
CHAPTER 6 

 

METHODOLOGY 
 

 

Firstly, this chapter overviews and illustrates the fundamental of Bayesian 

estimation concept briefly. Secondly, the steps of a Bayesian perspective are required 

to explain later. In order to keep it a head of Bayesian estimation, the original data and 

their re-scale are also shown in next section.           

 

6.1 Fundamental of Bayesian Estimation Concept 

 

“...the conduct of monetary policy in the United States has come to involve, 

at its core, crucial elements of risk management. This conceptual framework 

emphasizes understanding as much as possible the many sources of risk and 

uncertainty that policymakers face, quantifying those risks when possible, and 

assessing the costs associated with each of the risks. In essence, the risk management 

approach to monetary policymaking is an application of Bayesian decision-making.” 
By Alan Greenspan at the Meetings of the American Economic Association,  

San Diego, California, January 3, 2004: 
 

In a point of view estimating DSGE models, the standard approach in Real 

Business Cycle theory pioneered by Kydland and Prescott (1982) and Long and 

Plosser (1983) has been to calibrate parameters and compare moment generated from 

the model with those of actual data. This method, however, lacks formal statistical 

foundations (Kim and Pagan, 1994) and hinders testing the result. Sargent (1989) 

suggest as an alternative maximum likelihood estimation of DSGE models, but 

potential misspecification due to omitted non-linearities, incorrect assumptions about 

preferences and technology or incorrectly-specified exogenous shocks easily lead to 

computational difficulties (Lubik and Schorfheide, 2005). 

The Bayesian estimation methodology chosen here follow developments by 

Dejong et al (2000a,b), Otrok (2001) and Smet and Wouters (2003). Bayesian 
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analysis formally incorporates uncertainty and prior information regarding the 

parameterization of the model. In other words, in Bayesian analysis parameters of a 

model are regarded not as unknown fixed values but rather as random variables which 

take a certain value with some probability - the true value is uncertain. It combines the 

likelihood with a priori information on the parameters of interest that may have come 

from earlier microeconometric or macroeconometric studies. By introducing prior 

information about the structural parameters in the form of probability densities, the 

likelihood function is reweighed by the prior density. The degree of uncertainty about 

the prior information can thereby be expressed in terms of the standard deviation of 

the prior density. Hence, the common practice of fixing some parameters in maximum 

likelihood estimation has the Bayesian interpretation that no uncertainty exists about 

the chosen values. Therefore Bayesian approach is taking explicitly account of all 

uncertainty surrounding parameter estimates 

In this section we will introduce the basic mechanics of Bayesian 

estimation. Firstly, at its most basic level, Bayesian estimation is a bridge between 

calibration and maximum likelihood. The tradition of calibrating models is inherited 

through the specification of priors. And the maximum likelihood approach enters 

through the estimation process based on confronting the model with data. Together, 

priors can be seen as weights on the likelihood function in order to give more 

importance to certain areas of the parameter subspace. More technically, these two 

building blocks - priors and likelihood functions - are tied together by Bayes’ rule as 

following below. 

First, priors are described by a density function of the form 

( )Ap Aθ               (6.1) 

where A  stands for a specific model, represents the parameters of model A , 

( )p • stands for a probability density function (pdf) such as a normal, gamma, shifted 

gamma, inverse gamma, beta, generalized beta, or uniform function. 

Second, the likelihood function describes the density of the observed data, 

given the model and its parameters: 

( ) ( ), ,A T T AL Y A p Y Aθ θ≡              (6.2) 
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where TY  are the observations until period T , and where the likelihood is recursive 

and can be written as: 

( ) ( ) ( )0 1
1

, , ,
T

T A A t t A
t

p Y A p y A p y Y Aθ θ θ−
=

= ∏            (6.3) 

We now take a step back. Generally speaking, we have a prior density 

( )p θ on the one hand, and on the other, a likelihood ( )Tp Y θ . In the end, we are 

interested in ( )Tp Yθ , the posterior density. Using the Baye’s theorem twice we 

obtain this density of parameters knowing the data. Generally, we have  

( ) ( )
( )
; T

T
T

p Y
p Y

p Y
θ

θ =               (6.4) 

We also know that 

   ( ) ( )
( ) ( ) ( ) ( );

;T
T T T

p Y
p Y p Y p Y p

p
θ

θ θ θ θ
θ

= ⇔ = ×            (6.5) 

By using these identities, we can combine the prior density and the 

likelihood function discussed above to get the posterior density: 

   ( ) ( ) ( )
( )
, ,

, T A A
A T

T

p Y A p A
p Y A

p Y A
θ θ

θ =              (6.6) 

where ( )Tp Y A is the marginal density of the data conditional on the model 

   ( ) ( );
A

T A T Ap Y A p Y A d
θ

θ θ= ∫                                                (6.7) 

Finally, the posterior kernel (or un-normalized posterior density, given that 

the marginal density above is a constant or equal for any parameter), corresponds to 

the numerator of the posterior density: 

  ( ) ( ) ( ) ( ), , , ,A T T A A A Tp Y A p Y A p A Y Aθ θ θ κ θ∝= =            (6.8) 

This is the fundamental equation that will allow us to rebuild all posterior 

moments of interest. The trick will be to estimate the likelihood function with the help 

of the Kalman filter and then simulate the posterior kernel using a sampling-like or 

Monte Carlo method such as the Metropolis-Hastings which it will be in the next 

session.  
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6.2  Estimation Methodology 

 

We adopted a Bayesian estimation approach to bring the model directly to 

the data. This approach discussed by many authors in the literature in the last few 

years (e.g. Schortheide 2000, Lubik and Schorfhelde, 2005, Smets and Wouters, 

2003). Schematically, we summarize the method which consists of following steps: 

1. The non-linear DSGE model is solved via a linear approximation: a linear 

rational expectation system is obtained that must be obtaining a standard linear model 

in state apace form. 

2. The state-space approximation of the original non-linear model allows 

the identification of a likelihood function as Kalman recursions and subsequent 

inference based on Maximum likelihood estimation. 

3. Usually theoretical model imply few, well defined shocks; unfortunately 

this often implies singularities in the determination of the likelihood (in the Kalman 

filter the number of shocks must at least be as large as the number of observables), 

implying the introduction of additional structural shocks and/or measurement errors. 

4. The Bayesian analysis is performed; prior distributions for model 

parameters have to be defined, representing the prior beliefs of the analyst on their 

plausible values, which, in combination with the likelihood function, allows us 

obtaining the posterior distribution. 

5. The Bayesian inference needs the use of stochastic simulations, 

specifically Markov Chain Monte Carlo (MCMC) techniques, allowing to obtain 

samples form the posterior joint pdf of the model parameters and subsequently to 

make an inference in which the parameter uncertainty and the shape of the likelihood 

are taken into account. 

Consequently, we introduce the step of a Bayesian estimation approach as 

following; 

 

6.2.1 Solving the Model 

After we obtain log-linearized the equation, it can be rewritten into a form 

of a linear rational expectations system (LRE System) as: 
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( ) ( ) ( )
( ) ( ) ( )

1
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1 1 1

0 (6.9)
0          (6.10)
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t t t t

t t t t t t t t t t

t t t t t t t

Ax Bx Cy Dz
FE x Gx Hx JE y Ky LE z Mz

E z Nz E Eξ ξ

−
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= + + + + + +

= + =
for 0,1,2,...t =  

The vector tx  is the endogenous state vector, ty  is the endogenous vector 

of unobservable variables (control variable) and tz  is the exogenous stochastic 

process. We also write it basically in Appendix D. 

From using algorithm of Uhlig (1995), the system of above equation can be 

transformed to the recursive rule for the general equilibrium expressed by the 

following state model: 

     
1

1

1

                 (6.12)
                    (6.13)

(6.14)

t t t

t t t

t t t

x Px Qz
y Rx Sz
z Nz ε

−

−

−

= +
= +
= +

 

for 0,1,2,...t =  where the equilibrium is stable and described by matrices 

, ,  and .P Q R S  and ,  and zt t tx y  are denoted in terms of log-deviation from steady 

state of variables in period t . To calculate the solution, one needs to solve a matrix 

quadratic equation as following Uhilg (1995). 

From the computational point of view, the linear approximation and the 

solution of the obtained LRE (Linear Rational Expectations) can be done 

automatically using the DYNARE1 program (Juillard, 2001). 

 

6.2.2Constructing the Kalman Filter 

This section describes the construction of the Kalman filter used for 

evaluating the likelihood function. The rational-expectation solution log-linearized 

model, as we discuss above, can be express by the following time-varying-

coefficients difference equations: 

                                                 
1 DYNARE is the additional command for the simulation DSGE models, freely available and 

totally open source. Presently, an estimation module is implemented on DYNARE, to include the most 

recent developments in Bayesian estimation macro-economic models in an extremely efferent. More 

details, consulting with Griffoli (2007) 
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    1

1

(6.15)
(6.16)

t t t

t t t
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−

−

= +
= +

 

tX  is the endogenous vector ( ),t tx y , tZ  is the exogenous shocks vector and tε  is the 

vector of innovation as ( )1 0t tE ξ + = . 

The state-space form of the above difference equations is  

    1 1 2t t ts s w−= Γ +Γ             (6.17) 

where [ ],t t ts X Z′ ′ ′=  and 

1 0
t t t

t

P Q P
N

⎡ ⎤
Γ = ⎢ ⎥

⎣ ⎦
 and 2

tQ
I
⎡ ⎤

Γ = ⎢ ⎥
⎣ ⎦

 

 

The observation equation is given by 

    t t tY s ν= Λ +              (6.18) 

where 

tY   is a vector of observed variables.  

1 2 and Γ Γ     are matrices of functions of the model’s deep parameters (matrices 

, ,  and P Q R S ) from the state equation representing the dynamic core 

of the equation. 

Λ  is a matrix expressing the relationship between observed and state 

variables.  

tw  is a vector of state innovations: ( )0,tw N Ξ  

 tν  is a vector of measurement errors: ( )0,t Nν ϒ  

 

The likelihood function is computed under the assumption of normally 

distributed disturbances by combining the state-space representation of the model 

with the measurement equation linking the observed data and the state vector express 

by equation: 

   1 1 2 1   (6.19)
  (6.20)

t t t

t t t

s s w
Y s ν
+ += Γ +Γ
= Λ +
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As Hamilton (1994, chapter 13) shows, it is possible to use a Kalman filter 

derived from a time-varying model for likelihood evaluation given the initial some 

initial stat value ( )0 0 0,s N s Σ  

Then we can write the likelihood function of the model2: 

  ( ) 1
1 1

1 1

1log log 2 log
2

T T
T

t tt t t t
t t

L Y N π ν ν−
− −

− −

⎡ ⎤′Θ = + Ω + Ω⎢ ⎥⎣ ⎦
∑ ∑            (6.21) 

where:    

{ }1 2

1 1

1 1 2 21 1 1

, , , ,

t t t t

t t t t

− −

− − −

Θ = Γ Γ Λ Ξ ϒ

′Ω = Λ Λ + ϒ

′ ′= Γ Γ +Γ ΞΓ

∑
∑ ∑

  

 

6.3 Data Description 

 

We estimate the model with quarterly data of Thailand and U.S. economies 

for the period 2000:Q1 to 2007:Q4. Because of the structural breaks in Thai economy, 

it is, therefore, preventing us from using longer series3. Most of data are selected from 

Bank of Thailand (BOT) and National Economic and Social Development Board 

(NESDB). For the foreign data, the source is Bureau of Economic Analysis and Board 

Government of the Federal Reserve System. 

 

Data: The Thai SOE-DSGE NK Model 

We choose the following observable eight variables. All variable are de-

trended in the given period except the inflation gap which is constructed by the 

difference of a rate of core inflation and a BOT’s target.  

 

 

                                                 
2 The alternative expression for the likelihood function and the Kalman filter step are 

shown in Appendix D. 
3  The economic crisis was in 1997 and BOT begin to adopt the inflation targeting regime 

since 2000. 
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1. ty  is a output gap constructed as a de-trended of log real GDP during the 

given period. 

2. tq  is a de-trended real exchange rate using real effective exchange rate4 

(REER) to be a proxy. 

3. tr  is a signal policy rate of BOT. RP 14. 

4. tπ  is the difference of a rate of core inflation and a BOT’s target (using 

an average value of BOT target, 0-3.5 percent). 
 

Figure 6.1 

Data to The Thai Open Economy DSGE-based New-Keynes Model, part 1 
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FC P
REER w

HC P=

= × ×∑   where   
1

1
n

i
i

w
=

=∑             n =   the number of traded partners. 

FCi/HC  =  currency of home country per a unit of foreign currency. 

P =   the price index for home country. 

Pi =   the price index of traded partner country i 

More details, one can see from the literature of Medhinee Supasawatkul (1999). 
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5. 
tFπ  is the import price inflation calculated by using the seasonally 

adjusted import price index. 

6. ts  is a terms of trade which are defined following the model. It is the 

difference of log of foreign (U.S.) consumer price index and core consumer price 

index.   

7. *
ty  is a foreign output gap constructed by using the growth rate of US 

gross domestic product. 

8. *
tr  is a real foreign interest rate calculated by the difference of fed fund 

rate and the overall inflation 

 

Figure 6.2 

Data to The Thai Open Economy DSGE-based New-Keynes Model, part 2 
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6.4 Prior Specifications 

 

As we introduce the Bayesian estimation in the first part, the prior is a part 

of Bayesian analysis for reflecting our beliefs about the values that parameters can 

take. Larger prior standard deviations result in diffuse distributions, which mean we 

have little information in addition to the data. Most earlier attempts to estimate new 

Keynesian DSGE models with the Bayesian approach use data form developed 

countries. Therefore, it takes a limit of pre-assumption on developing countries.   

For prior value of a habit coefficient, we run simply OLS equation. 

Elasticity of interest rate to inflation and output, we also assume following the Taylor 

rule. For Other coefficients, it lines in some literatures (Silveira 2006, Liu 2005, Jakab 

and Vilagi 2007, Medina and Soto 2006). According to the distributions, some 

literatures suggest that the gamma and normal distributions can be used 

interchangeable. The beta distribution is used for parameters constrained on the unit 

interval. The inverse gamma distribution is used for the shocks  

 

Table 6.1 

The Prior Specifications   

 
 

 

Parameter Definition Domain Density Mean Variance 
h  Habit formation parameter [0,1] Beta 0.9 0.1 
σ  Inverse elasticity of 

intertemporal substitution 
+  Normal 1.00 0.50 

η  Elasticity of substitution 
between home and foreign 

goods 
+  Gamma 1.00 0.50 

ϕ  Inverse elasticity of labor 
supply 

+  Gamma 1.00 0.50 

Hθ  Fraction of non-optimizing 
firms [0,1] Beta 0.50 0.25 

Fθ  Fraction of non-optimizing 
importers [0,1] Beta 0.50 0.25 

1φ  Elasticity of interest rate to 
inflation 

+  Gamma 1.50 0.25 

2φ  Elasticity of interest rate to 
output 

+  Gamma 0.50 0.10 
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Table 6.1 

The Prior Specifications (Continued) 

 

 

6.5 The Markov Chain Monte Carlo Method (MCMC) 

 

After we have estimated the maximum likelihood model and have got the 

coefficients from constructing the Kalman filter and also have determined the prior 

distribution from some personal introspection to reflect strongly held beliefs about the 

validity of economic theories, our task is, then, to adopt the Markov Chain Monte 

Carlo Method for sampling from probability distributions, according Bayesian 

approach which is supposing that the parameter θ  is a random vector evaluating in 

time. 

Parameter Definition Domain Density Mean Variance 
rρ  Backward-looking 

parameter for interest rate [0,1] Beta 0.50 0.18 
*
rρ  Foreign real interest rate 

inertia parameter [0,1] Beta 0.50 0.18 

aρ  Inertia of technology 
development [0,1] Beta 0.50 0.18 

1λ  Foreign output inertia 
parameter [0,1] Beta 0.50 0.18 

aσ  Sd. of productivity shock +  InvGamma 2.00 [ 0,∞ ] 

sσ  Sd. of terms of trade shock +  InvGamma 2.00 [ 0,∞ ] 

qσ  Sd. Of real exchange rate +  InvGamma 2.00 [ 0,∞ ] 

Hπ
σ  Sd. of domestic inflation 

shock 
+  InvGamma 2.00 [ 0,∞ ] 

Fπ
σ  Sd. of import inflation  

shock 
+  InvGamma 2.00 [ 0,∞ ] 

rσ  Sd. of interest rate shock +  InvGamma 2.00 [ 0,∞ ] 

*y
σ  Sd. of foreign output 

shock 
+  InvGamma 2.00 [ 0,∞ ] 

*r
σ  Sd. of foreign real interest 

rate shock 
+  InvGamma 2.00 [ 0,∞ ] 

∞∞∞∞∞∞∞
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Markov Chain Mote Carlo (MCMC)5 is a method of sampling a target 

probability distribution by constructing a Markov Chain such that the target 

distribution is the stationary distribution of the chain, and such that the chain 

converges in distribution to that stationary distribution. When convergence occurs, 

realizations of the chain are realizations of the stationary distribution. The task is to 

construct a chain having a given target as its stationary distribution. 

 

6.5.1 Markov Chains and Transition Kernels 

Generally, a Markov Chain is a sequence of random variables X1, X2, X3, ...  

in which the conditional distribution of a present observations given a set of past 

observations only depends on the past through the most recent observation. 

Specifically, if χ  is the sample space for the { }tX and A  is a subset of a collection of 

sets on χ  then  

( ) ( )1 0 1 1, ,...,t t t tP X A x x x P X A x+ +∈ = ∈           (6.22) 

for all 1, 2,3,...t =  and any such A . The value taken by tX  is called the state of the 

chain at .t  An above expression is called a transition probability. The rule describing 

how the chain moves from its state at t  to its state at 1t +  is described by the 

transition kernel. This is a function ( ),K x y  that for each x  provides a probability 

distribution for y . Thus it is a collection of conditional probability distributions, one 

for each x . When the sample space, χ , is discrete: 

   ( ) ( )1, ,t tK x y p X y X x x y χ+= = = ∈          (6.23) 

The probability distribution of 1tX +  say 1tp + , can be described in terms of 

the transition kernel and the analogous distribution of tX . This is because the 

probability that 1tX y+ =  is equal to the sum or integral of the probabilities that 

tX x=  times the probability that the chain moves to given that it had been in .x  

Algebraically, when there are M  states, this is  
                                                 

5 The phrase monte carlo refers to the use of random number generators to solve 

mathematical problems. The phrase itself is a reference to the Principality of Monte Carlo in southern 

France, which is famous for its casino. 
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 ( ) ( ) ( )1 11
 , 1, 2,..., .M

t t t tt
P X j P X i P X j X i j M+ +=

= = = = = =∑  

that is,  

 ( ) ( ) ( )1 1
,M

t tt
p j p i K i j+ =

=∑     or    1t tp p K+′ ′= ,          (6.24) 

in terms of continuous sample: 

  ( ) ( ) ( )1 , .t tp y K x y p x dx
χ

+ = ∫   

6.5.2The Metropolis-Hastings (M-H) Algorithms 

Metropolis Hasting algorithm is a method to find a kernel (chain) 

corresponding to a given stationary distribution. In other words, Metropolis-Hastings 

algorithm is a rejection sampling algorithm used to generate a sequence of samples 

from a probability distribution. 

The algorithm generates a Markov chain in which each state yt + 1 depends 

only on the previous state yt. The step of this algorithm is made as follow. First, we 

choose an initial value, 0y , and set 0t = . Next step is draw *y  from ( ). tq y (a 

sequence of proposal distribution). The third step is to calculate the 

ratio ( ) ( ) ( )
( ) ( )

* *
*

*
,

t
t

t t

p y q y y
r y y

p y q y y
= . If 1r ≥ , set *

1ty y+ = ; otherwise set 1t ty y+ = . Next is 

to increase t by one and then proceed to step 2. 

Whether the probability that *y is accepted depends on as follow 

( ) ( ) ( )
( ) ( )

* *
*

*
, min ,1

t
t

t t

p y q y y
y y

p y q y y
ρ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 


