

LIST OF TABLES

Table	Page
3.1 Detection limits and calibration graphs for determination of Zr(IV) and Hf(IV)	14
3.2 %RSD for retention time, peak area and peak height of Zr(IV) and Hf(IV)	14
5.1 Measuring method and deviation of nutrients in chemical fertilizer	24
5.2 Selected example of inorganic cation separations by capillary electrophoresis	26
7.1 Electrophoretic mobilities of eight cations for simultaneous separation of cations comparable to ref. (Johns, et al., 2004)	38
7.2 Detection limits and calibration graphs for determination of ammonium, potassium, calcium, sodium, magnesium, manganese, cobalt and cadmium	39
7.3 %RSD of intra- and inter-day for standard cations	40
7.4 Comparison of the results for K^+ , Ca^{2+} , Mg^{2+} and Mn^{2+} in fertilizers (% w/w) obtained by CE and AAS (n = 3)	42
7.5 Calculated P (two tail) compare to significant level P = 0.05	43
A Ratios of element pairs in different rocks	50
B Form and benefit of cationic nutrients	51