

ในงานวิจัยนี้ได้ศึกษาโครงสร้างจุลภาคและการเกิดสารประกอบของอลูมิเนียม 10Zn-Mg-Cu-Zr ในสภาพหลังการหล่อและหลังผ่านกระบวนการการอบให้เป็นเนื้อเดียวโดยขึ้นงานมีขนาด 200 ม.ม. และผ่านการหล่อโดยวิธี Direct Chill โดยมีการกวนด้วยแร่แม่เหล็กไฟฟ้า ซึ่งขึ้นงานที่นำมาศึกษานี้มีส่วนผสมของสังกะสีคงที่ที่ 10 เปอร์เซ็นต์โดยน้ำหนัก และได้ทำการเปลี่ยนปริมาณแมกนีเซียมที่ 2.5, 1.5 และ 1.0 เปอร์เซ็นต์โดยน้ำหนัก และปริมาณทองแดงที่ 2.3, 1.5 และ 1.0 เปอร์เซ็นต์โดยน้ำหนัก และทำการศึกษาโครงสร้างจุลภาคโดยกล้องจุลทรรศน์แบบแสงและกล้องจุลทรรศน์แบบส่องความส่องใส่ สำรวจจุลภาคหลังการหล่อที่ส่วนผสม 2.5Mg2.3Cu และ 2.5Mg1.0Cu โครงสร้างที่เกิดขึ้นน่าจะเป็น $\text{Al} + \eta$ (MgZn_2) ซึ่งเป็นโครงสร้างลาเมลยาบูติกและอาจจะมี T ($\text{Mg}_{32}(\text{Al},\text{Zn})_{49}$) หรือ S (Al_2CuMg) เฟสรวมอยู่ด้วย ซึ่งสอดคล้องกับงานวิจัยของ Xigang Fan และ Chandan Mondal แต่ที่ส่วนผสม 2.5Mg1.5Cu, 1.5Mg2.3Cu และ 1.0Mg2.3Cu ไม่สามารถตรวจพบ T ($\text{Mg}_{32}(\text{Al},\text{Zn})_{49}$) และ S (Al_2CuMg) เฟสจาก การตรวจสอบด้วยวิธี X-Ray Diffraction นอกจากนี้ยังพบสารประกอบ $\text{Al}_7\text{Cu}_2\text{Fe}$ ในโครงสร้างจุลภาคทุกส่วนผสม และเมื่อปรับปริมาณของทองแดงและแมกนีเซียมลดลงส่งผลให้ปริมาณของยูเกติกลดลงตามไปด้วย

โครงสร้างขึ้นงานหลังผ่านกระบวนการการอบให้เป็นเนื้อเดียวพบว่าโครงสร้างยูเกติกมีปริมาณลดลงและเริ่มขาดความต่อเนื่องไม่เป็นตัวข่าย สารประกอบ $\text{Al}_7\text{Cu}_2\text{Fe}$ พบว่ายังคงเหลือค้างในขึ้นงานไม่เปลี่ยนแปลงมากนัก

As-cast and homogenized microstructures of Al-10Zn-Mg-Cu-Zr alloys were studied to understand microstructure constituents' formation of super high strength aluminum alloys. Ingot with diameter of 200 mm was cast by low frequency electromagnetic direct chill casting. The Zn content of the sample were 10% and Mg content were 1.0~2.5 wt% and Cu content were 1.0~2.3 wt%. OM and SEM were used for microstructure observation and phase's identification was done by using XRD, EDX and EPMA. $\text{Al} + \eta$ (MgZn_2) included T ($\text{Mg}_{32}(\text{Al},\text{Zn})_{49}$) or S (Al_2CuMg) phases in lamellar form of eutectic were found in as-cast microstructure of 2.5Mg2.3Cu and 2.5Mg1.0Cu alloys. T ($\text{Mg}_{32}(\text{Al},\text{Zn})_{49}$) and S (Al_2CuMg) phases were not detected by X-Ray Diffraction method in 2.5Mg1.5Cu, 1.5Mg2.3Cu and 1.0Mg2.3Cu alloys. $\text{Al}_7\text{Cu}_2\text{Fe}$ phase was found in every alloy compositions. When the amount of Mg and Cu were decreased, the amounts of eutectic phases were also decreased.

For the homogenized samples, the dissolution of the eutectic structures were observed. $\text{Al}_7\text{Cu}_2\text{Fe}$ compound still remained after along homogenization time. Eutectic phases also remained but only a small fraction.