( ){ }, , 1 , 10 1 F
t F t F F t F F t F t tE ππ β βθ π θ π λ ψ ε+ −= − + − + + +       (D1.14) 

           ( ){ }, , 1 , 10 1 H
t H t H H t H H t H t tE mc ππ β βθ π θ π λ ε+ −= − + − + + +       (D1.15) 

    ( ) ( ) * *
1 1 1

1 1 10 t t t t t t t t

h h hE c hc r y hy qπ
σ σ σ+ + −

− −⎧ ⎫−
= − − + − + +⎨ ⎬

⎩ ⎭
      (D1.16)  

  
EXOGENOUS EQUATIONS (6.3):  

  1 1
a

t a t ta aρ ν+ += +  with ( )1 0a
t tE ν + =         (D1.17)

   1 10s s s
t t tε ε ν+ += +  with ( )1 0s

t tE ν + =         (D1.18) 

  1 10q q q
t t tε ε ν+ += +  with ( )1 0q

t tE ν + =         (D1.19)

   1 10H H H
t t t
π π πε ε ν+ += +  with ( )1 0H

t tE πν + =         (D1.20) 

  1 10F F F
t t t
π π πε ε ν+ += +  with ( )1 0F

t tE πν + =         (D1.21) 

  1 10r r r
t t tε ε ν+ += +  with ( )1 0r

t tE ν + =         (D1.22) 

  
* * *

1 10y y y
t t tε ε ν+ += +  with ( )*

1 0y
t tE ν + =         (D1.23) 

  
* * *

1 10r r r
t t tε ε ν+ += +  with ( )*

1 0r
t tE ν + =         (D1.24) 

for all t  and every 1tν +  with ( )1 0t tE ν + =  
 

The vector tx  is the endogenous state vector, ty  is the endogenous vector 

of unobservable variables (control variable) and tz  is the exogenous stochastic 

process.  

It can descript simply that in equation (D1.1) there are non-expectational 

equations, in our model, equation (5.1), (5.2), (5.4), (5.7), (5.11), (5.12), (5.13) and 

(5.14). In equation (D1.2) there are expectational equations, in our model, equation 

(5.3), (5.5), (5.6), (5.9), (5.10). The equation (D1.33) is for exogenous equations 

connected to the shocks and innovation in the model with respect to the restriction of 

( )1 0t tE ξ + = . 
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The vector tx  is the endogenous state vector, ty  is the endogenous vector 

of unobservable variables (control variable) and tz  is the exogenous stochastic 

process. The matrices of system 8 10A × , 8 10B × , 8 2C × , 8 8D × , 4 10F × , 4 10G × , 4 10H × , 4 2J × , 

4 2K × , 4 8L × 4 8M ×  and 8 8N × . 

 

( )
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( ) ( )2 1
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       0 0 0 1 0 0 0 0        1

       0 0 0 0 0 0 0 0 1 0
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⎢ ⎥⎣ ⎦

 

 

1 0
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0 0

0 0

0 -1

0 0

0 0

0 0
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( )

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

- 1+ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

D
ϕ

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

( )
( )

0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0    1

0 0 0 0     1 0     0 0 0 0

1
0 0 0         0 0 1 0 0 0

H

F

h

F
β θ

β θ

σ

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

( )

0 1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0     1 0 0 0 0 0
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0         0 0 0 0 1 0  

hh
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⎢ ⎥
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0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

a

N
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The matrix J  and L  are matrices of zeros. 

What one is looking for is the recursive equilibrium law of motion as Uhlig 

(1995) 

1

1

1

t t t

t t t

t t t

x Px Qz
y Rx Sz
z Nz ε

−

−

−

= +
= +
= +

    

In our model, we can set it as following   

  { }* *
, ,, , , , , , , , ,t t t t t F t t t t t H tx y q r s c r yπ π π=  

{ },t t ty mcψ=  

{ }* *

, , , , , , ,H Fs q r y r
t t t t t t t t tz a π πε ε ε ε ε ε ε=  

Next, how we can get the structural parameter (P, Q, R, S) is a routine of 

DYNARE for solving a matrix quadratic equation. 

 
 
 
 
 
 
 



 126

D.2  An Alternative Expression for The Likelihood Function 
 

Let’s suppose the full set of observations in a (Tx1) vector. 

   ( )1, 2,...,y y yT ′=y  
 

This vector could be viewed as a single realization from a T-dimensional 

Gaussian distribution. The mean of this (Tx1) vector is  

   

( )
( )

( )

1

2

T

E Y

E Y

E Y

μ
μ

μ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

MM
, 

or it could be written as  

    ( )E =Y μ , 

where μ  denotes the (Tx1). The variance-covariance matrix of Y is given by 

   ( )( )E ⎡ ⎤′− − =⎢ ⎥⎣ ⎦
Y u Y u Ω . 

Viewing the observed sample of y as a single draw from a ( ),N μ Ω  

distribution, the sample likelihood could be written down immediately from the 

formula for the multivariate Gaussian density: 

  ( ) ( ) ( ) ( )1/ 2/ 2 1 11; 2 exp
2

Tf π − − −⎡ ⎤′= − − −⎢ ⎥⎣ ⎦
Y y y yθ μ μΩ Ω , 

with log likelihood Hamilton (1994) 

   ( ) ( ) ( ) ( ) ( )1 11 1/ 2 log 2 log
2 2

L T π − −′= − + − − −y yθ μ μΩ Ω ; 

or in terms of innovations representation:   

( ) ( ) ( ) 1 11 1/ 2 log 2 log
2 2

L T π − −′= − + − v vθ Ω Ω  

 

 

 

 

 



 127

D.3 From the Kalman Filter to the Formulation of Likelihood Function 
 

The state-space can be represented as  

 
( )
( )

1 1 2 1

1

State Eq.

Measurement Eq .
t t t

t t t

t t t

s s w

Y s
D

ν
ν ν η

+ +

−

= Γ +Γ

= Λ +

= +

 

where D is a matrix whose eigenvalues are strictly below unity in modulus and 

t tEn n R′ =  and 1 0t sEw n+ ′ =  (No serially correlated shocks) for all t and s. 

It can be useful to transform the observed vector as a quasi-differenced 

process: 

  1t t tY Y DY+≡ −  

Using measurement equation at t+1 and the definition of state equation, it 

follows that 

  ( )1 2 1 1t t t tY D s w η+ +≡ ΛΓ − Λ +ΛΓ +  

Thus, ( ),t ts Y  is governed by the state space system 

  1 1 2 1

2 1 1

t t t

t t t t

s s w
Y s w η

+ +

+ +

= Γ +Γ

= Λ +ΛΓ +
, 

where ( )1 DΛ = ΛΓ − Λ  

By applying the Kalman filter, we can obtain a gain sequence Kt with 

which to construct the associated innovations representation (proof in Hansen and 

Sargent, 2005: chapter 9) 

  
0

1ˆ ˆ
ˆ

t t t t

t t t

s A s K u
Y s u

+ = +

= Λ +
 

 

D.4 Recursive Formulation of Likelihood Function 

The likelihood function { } 0

T
s s

y
=

 is defined as the density ( )1 0, ,..., .T Tf y y y−  

It is convenient to factor the likelihood function 

( ) ( ) ( ) ( ) ( )1 0 1 0 1 1 2 0 1 1 0 0 0, ,..., ,..., ,..., ...T T T T T T T Tf y y y f y y y f y y y f y y f y− − − − −=   

The Gaussian likelihood function for an 1n×  random vector y  with mean 

μ  and covariance matrix V  is 
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( ) ( ) ( )1/ 2/ 2 11, 2 exp
2

nN V V y V yμ π μ μ−− −⎛ ⎞′= − − −⎜ ⎟
⎝ ⎠

   

Therefore, the above series of tu and the metrix tΩ  are use to construct the 

logarithm of the likelihood function ( ),Y N ν Ω� . This is given by (Hansen and 

Sargent: 2005 ) 

 ( ) 1
1 1

1 1

1log log 2 log
2

T T
T

t tt t t t
t t

L Y N π ν ν−
− −

− −

⎡ ⎤′Θ = + Ω + Ω⎢ ⎥⎣ ⎦
∑ ∑  

where:    

{ }1 2

1 1

1 1 2 21 1 1

, , , ,

t t t t

t t t t

− −

− − −

Θ = Γ Γ Λ Ξ ϒ

′Ω = Λ Λ + ϒ

′ ′= Γ Γ +Γ ΞΓ

∑
∑ ∑

  

For the sequence of draws holds: 

   { } ( )1

Nj Tp Yθ θ�  

and then it is used the law of large numbers: 

   ( )( ) ( )
1

1 N
T j

j

E g Y g
Nθ θ θ

=

= ∑  

where g(.) is a suitable function 

The sequence of posterior draws { }
1

Njθ  used in the law of the large 

numbers is obtained using Markov Chain which is generated by the Monte Carlo 

method (MCMC).  


