CHAPTER 6

METHODOLOGY

Firstly, this chapter overviews and illustrates the fundamental of Bayesian
estimation concept briefly. Secondly, the steps of a Bayesian perspective are required
to explain later. In order to keep it a head of Bayesian estimation, the original data and

their re-scale are also shown in next section.

6.1 Fundamental of Bayesian Estimation Concept

*“...the conduct of monetary policy in the United States has come to involve,
at its core, crucial elements of risk management. This conceptual framework
emphasizes understanding as much as possible the many sources of risk and
uncertainty that policymakers face, quantifying those risks when possible, and
assessing the costs associated with each of the risks. In essence, the risk management

approach to monetary policymaking is an application of Bayesian decision-making.”

By Alan Greenspan at the Meetings of the American Economic Association,

San Diego, California, January 3, 2004:

In a point of view estimating DSGE models, the standard approach in Real
Business Cycle theory pioneered by Kydland and Prescott (1982) and Long and
Plosser (1983) has been to calibrate parameters and compare moment generated from
the model with those of actual data. This method, however, lacks formal statistical
foundations (Kim and Pagan, 1994) and hinders testing the result. Sargent (1989)
suggest as an alternative maximum likelihood estimation of DSGE models, but
potential misspecification due to omitted non-linearities, incorrect assumptions about
preferences and technology or incorrectly-specified exogenous shocks easily lead to
computational difficulties (Lubik and Schorfheide, 2005).

The Bayesian estimation methodology chosen here follow developments by
Dejong et al (2000a,b), Otrok (2001) and Smet and Wouters (2003). Bayesian
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analysis formally incorporates uncertainty and prior information regarding the
parameterization of the model. In other words, in Bayesian analysis parameters of a
model are regarded not as unknown fixed values but rather as random variables which
take a certain value with some probability - the true value is uncertain. It combines the
likelihood with a priori information on the parameters of interest that may have come
from earlier microeconometric or macroeconometric studies. By introducing prior
information about the structural parameters in the form of probability densities, the
likelihood function is reweighed by the prior density. The degree of uncertainty about
the prior information can thereby be expressed in terms of the standard deviation of
the prior density. Hence, the common practice of fixing some parameters in maximum
likelihood estimation has the Bayesian interpretation that no uncertainty exists about
the chosen values. Therefore Bayesian approach is taking explicitly account of all
uncertainty surrounding parameter estimates

In this section we will introduce the basic mechanics of Bayesian
estimation. Firstly, at its most basic level, Bayesian estimation is a bridge between
calibration and maximum likelihood. The tradition of calibrating models is inherited
through the specification of priors. And the maximum likelihood approach enters
through the estimation process based on confronting the model with data. Together,
priors can be seen as weights on the likelihood function in order to give more
importance to certain areas of the parameter subspace. More technically, these two
building blocks - priors and likelihood functions - are tied together by Bayes’ rule as
following below.

First, priors are described by a density function of the form

p(64A) (6.1)
where A stands for a specific model, represents the parameters of model A,
p(o)stands for a probability density function (pdf) such as a normal, gamma, shifted
gamma, inverse gamma, beta, generalized beta, or uniform function.

Second, the likelihood function describes the density of the observed data,

given the model and its parameters:

L(6,]Y;. A)=p(Y; |64, A) (6.2)
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where Y, are the observations until period T, and where the likelihood is recursive

and can be written as:

p(YT |‘9Av A) = p(yo |0A’ A)H p(yt |Yt—19A7 A) (6.3)

t=1

We now take a step back. Generally speaking, we have a prior density

p(@)on the one hand, and on the other, a likelihood p(YT |0) In the end, we are

interested in p(6’|YT), the posterior density. Using the Baye’s theorem twice we

obtain this density of parameters knowing the data. Generally, we have

p(6:Y;)
oy, )=———2 6.4
We also know that
p(Y;|0)= pl(f(g;) < p(6:Y;)=p(Y;]0)x p(0) (6.5)

By using these identities, we can combine the prior density and the

likelihood function discussed above to get the posterior density:

p(Y; |0, A) p(6,, A)

0,Y;,A)= 6.6
p( A|T ) p(YT|A) (6.6)

where p(YT |A) is the marginal density of the data conditional on the model
p(Y[A) = [ p(6,:Y; |A)d6, (6.7)

On
Finally, the posterior kernel (or un-normalized posterior density, given that
the marginal density above is a constant or equal for any parameter), corresponds to

the numerator of the posterior density:
P(6,]Y;. A)oc= p(Y;[6,, A) p(6,, A) = (6, Y;, A) (6.8)

This is the fundamental equation that will allow us to rebuild all posterior
moments of interest. The trick will be to estimate the likelihood function with the help
of the Kalman filter and then simulate the posterior kernel using a sampling-like or
Monte Carlo method such as the Metropolis-Hastings which it will be in the next

session.
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6.2 Estimation Methodology

We adopted a Bayesian estimation approach to bring the model directly to
the data. This approach discussed by many authors in the literature in the last few
years (e.g. Schortheide 2000, Lubik and Schorfhelde, 2005, Smets and Wouters,
2003). Schematically, we summarize the method which consists of following steps:

1. The non-linear DSGE model is solved via a linear approximation: a linear
rational expectation system is obtained that must be obtaining a standard linear model
in state apace form.

2. The state-space approximation of the original non-linear model allows
the identification of a likelihood function as Kalman recursions and subsequent
inference based on Maximum likelihood estimation.

3. Usually theoretical model imply few, well defined shocks; unfortunately
this often implies singularities in the determination of the likelihood (in the Kalman
filter the number of shocks must at least be as large as the number of observables),
implying the introduction of additional structural shocks and/or measurement errors.

4. The Bayesian analysis is performed; prior distributions for model
parameters have to be defined, representing the prior beliefs of the analyst on their
plausible values, which, in combination with the likelihood function, allows us
obtaining the posterior distribution.

5. The Bayesian inference needs the use of stochastic simulations,
specifically Markov Chain Monte Carlo (MCMC) techniques, allowing to obtain
samples form the posterior joint pdf of the model parameters and subsequently to
make an inference in which the parameter uncertainty and the shape of the likelihood
are taken into account.

Consequently, we introduce the step of a Bayesian estimation approach as
following;

6.2.1 Solving the Model

After we obtain log-linearized the equation, it can be rewritten into a form

of a linear rational expectations system (LRE System) as:
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0= Ax, +Bx,, +Cy, + Dz, (6.9)
0=FE, (X,,)+Gx + Hx_ + JE (V.1 )+ Ky, + LE (7., )+ Mz, (6.10)
Et(zt+l): Nzt+Et(§t+l)1Et(é:t+l):0 (6-11)

fort=0,12,...
The vector x, is the endogenous state vector, Y, is the endogenous vector
of unobservable variables (control variable) and z, is the exogenous stochastic

process. We also write it basically in Appendix D.

From using algorithm of Uhlig (1995), the system of above equation can be
transformed to the recursive rule for the general equilibrium expressed by the
following state model:

X =Px_,+Qz, (6.12)
Y, =Rx,, + Sz, (6.13)
2, =Nz, +¢, (6.14)

for t=0,1,2,... where the equilibrium is stable and described by matrices
P,Q,RandS. and Xx,Y, and z, are denoted in terms of log-deviation from steady

state of variables in period t. To calculate the solution, one needs to solve a matrix
quadratic equation as following Uhilg (1995).
From the computational point of view, the linear approximation and the

solution of the obtained LRE (Linear Rational Expectations) can be done

automatically using the DYNARE1 program (Juillard, 2001).

6.2.2Constructing the Kalman Filter

This section describes the construction of the Kalman filter used for
evaluating the likelihood function. The rational-expectation solution log-linearized
model, as we discuss above, can be express by the following time-varying-

coefficients difference equations:

! DYNARE is the additional command for the simulation DSGE models, freely available and
totally open source. Presently, an estimation module is implemented on DYNARE, to include the most
recent developments in Bayesian estimation macro-economic models in an extremely efferent. More
details, consulting with Griffoli (2007)
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X, =PX,, +QZ, (6.15)
Z,=NZ,_, +¢ (6.16)

X, is the endogenous vector (X, Y, ), Z, is the exogenous shocks vector and ¢, is the
vector of innovation as E, (&,,)=0.
The state-space form of the above difference equations is
s, =15, +I,wW, (6.17)

where s’ =[X{,Z/] and
P QP
r,=|" QR and T,= N
0 N, |

The observation equation is given by
Y, = As, +v, (6.18)
where
Y, is a vector of observed variables.
Iand T, are matrices of functions of the model’s deep parameters (matrices

P,Q,R and S) from the state equation representing the dynamic core

of the equation.

A IS a matrix expressing the relationship between observed and state
variables.

W, is a vector of state innovations: w, [ N (0,Z)

v, is a vector of measurement errors: v, [1 N (0, Y)

The likelihood function is computed under the assumption of normally
distributed disturbances by combining the state-space representation of the model
with the measurement equation linking the observed data and the state vector express
by equation:

Sy =18, +1,wW,,, (6.19)
Y, =As, +v, (6.20)
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As Hamilton (1994, chapter 13) shows, it is possible to use a Kalman filter

derived from a time-varying model for likelihood evaluation given the initial some

initial stat value s, [ N(s,,Z,)

Then we can write the likelihood function of the modelz:

T

logL(Y"|®) :%Z[N log 27 + log

t-1

.
+ z v, ot
t-1

tlt—1

Qt\t—l

Vt} (6.21)

where:
®@={T,,T,,AEY}
Q= A'Zt‘HA +Y

Zt\t—lz Fl Zt—ut—l Fi + FZEF,Z

6.3 Data Description

We estimate the model with quarterly data of Thailand and U.S. economies
for the period 2000:Q1 to 2007:Q4. Because of the structural breaks in Thai economy,

it is, therefore, preventing us from using longer seriesg. Most of data are selected from
Bank of Thailand (BOT) and National Economic and Social Development Board
(NESDB). For the foreign data, the source is Bureau of Economic Analysis and Board

Government of the Federal Reserve System.

Data: The Thai SOE-DSGE NK Model

We choose the following observable eight variables. All variable are de-

trended in the given period except the inflation gap which is constructed by the
difference of a rate of core inflation and a BOT’s target.

% The alternative expression for the likelihood function and the Kalman filter step are
shown in Appendix D.

® The economic crisis was in 1997 and BOT begin to adopt the inflation targeting regime
since 2000.
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1. y, is a output gap constructed as a de-trended of log real GDP during the
given period.
2. q, is a de-trended real exchange rate using real effective exchange rate4

(REER) to be a proxy.
3. r, is asignal policy rate of BOT. RP 14.

4. r, is the difference of a rate of core inflation and a BOT’s target (using

an average value of BOT target, 0-3.5 percent).

Figure 6.1
Data to The Thai Open Economy DSGE-based New-Keynes Model, part 1

Output gap (detrended) Log of real exchange rate (detrended)
10

2000 2002 2004 2006 2008 2000 2002 2004 2006 2008

Nominal interest rate (detrended) Inflation gap (CORCPI deviated from the target)
2

2000 2002 2004 2006 2008 2000 2002 2004 2006 2008
\ ', FC,_ P :
REER = Y w x—-x— where » w =1 n=the number of traded partners.
iz HC P i
i=1 i i=1

FCi/HC = currency of home country per a unit of foreign currency.
P
Pi the price index of traded partner country i

More details, one can see from the literature of Medhinee Supasawatkul (1999).

the price index for home country.
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5. = is the import price inflation calculated by using the seasonally
adjusted import price index.
6. s, is a terms of trade which are defined following the model. It is the

difference of log of foreign (U.S.) consumer price index and core consumer price

index.

7.y, is a foreign output gap constructed by using the growth rate of US
gross domestic product.

8. r is a real foreign interest rate calculated by the difference of fed fund

rate and the overall inflation

Figure 6.2
Data to The Thai Open Economy DSGE-based New-Keynes Model, part 2

Import inflation (detrended) Terms of trade(detrended)

2000 2002 2004 2006 2008 2000 2002 2004 2006 2008

Foreign real int. rate (detrended) Foreign output gap(detrended)

2000 2002 2004 2006 2008 2000 2002 2004 2006 2008
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6.4 Prior Specifications

As we introduce the Bayesian estimation in the first part, the prior is a part
of Bayesian analysis for reflecting our beliefs about the values that parameters can
take. Larger prior standard deviations result in diffuse distributions, which mean we
have little information in addition to the data. Most earlier attempts to estimate new
Keynesian DSGE models with the Bayesian approach use data form developed
countries. Therefore, it takes a limit of pre-assumption on developing countries.

For prior value of a habit coefficient, we run simply OLS equation.
Elasticity of interest rate to inflation and output, we also assume following the Taylor
rule. For Other coefficients, it lines in some literatures (Silveira 2006, Liu 2005, Jakab
and Vilagi 2007, Medina and Soto 2006). According to the distributions, some
literatures suggest that the gamma and normal distributions can be used
interchangeable. The beta distribution is used for parameters constrained on the unit

interval. The inverse gamma distribution is used for the shocks

Table 6.1
The Prior Specifications

Parameter Definition Domain | Density Mean | Variance
h Habit formation parameter [0,1] Beta 0.9 0.1
o Inverse elasticity of .

intertemporal substitution a Normal 1.00 0.0
n Elasticity of substitution
between home and foreign 0+ Gamma 1.00 0.50
goods
Q Inverse elasticity of labor 0+ Gamma 1.00 050
supply
0, Fraction of non-optimizing [0.1] Beta 050 0.5
firms
o, Fraction _of non-optimizing [0.1] Beta 050 0.25
importers
) Elast|C|ty_0f interest rate to 0+ Gamma 150 0.5
inflation
&, Elasticity of interest rate to 0+ Gamma 050 0.10
output




Table 6.1

The Prior Specifications (Continued)
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Parameter Definition Domain | Density Mean | Variance
P Baclward-looking 0,1] Beta 0.50 0.18
parameter for interest rate ’
X Foreign real interest rate [0,1] Beta 050 018
' inertia parameter ! ' '
ol Inertia of technology [0,1] Beta 050 018
development ’ ' '
A Foreign output inertia
narameter [0,1] Beta 0.50 0.18
o, Sd. of productivity shock 0+ InvGamma 2.00 [0,00]
o, Sd. of terms of trade shock 0+ InvGamma 2.00 [0,0]
o, Sd. Of real exchange rate 0+ InvGamma 2.00 [0,00]
o, Sd. of domestic inflation . InvGamma 200 [0,0]
" shock - '
o Sd. of import inflation . [0,00]
. shock 0 InvGamma 2.00
o Sd. of interest rate shock 0+ InvGamma 2.00 [0,0]
o, Sd. of foreign output g+ InvGamma 200 [0,00]
shock
oc. Sd. of foreign real interest .
; rate shock 0 InvGamma 2.00 [0,00]

6.5 The Markov Chain Monte Carlo Method (MCMC)

After we have estimated the maximum likelihood model and have got the

coefficients from constructing the Kalman filter and also have determined the prior

distribution from some personal introspection to reflect strongly held beliefs about the

validity of economic theories, our task is, then, to adopt the Markov Chain Monte

Carlo Method for sampling from probability distributions, according Bayesian

approach which is supposing that the parameter & is a random vector evaluating in

time.
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Markov Chain Mote Carlo (MCMC)5 is a method of sampling a target
probability distribution by constructing a Markov Chain such that the target
distribution is the stationary distribution of the chain, and such that the chain
converges in distribution to that stationary distribution. When convergence occurs,
realizations of the chain are realizations of the stationary distribution. The task is to

construct a chain having a given target as its stationary distribution.

6.5.1 Markov Chains and Transition Kernels

Generally, a Markov Chain is a sequence of random variables X;, Xy, X3, ...
in which the conditional distribution of a present observations given a set of past

observations only depends on the past through the most recent observation.

Specifically, if y is the sample space for the {Xt} and A is a subset of a collection of
setson y then

P(Xen € AlXg Xy, X ) = P( Xy, € AlX) (6.22)
for all t=1,2,3,... and any such A. The value taken by X, is called the state of the

chain at t. An above expression is called a transition probability. The rule describing

how the chain moves from its state at t to its state at t+1 is described by the

transition kernel. This is a function K(x, y) that for each x provides a probability

distribution fory . Thus it is a collection of conditional probability distributions, one
for each x. When the sample space, y, is discrete:

K(xy)=p(Xp =YX, =X) X,yey (6.23)

The probability distribution of X,., say p,,,, can be described in terms of

the transition kernel and the analogous distribution of X,. This is because the

probability that X,, =Yy is equal to the sum or integral of the probabilities that

X, =X times the probability that the chain moves to given that it had been in Xx.

Algebraically, when there are M states, this is

® The phrase monte carlo refers to the use of random number generators to solve
mathematical problems. The phrase itself is a reference to the Principality of Monte Carlo in southern

France, which is famous for its casino.
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P(Xp=1)=2 . P(X, =)P(Xpy = i|X, =i) ,i=12,...M.
that is,

Pa(1) =2 (DK (0 J) or pl=pK, (6.24)
in terms of continuous sample:

pt+1(y)=IK(X, Y) P (X)dX.

6.5.2The Metropolis-Hastings (M-H) Algorithms

Metropolis Hasting algorithm is a method to find a kernel (chain)

corresponding to a given stationary distribution. In other words, Metropolis-Hastings
algorithm is a rejection sampling algorithm used to generate a sequence of samples
from a probability distribution.

The algorithm generates a Markov chain in which each state y* * ! depends

only on the previous state y'. The step of this algorithm is made as follow. First, we
choose an initial value, y,, and set t=0. Next step is draw y~ from q(.|y,)(@
sequence of proposal distribution). The third step is to calculate the
p(y)a(w]y’)
p(y)a(y|v)

to increase t by one and then proceed to step 2.

ratior (y,,y")= Jf r>1,set y,, =y’ ; otherwise set y, , = y,. Next is

Whether the probability that y'is accepted depends on as follow

p(yt,y*)min[ P(y)a(yly') 1J

p(y)a(y )




