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WUAN A

Algorithms 2184 T191nsn SPSS

Descriptives Algorithms

Descriptives computes univariate statistics—including the mean,standard deviation,

minimum, and maximum—for numeric variables.

Notation

Moments

The following notation is used throughout this section unless otherwise stated:

X, Value of the variable for case i

W, Weight for case i

N Number of cases

W, Sum of the weights for the first i cases

x|

, Mean for the first i cases

Moments about the mean are calculated recursively using a provisional

Means algorithm (Spicer,1972):

j

W=
i=1
s —_

uj = IT%{X:' — Xj-1)

WP — 3u; Wi
ME=M} —ei«b-jMf'_1+6vfo_l+( 1 m; ! ])uji-vj_ll-vj

Wil ‘ 3
-+ — {T\-VJ- — By oy
ur;

4 3 I
M? = M, — 3 ML,

B E
P = 2+ Bt
wy o f

After the last observation has been processed,



W, = sum of weights for all cases

Xy =mean

hi
My = (X = X)
i=1
Basic Statistics

Mean

X
Variance
5% = ML/ (Wy —1)

Standard Deviation

5 =v5g?

Standard Error

Minimum
ﬂ:l.iI]_Xj
J

Maximum

max X
J

Sum
XaWy

Skewness and Standard Error of Skewness

_ Wy M3, oy — 6Wy (Wy—1)
N = monwa—os felg) = \/ (Wa—2)[Wu +1)(Wa+3)

If Wy =2o0r8 <107, 4 andits standard error are not calculated.

Kurtosis (Bliss, 1967, p. 144) and Standard Error of Kurtosis

W (Wt 1) ML —3M% M2 (W—1)

HWE—1)SE{g )

M= T W, — 1 [ Wa—2) [ Wa—3)5° selgz) = \/ TWy—3) W t5)

If "Wy <30rs? <107 4, and its standard error are not calculated.
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If X,is missingor S <0, Z, is set to the system missing value.

References
Bliss, C. I. 1967. Statistics in biology, Volume 1. New York: McGraw-Hill.
Spicer, C. C. 1972. Algorithm AS 52: Calculation of power sums of deviations
about the mean. Applied Statistics, 21, 226-227.
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ANOVA Algorithms

This chapter describes the algorithms used by the ANOVA procedure.

Model and Matrix Computations

Notation

stated:

The Model

where

The following notation is used throughout this section unless otherwise

Number of cases

Number of factors

Number of covariates

Number of levels of factor i

Value of the dependent variable for case k
Value of the jth covariate for case k
Weight for case k

Sum of weights of all cases

A linear model with covariates can be written in matrix notation as

Y =X3+2ZC+e L

O N » X <

(0]

N x1vector of values of the dependent variable
Design matrix (N x p)of rank q < p

Vector of parameters px1

Matrix of covariates (N x CN)

Vector of covariate coefficients (CN x1)

Vector of error terms (N x1)
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Constraints

To reparametrize equation (1) to a full rank model, a set of non-estimable
conditions is needed. The constraint imposed on non-regression models is that all
parameters involving level 1 of any factor are set to zero.

For regression model, the constraints are that the analysis of variance
parameters estimates for each main effect and each order of interactions sum to zero.
The interaction must also sum to zero over each level of subscripts.

For a standard two way ANOVA model with the main effects «;and f;, and

interaction parameter y;, the constraints can be expressed as

o1 =51 =75 =21=0 non— regression

g = .'Ii.ln = Tis = Taj = Q0 IEZIes5101

where » indicates summation.

Computation of Matrices

XX

Non-regression Model

The XX matrix contains the sum of weights of the cases that contain a
particular combination of parameters. All parameters that involve level 1 of any of the
factors are excluded from the matrix. For a two-way design with k; =2 and k, =3, the

symmetric matrix would look like the following:

k2 da ix Yaz 2
o P Naz Nag Naa Nos
3y Nez 0 Naz 0
Ha Nea 0 Nua
“fea Naa 1]
“Faa Nus

The elements N, or N,J— on the diagonal are the sums of weights of cases that have

level i of a or level j of f. Off-diagonal elements are sums of weights of cases cross-
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classified by parameter combinations. Thus, N, is the sum of weights of cases in level

3 of main effect f;,, while is the sum of weights of cases with ar,and f,.

Regression Model

A row of the design matrix X is formed for each case. The row is generated
as follows:

If a case belongs to one of the 2 to K; levels of factor i, a code of 1 is placed
in the column corresponding to the level and 0 in all other k; —1columns associated
with factor i. If the case belongs in the first level of factor i, -1 is placed in all the
k; —1columns associated with factor i. This is repeated for each factor. The entries for
the interaction terms are obtained as products of the entries in the corresponding main
effect columns. This vector of dummy variables for a case will be denoted as
d(i),i=1...,NC, where NC is the number of columns in the reparametrized design
matrix. After the vector d is generated for case k, the jjth cell of XX is incremented by

d(),d(j)w, ,where i=1,...,NCand j>i.

Checking and Adjustment for the Mean

After all cases have been processed, the diagonal entries of XX are
examined. Rows and columns corresponding to zero diagonals are deleted and the
number of levels of a factor is reduced accordingly. If a factor has only one level, the
analysis will be terminated with a message. If the first specified level of a factor is
missing, the first non-empty level will be deleted from the matrix for non-regression
model. For regression designs, the first level cannot be missing. All entries of XX are
subsequently adjusted for means.

The highest order of interactions in the model can be selected. This will
affect the generation of XX If none of these options is chosen, the program will
generate the highest order of interactions allowed by the number of factors. If sub-
matrices corresponding to main effects or interactions in the reparametrized model are

not of full rank, a message is printed and the order of the model is reduced accordingly.
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Cross-Product Matrices for Continuous Variables
Provisional means algorithm are used to compute the adjusted-for-the-

means cross-product matrices.

Matrix of Covariates Z'Z

The covariance of covariates m and | after case k has been processed is

k k

wy | Widne — Z wj E;}' WiZmr — Z ; Err:j
j=1 j=1

Wi Wi

ZZlk) =2 Zoalk — 1)+

where is W, the sum of weights of the first k cases.

The Vector Z’Y
The covariance between the mth covariate and the dependent variable after

case k has been processed is

k k

wi | WaYe =Y wi¥j | | WeZmg — Y wjZm;
Jj=1 Jj=1

WeWi_;

LY (k) =2 Yk —1) +

The Scalar Y'Y
The corrected sum of squares for the dependent variable after case k has

been processed is

k
we | Wi¥i — Z w;Y;
j=1

YY(K =Y Y(k-1)+
(k) ( ) WiWer
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The Vector XY

XY is a vector with NC rows. The ith element is
N
XY= Yiunby,
k=1

where, for non-regression model, §, =1 if case k has the factor combination in column i
of XX ; &, =0 otherwise. For regression model, ¢, =d(i) where d(i)is the dummy

variable for column i of case k. The final entries are adjusted for the mean.

Matrix X'Z

The (i, m)th entry is
J‘i‘r
X Zim = Z Zmpwpdy
k=1
where ¢, has been defined previously. The final entries are adjusted for the mean.

Computation of ANOVA Sum of Squares

The full rank model with covariates

Y=XJ+ZC+e

can also be expressed as

Y=X;bpy + X, b +ZC+e

where X and b are partitioned as

X = [Xe[X,] and § = [2;]

The normal equations are then

ZZ ZXe ZX. |[C ZY
X4Z XeXp XXem |[be | = | XY 2)
X2 X, X. X, .X.||bn XY
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The normal equations for any reduced model can be obtained by excluding those
entries from equation (2) corresponding to terms that do not appear in the reduced
model.

Thus, for the model excluding b, ,

Y=X;b+ZC +e

the solution to the normal equation is:
¢l _[zZz zXx. ]7'[gY @
by | T | XWE XWX, XY

The sum of squares due to fitting the complete model (explained SS) is
A~ ) g - ) ZJ.Y - T r ) v ) ]
R(C,bi,by) = [€ by, b ] | X3Y | = €ZY + BX WY + 5, X mY
XIT"Y

For the reduced model, it is

R(C,by) = |, by [i:’Y] =CZY +b,X,Y

The residual (unexplained) sum of squares for the complete model is
RSS =YY —R(C,b,,b,,)and similarly for the reduced model. The total sum of squares
is Y'Y . The reduction in the sum of squares due to including in a model that already

includes b, and C will be denoted as R(bm|C,bk). This can also be expressed as

H[b::alc-. bl.} = -H-'lrc-. bbbm] - -H-{G-. bl.}

There are several ways to compute R(bm|C,bk). The sum of squares due to
the full model, as well as the sum of squares due to the reduced model, can each be

calculated, and the difference obtained (Method 1).

R(b,|Cb)=CZY+b, X Y+b X, Y-CZY-—b,X,Y
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A sometimes computationally more efficient procedure is to calculate

R(by|C,by) = b, T by,

where 6m are the estimates obtained from fitting the full model and T, is the

partition of the inverse matrix corresponding to b, (Method 2).

X2 XiXe XeXa Tee Th Thy

ZZ ZX, EX, | [Tn T, Tm}
Krmz Kmxk x-.'mxﬂm Twe Tk Twm

Model and Options

Notation
Let b be partitioned as
Cmy T
_[m]_ | me
»=[B]-| %
| dF |
where
M Vector of main effect coefficients
m, Vector of coefficients for main effect i
m® M excluding m;

M including only m,through m; -1

D Vector of interaction coefficients

d, Vector of kth order interaction coefficients

dy; Vector of coefficients for the ith of the kth order interactions
p* excluding d,

D* including only d, through d, -1

d® d, excluding d,,
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C Vector of covariate coefficients
o Covariate coefficient
o C excluding c,

including only ¢, through ¢; -1

Models
Different types of sums of squares can be calculated in ANOVA.

Sum of Squares for Type of Effects

Covariates Main Effects Interactions

Experimental and R(C) R(M|C} R{di|C, M, D*
Hierarchical (4 )
Covariates with Main R{C, M) R(C, M) R(d:|C. M. D*")
Effects

Covarjates after Mamn R{C|M) RiM) R(d.|C, M. D**)
Effects

Regression RIC|M, I} H{M|C, D) Ii{d:|C, M. D*")

All sums of sguares are calculated as described in the infroduction. Reductions in sums of squares
{H[A B)) are computed using Method 1. Since all cross-product matrices have been cotrected for
the mean all sums of squares are adjusted for the mean.

Sum of Squares Within Effects

Covariates Main Effects Interactions
Defanlt Experimental R(c.|l'3r-"’] R[:m,|{.‘.Mr-'3] E(d;,JC.M.D"'.di"’)
Covariates with Main ] i ) same as defanlt
G r(smac?) | afmic)
Covariates after hMain ) i) {1} same as default
Effects HI:{E.|M.C :] H{m.IM :I
Regression R(eM.c D) | R(mM“.cD) | R(di|C M D)
Hierarchical R(fdc"} R{mi|C. M":I same as default
Hierarchical and Covariates RO, M) R(m M) same as default
with Mam Effects or '
Hierarchical and Covariates
after Main Effects

Beductions in sums of squares are calculated using Method 2, except for specifications involving
the Hierarchical approach. For these, Method 1 is used. All sums of squares are adjusted for
the mean.



df,

df

Degrees of Freedom
Main Effects
F

dfag =Y (ki —1)

=1

Main Effects i

(ki — 1)

Covariates

df. = CN

Covariate |
1
Interactions
Interactions d, :
= number of linearly independent columns corresponding to interaction d, in XX
Interactions d; :

= number of independent columns corresponding to interaction d,; in XX

Model
F-1
dfsodet = dfag +dfe+ Y dfy
r=1
Residual

W — 1 —d faoder

Total

w-1

116
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Multiple Classification Analysis

Notation

Yii Value of the dependent variable for the kth case in level j of main
effect i
Sum of weights of observations in level j of main effect i
k. Number of nonempty levels in the ith main effect

W Sum of weights of all observations

Basic Computations
Mean of Dependent Variable in Level j of Main Effect i

Thay
Vij = Z -}":'jkl,flﬂfj
k=1

Grand Mean
Y= Z Z Z Yiju/W
i ik

Coefficient Estimates
The computation of the coefficient for the main effects only model (bij ) and coefficients
for the main effects and covariates only model (Bij ) are obtained as previously

described.

Calculation of the MCA Statistics (Andrews, et al., 1973)
Deviations
For each level of each main effect, the following are computed:
Unadjusted Deviations

The unadjusted deviation from the grand mean for the jth level of the ith factor:

mij =Y =Y

Deviations Adjusted for the Main Effects
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k"
ml; = bi; — Z bijni; /W, where by = 0.

ij
1=2
Deviations Adjusted for the Main Effects and Covariates (Only for Models
with Covariates)
- Ll - a
iy = bij E*’Jz‘;"ﬂ-s;-.-" W, where by, =0,
i=2

ETA and Beta Coefficients

For each main effect i, the following are computed:

k. )
ETA; = |3 (Vi -7 /Y'Y

j=2

Beta Adjusted for Main Effects

Beta; = Z ni; (md) /Y'Y

Beta Adjusted for Main Effects and Covariates

Beta; = Znﬁ. ,-“Y Y

Squared Multiple Correlation Coefficients

Main effects model

D () §]
o =5

Main effects and covarnates model

2 _ RMC)
er'.' = vy

The computations of R{M), R(MLC), and Y'Y are outlined previously.
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Unstandardized Regression Coefficients for Covariates
Estimates for the C vector, which are obtained the first time covariates are

entered into the model, are printed.

Cell Means and Sample Sizes
Cell means and sample sizes for each combination of factor levels are
obtained from the XY and X X matrices prior to correction for the mean.

XY)
X'X),

L1}

e,

Y= i=1,....CN

—

Means for combinations involving the first level of a factor are obtained by

subtraction from marginal totals.

Matrix Inversion
The Cholesky decomposition (Stewart, 1973) is used to triangularize the

matrix. If the tolerance is less than 107, the matrix is considered singular.

References
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REGRESSION Algorithms
This procedure performs multiple linear regression with five methods for entry and
removal of variables. It also provides extensive analysis of residual and influential cases.
Caseweight (CASEWEIGHT) and regression weight (REGWGT) can be specified in the

model fitting.

Notation
The following notation is used throughout this section unless otherwise
stated:
Yi Dependent variable for case with variance
Caseweight for case i; if CASEWEIGHT is not specified
g, Regression weight for case i; if REGWGT is not specified

| Number of distinct cases

W G g,

|
W > w,

i=1
P Number of independent variables

!
C Sum of caseweights: Zci
i=1
X The kth independent variable for case i
_ _ |
Xy Sample mean for the kth independent variable: X, = (Zwi Xy J/N
i=1
_ _ |
Y Sample mean for the dependent variable: Y = [Zwi 'J/N
i=1

h, Leverage for case i
T L

w
Sy Sample covariance for X, and X,
Syy Sample variance for Y
Sy Sample covariance for X, and Y
P Number of coefficients in the model. p* = pif the intercept is not

included; otherwise p* = p+1
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R The sample correlation matrix for X,,..., X ,andy

Descriptive Statistics

11 C I'r]i[:'.'rly
R = T‘i'.l Ca ?:E!T'r'iy
Tyl - TopTyy
where
v = Skj
= ——d
b SwS;;
and

i b
aY S.Hr Syy

The sample mean X,and covariance Sij are computed by a provisional

k
means algorithm. Define W, = Zwi cumulative weight up to case k.
i=1

then
J— — — g
Xigey = Xy + 2k — Xijp—1y) 7
1 1 1) {: il 1 }Wk
where
E:{l} = Ti1
If the intercept is included,
| _ _ w?
Cijey = Cije—y + (zik — Xige—1y) (T — Xjg—)) (’wk - ﬁ)
where
Ci',f[]} = ﬂ
Otherwise,

Cijm) = Cijik—1) + WeTikT i
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where

Cijy = wizingji
The sample covariance Sij is computed as the final Cij divided by C-1.

Sweep Operations (Dempster, 1969)

For a regression model of the form

Yi=0O+5Xu4+ 50X+ - +.erXjﬂ=' + &

sweep operations are used to compute the least squares estimates b of
and the associated regression statistics. The sweeping starts with the correlation matrix

R. Let R be the new matrix produced by sweeping on the kth row and column of R. The

elements of R are

- 1
Tk = 7.7

Pl gk
- T .
Fij = —pt, J#k
and

_ TigFee—TiaaTe;

o= ATk oA

If the above sweep operations are repeatedly applied to each row of R, in
_ (B R
R= (R21 Rao
where R,, contains independent variables in the equation at the current
step, the result is

R=(R1_11 : ~Ryj Rz 1 )
R21R;; Raz — Ry Ry Rpo

The last row of

R Ry
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contains the standardized coefficients (also called BETA), and

Ras — RotR'Rys

can be used to obtain the partial correlations for the variables not in the
equation, controlling for the variables already in the equation. Note that this routine is its
own inverse; that is, exactly the same operations are performed to remove a variable as

to enter a variable.

Variable Selection Criteria

Let r; be the element in the current swept matrix associated with X, and
Xj . Variables are entered or removed one at a time. X, is eligible for entry if it is an
independent variable not currently in the model with

Iy =t (tolerance with a default of 0.0001)

and also, for each variable that is currently in the model,

FikT s
(-r”- L “J)f«:_: 1
Thek

The above condition is imposed so that entry of the variable does not

reduce the tolerance of variables already in the model to unacceptable levels.

The F-to-enter value for X, is computed as

F' —to — entery = lw;f%ém
with 1 and C—p*-1 degrees of freedom, where is the number of coefficients
currently in the model and
Vi = Ty

Thk

The F-to-remove value for X, is computed as

(C— p*) Vi
Tyy

F — o — removey =

with 1 and C-p* degrees of freedom.
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Methods for Variable Entry and Removal

Five methods for entry and removal of variables are available. The selection
process is repeated until the maximum number of steps (MAXSTEP) is reached or no
more independent variables qualify for entry or removal. The algorithms for these five
methods are described in the following sections.
Stepwise

If there are independent variables currently entered in the model, choose
X, such that F — to — remove, is minimum. X, is removed if F — to — remove, < F_,
(default = 2.71) or, if probability criteria are used, P(F — to — remove,) > F_, (default =
0.1). If the inequality does not hold, no variable is removed from the model.

If there are no independent variables currently entered in the model or if no
entered variable is to be removed, choose X, such that F —to — enter, is maximum. X,
is entered if F — to — enter, > F, (default = 3.84) or, if P(F — to — enter,) < F,_ (default =
0.05). If the inequality does not hold, no variable is entered.

At each step, all eligible variables are considered for removal and entry.
Forward

This procedure is the entry phase of the stepwise procedure.
Backward

This procedure is the removal phase of the stepwise procedure and can be
used only after at least one independent variable has been entered in the model.
Enter (Forced Entry)

Choose X, such 1, thatis maximum and enter X, .Repeat for all variables
to be entered.
Remove (Forced Removal)

Choose X, such r,, that is minimum and remove X, .Repeat for all variables
to be removed.
Statistics

The following statistics are available.
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Summary

For the summary statistics, assume p independent variables are currently
entered in the equation, of which a block of g variables have been entered or removed
in the current step.

Multiple R

= /1=y

R Square

2
1% =1 —ryy

Adjusted R Square

R Square Change (when a block of g independent variables was added or

removed)
AR? = Raz‘wrﬂ‘:l:'t - R}zarm:inn.-z
F Change and Significance of F Change
L w
Ef‘]i—“-ﬂﬁ'—_"’—% for the addition of independent variables
AVOES AR [f'w—p* g

- for the removal of independent variables
o B2 1) P

LERT T

the degrees of freedom for the addition are g and C — p*, while the
degrees of freedom for the removal are gand C— p* —(.

Residual Sum of Squares

Snslc - Tyy{[-: — J.:lnslyy

with degrees of freedom C — p*.



Sum of Squares Due to Regression

SSp = R*C —1)Sy,

with degrees of freedom p.
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ANDOVA Table
Analysis of Varianece |zﬂ" |Sm1| af Squares |M-'m:m5gﬂm
Regression P 55R {S5r)/p
w o —p 55, (58 3/(C —p")

Standard Error of Estimate

Also known as the standard error of regression, this is simply the square root of the

mean square residual from the ANOVA table, or +/(SS, )/(C —)p~ .

Variance-Covariance Matrix for Unstandardized Regression Coefficient

Estimates

A square matrix of size p with diagonal elements equal to the variance, the below

diagonal elements equal to the covariance, and the above diagonal elements equal to

the correlations:

P Ty Syn

var(hg) = =

cov(by, b)) = —iluu

5 S (C—p)
cor{by, b} = %

‘..
LU

Selection Criteria

The following selection criteria are available.

Akaike Information Criterion (AIC)

AIC = Cln (‘f) +opt
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Amemiya’s Prediction Criterion (PC)

(1 - RE)(C +p*)

PO =
(" c—p
Mallow’s CP
. S8 .
CP = =2 +2p" — O

where 67 is the mean square error from fitting the model that includes all the variables
in the variable list.

Schwarz Bayesian Criterion (SBC)

aral

SBC=Cln (buﬁ) +p"In(C)

1

Collinearity

The following measures of collinearity are available.

Variance Inflation Factors

VIF; = IL
Tolerance
Tolerance; =T;
Eigenvalues
The eigenvalues of scaled and uncentered cross-product matrix for the independent
variables in the equation are computed by the QL method (Wilkinson and Reinsch,
1971).

Condition Indices

max A;
A

e =

Variance-Decomposition Proportions

Let

vi = (w1, ..., Vip)
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be the eigenvector associated with eigenvalue A, . Also, let

P
P = o5 A and @ = z"t"i_f

The variance-decomposition proportion for the jth regression coefficient

associated with the ith component is defined as

Statistics for Variables in the Equation

The following statistics are computed for each variable in the equation.

Regression Coefficient

_ Tuky Sy —
by = ~ = fork=1,..,p

The standard error of b, is computed as

- ThkTyy Syy
Fp, = 4 —————
b l'l SgplC — p*)

95% confidence interval for coefficient

by % &y, to,9735,0—p-

If the model includes the intercept, the intercept is estimated as

F
bo=T— bpXy
k=1

The variance of b, is estimated by

. (C— 1) rpopl
E'”_ C,‘.[{j y; S Zxk b.,+22 Zxkxlﬂsfcw[hkb]

k=j+1j=1

Beta Coefficients

Beta, =r,,
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The standard error of Beta, is estimated by
5 _ TyuT kel
Betag o — p..
F-test for Beta,
2

Bet
P ( Be .-l']'._k)

T Beta,

with 1 and C — p” degrees of freedom.

Part Correlation

Ty
Part — Corr(X}) = —2
(X&) —
Partial Correlation
. Tyk
Partial — Corr(X3) =

qvf{rkklryy — 'J'qu;]"h.

Statistics for Variables Not in the Equation
The following statistics are computed for each variable not in the
equation.
Standardized regression coefficient Beta if predictor enters the equation at
the next step
Tyk

Betay, = =~
Tk

The F-test for Beta,

(T —p* - “""35;
F= =

with 1 and C — p”degrees of freedom
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Partial Correlation

T
Partial(X;) = —¥%—
+/ Toy Tk
Tolerance

Tolerance, =r,,

Minimum tolerance among variables already in the equation if predictor

enters at the next step is

1

1min L ThE
l=j<p \ rj; — [Tkj‘i"jk]ffkk

Residuals and Associated Statistics
There are 19 temporary variables that can be added to the active system

file. These variables can be requested with the RESIDUAL subcommand.

Centered Leverage Values

For all cases, compute

f P P B g
Xii — Xl (X — Xi)rin
.a ZZ{ i ) (X k)it if intercept is included
{ st STk
i=1 k=1
hy = 4
PP 4 v o
A Z Z X5iXeit ik otherwise
\ =kt V1S

For selected cases, leverage is ; for unselected case i with positive
caseweight, leverage is

i if intercept is included
B = {Qt'[(llTthi}f(l*“W*“ht'] - Wil P
hi /(1 + ki fgi) otherwise
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Unstandardized Predicted Values

P if no intercept
> b Xy
_ ) =1

Y= P
bo + Ebk;’:ﬁ otherwise
k=1
Unstandardized Residuals
e =Y — Y
Standardized Residuals
e if no regression weight is specified
ZRESID; = {‘EYSMIS otherwise

where s is the square root of the residual mean square.

Standardized Predicted Values
ZPRED; = E;;—? 1f no regression weight 1s specified
SYSMIS otherwise

where sd is computed as

- a2
L o(5-7)
=1

ad =

i=1

Studentized Residuals

—{:"::T for selected cases with ¢; = 0
—ri 0
ol otherwise

V(L) o

SRES; =

Deleted Residuals

DRESID. = E‘if(l - F_h') for selected cases with ¢; > ()
& otherwise
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Studentized Deleted Residuals

ﬂfﬁi for selected cases withc; > 0
SDRESID; = £ otherwise
5 {l+ i, }I,.l'_gl..

where

st = 1 {C—p*:l.‘:‘g
O oT\ 1ok

— DRESID?

Adjusted Predicted Values

ADJPRED; =Y, — DRESI);

DfBeta

. ' “Lart
DFBETA; =h—b(i) = gis [Klw;:j xt

where

¢ J(L, Xy, ..., &) if intercept 1s included
X = (Xviae ooy Xpi) ottherwise

and W = din_g{wll . wf].

This is only computed for selected cases with case weight greater than or equal

to 1.

Standardized DfBeta

bi — bi{3)
SDBETA;; = —2—
sy (XTWX )

where &;  b;(4] 15 the jth component of b b(z), and

—_ * — .-.

This is only computed for selected cases with case weight greater than or equal to 1.
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DfFit
_ hie;
DFFIT; = X;[b—b(i)] = -
1— fy
This is only computed for selected cases with case weight greater than or
equal to 1.

Standardized DfFit

DFFIT,
SDFRIT; = ———

Ay h;

This is only computed for selected cases with case weight greater than or

equal to 1.
Covratio
swy 1
COVRATIO; = (2} x ——
§ 1—fy
This is only computed for selected cases with case weight greater than or
equal to 1.

Mahalanobis Distance

For selected cases with ¢; = (),

_J (€ =1k if intercept 1s included
MAHAL; = {C' hy ' otherwise

For unselected cases with o; = (0

Ch'; if mntercept 1s included
MAHAL; = ¢ ‘ ;
{ (C'+1)k; otherwise

Cook’s Distance (Cook, 1977)

For selected cases with o: = (0

(_u RESID g ) /[s*p+1)] if ntercept is included

COOR, —
{ (DRESID )/ (s%p) otherwise
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For unselected cases with e > 0

cook. — | (PRESID (' + 3))/[#*(p+1)]  if intercept is included
o (DRESIDEF*J;' f{gzp} otherwise

where !, is the leverage for unselected case i, and i is computed as

P Elq[SS,: +e7(l — b — ﬁ}] if intercept 1s mcluded
* T T:,"_J_;,T[SS; +ef (1 - R4} otherwise

Standard Errors of the Mean Predicted Values

For all the cases with positive caseweight,

SEPRED. {s-Jﬁifgi- if intercept is inchuded

14/ h;ifg; otherwise
95% Confidence Interval for Mean Predicted Response

LMCIN, = Yi —tygm,c—p SEPRED;
UMCIN; =Y, + tyors.o_p- SEPRED;

95% Confidence Interval for a Single Observation
LICIN; = Yi — toors,c—p 8 (fﬂ-i + l)f;;,- if intercept 1s included

Yi —tnoms.c—psy/(hi +1)/g  otherwise

UICIN; = Yi+ to.g75,c—p- 3 (fif + 1);’ g; if intercept 15 mncluded
Y; + toora.c—psy/ (R +1)/g;  otherwise

Durbin-Watson Statistic

where &; = f:ivﬁ.
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Note: the Durbin-Watson statistic cannot be computed if there are fractional
case weights. Even with integer case weights, the formula is only valid if the case

weights represent contiguous case replications in the original sample.

Partial Residual Plots

The scatterplots of the residuals of the dependent variable and an
independent variable when both of these variables are regressed on the rest of the
independent variables can be requested in the RESIDUAL branch. The algorithm for
these residuals is described in (Velleman and Welsch, 1981).
Missing Values

By default, a case that has a missing value for any variable is deleted from
the computation of the correlation matrix on which all consequent computations are

based. Users are allowed to change the treatment of cases with missing values.
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