

LIST OF ILLUSTRATIONS

Figure	Page
1.1 Structure of azo dye: PAR, Br-PADAP and Br-PAPS	5
3.1 Absorption spectra of PAPS-fluoride, Zr-PAPS-fluoride (0.5 mg L^{-1}) and Hf-PAPS-fluoride (2 mg L^{-1}) at pH 3.7. Conditions [PAPS] = 0.1 mM , [fluoride] = 0.02 mM .	9
3.2 Effect of PAPS concentration on peak height of Zr(IV) (0.1 mg L^{-1})	10
3.3 Effect of fluoride concentration on peak height of Zr(IV) (0.1 mg L^{-1})	10
3.4 Chromatogram of (a) Hf(IV)-PAPS-fluoride (0.4 mg L^{-1}), (b) Zr(IV)-PAPS-fluoride (0.1 mg L^{-1}) and (c) standard mixture of Zr(IV) (0.05 mg L^{-1}) and Hf(IV) (0.2 mg L^{-1}). Mobile phase was methanol-water 65% v/v containing 0.05 mM fluoride and 10 mM acetate buffer at pH 5, analytical column 75 mm x 4 mm I.D., 3 μm , Purospher C ₁₈ ; flow rate 1 ml/min; temperature 30 °C; detection at 585 nm.	11
3.5 Effect of TBABr concentration on k' of Zr-PAPS-fluoride and Hf-PAPS-fluoride. Other conditions are the same as in Figure 3.4	12
3.6 Chromatogram of (a) blank, (b) Hf(IV)-PAPS-fluoride ($20 \text{ }\mu\text{g L}^{-1}$), (c) Zr(IV)-PAPS-fluoride ($5 \text{ }\mu\text{g L}^{-1}$) and (d) standard mixture of Zr(IV) ($10 \text{ }\mu\text{g L}^{-1}$) and Hf(IV) ($40 \text{ }\mu\text{g L}^{-1}$). Mobile phase was methanol-water 65% v/v containing 0.05 mM fluoride, 5 mM TBABr and 10 mM acetate buffer at pH 5. Other conditions are the same as in Figure 3.4	13
3.7 Effect of pH on peak height of Zr(IV)-PAPS-fluoride ($50 \text{ }\mu\text{g L}^{-1}$) and Hf(IV)-PAPS-fluoride ($200 \text{ }\mu\text{g L}^{-1}$). Other conditions are the same as in Figure 3.4	13
3.8 Chromatogram of (a) blank, (b) granite rock sample KP112 and (c) granite rock sample KP112 spiked with $5 \text{ }\mu\text{g L}^{-1}$ Zr(IV) and $20 \text{ }\mu\text{g L}^{-1}$ Hf(IV). Top: complete view. Bottom: zoom view. The sample contained [PAPS] = 0.25 mM , [fluoride] = 0.02 mM . Other conditions are the same as Figure 3.6	15

7.1	Structure of imidazole	33
7.2	Spectrum of background electrolyte containing 12 mM imidazole, 3 mM 18-crown-6 ether and 15 mM alanine at pH 6	33
7.3	Electropherogram of standard (a) NH_4^+ (2.5 mg L ⁻¹), (b) K^+ (5 mg L ⁻¹), (c) Ca^{2+} (1.25 mg L ⁻¹), (d) Mg^{2+} (0.5 mg L ⁻¹) and (e) mixture of NH_4^+ (2.5 mg L ⁻¹), K^+ (5 mg L ⁻¹), Ca^{2+} (1.25 mg L ⁻¹), and Mg^{2+} (0.5 mg L ⁻¹). Electrolyte: 12 mM imidazole, 3 mM 18-crown-6 ether pH 4.3. Separation voltage: +25 kV.	34
7.4	Electrolyte: 12 mM imidazole, 3 mM 18-crown-6 ether pH 6.0. Concentration of standard (a), (b), (c) and (d) are the same as in Figure 7.3	35
7.5	Electrolyte: 12 mM imidazole, 3 mM 18-crown-6 ether and 15 mM alanine at pH 6.0. Concentration of standard (a), (b), (c) and (d) are the same as in Figure 7.3	35
7.6	Electropherogram of NH_4^+ (2.5 mg L ⁻¹), K^+ (5 mg L ⁻¹), Ca^{2+} (1.25 mg L ⁻¹), Na^+ (1 mg L ⁻¹), Mg^{2+} (0.5 mg L ⁻¹), Mn^{2+} (1 mg L ⁻¹), Co^{2+} (1 mg L ⁻¹) and Cd^{2+} (5 mg L ⁻¹) in a standard solution; (a) electrolyte: 12 mM imidazole and 15 mM alanine at pH 6; (b) electrolyte: 12 mM imidazole, 3 mM 18-crown-6 ether and 15 mM alanine at pH 6.0	36
7.7	Co-EOF of standard NH_4^+ (2.5 mg L ⁻¹), K^+ (5 mg L ⁻¹), Ca^{2+} (1.25 mg L ⁻¹), Na^+ (1 mg L ⁻¹), Mg^{2+} (0.5 mg L ⁻¹), Mn^{2+} (1 mg L ⁻¹), Co^{2+} (1 mg L ⁻¹) and Cd^{2+} (5 mg L ⁻¹). The electrolyte was 12 mM imidazole, 3 mM 18-crown-6 ether and 15 mM alanine at pH 6.0; the separation temperature 25°C, the separation voltage +25 kV and injection time 7 s under pressure 50 mbar	37
7.8	Electropherogram of solid fertilizer sample: N-P-K = 18-4-6; (a) blank; (b) unspiked N-P-K fertilizer; (c) N-P-K fertilizer spiked with 2 mg L ⁻¹ NH_4^+ , 2.5 mg L ⁻¹ K^+ , 0.5 mg L ⁻¹ Ca^{2+} , 0.3 mg L ⁻¹ Na^+ and 0.2 mg L ⁻¹ Mg^{2+} . Other conditions are the same as in Figure 7.7	41
7.9	Electropherogram of Ca-Mg fluid fertilizer sample; (a) unspiked Ca-Mg fertilizer; (b) Ca-Mg fertilizer spiked with 0.5 mg L ⁻¹ Ca^{2+} and 0.2 mg L ⁻¹ Mg^{2+} . Other conditions are the same as in Figure 7.7	41