

*Bukholderia pseudomallei* เป็นจุลชีพก่อโรค melioidosis ซึ่งพบระบادในเอเชียตะวันออกเฉียงใต้และออสเตรเลีย จุลชีพนี้จัดเป็น intracellular bacteria โดยมีลักษณะเด่นเฉพาะคือ สามารถก่อให้เกิดการเขื่อมกันของเซลล์เนื้อเยื่อเป็น multinucleated giant cell นอกจากนั้นยังสามารถทำให้เซลล์ติดเชื้อเกิดการตายแบบ apoptosis ด้วย ในปัจจุบันยังไม่มีการศึกษา virulence factor ของ *B. pseudomallei* ที่นำไปสู่การเกิดพยาธิภาพลักษณะดังกล่าว ข้างต้น ดังนั้นงานวิจัยนี้จึงมีวัตุประสงค์ที่จะศึกษาว่าโปรตีน BipB มีส่วนเกี่ยวข้องหรือไม่โดยการใช้เทคนิคทางเอนไซม์วิทยาผลิต *B. pseudomallei* ที่มีความผิดปกติของยีน *bipB* และเปรียบเทียบพยาธิสภาพที่เกิดขึ้นในเซลล์ติดเชื้อว่ามีความแตกต่างจาก *B. pseudomallei* สายพันธุ์ปกติหรือไม่ ผลการทดลองพบ *B. pseudomallei bipB* mutant สูญเสียความสามารถในการก่อให้เกิด MNGC และการตายแบบ apoptosis ใน macrophage J.774A.1 และมีลักษณะอ่อนตุพธ์ (attenuated) ต่อการก่อโรคในหนู BALB/c แสดงว่า BipB เกี่ยวข้องกับการเกิด MNGC และการตายแบบ apoptosis ในเซลล์ที่มีการติดเชื้อ

กลไกที่ทำให้ *B. pseudomallei* สามารถปรับตัวเพื่อให้มีชีวิตรอดในสภาวะแวดล้อมต่างๆ นั้นยังมีการศึกษาน้อยมาก คณะผู้วิจัยจึงได้ศึกษาความสำคัญของโปรตีน RpoE ที่มีต่อการมีชีวิตรอดของ *B. pseudomallei* ในสิ่งแวดล้อม โดยการใช้เทคนิคทางเอนไซม์วิทยาผลิต *B. pseudomallei rpoE* operon mutant จากนั้นเปรียบเทียบความสามารถในการเจริญเติบโตภายใต้สภาวะ oxidative stress และภัยในเซลล์ฟากอซัยท์ ผลการทดลองพบว่าโปรตีน RpoE มีความสำคัญต่อการปรับตัวให้มีชีวิตรอดของ *B. pseudomallei* ในสภาวะแวดล้อมต่าง ๆ

*Burkholderia pseudomallei* is the etiological agent of melioidosis which is endemic in southeast Asia and tropical Australia. Uniquely among intracellular bacterial pathogens, *B. pseudomallei* induce host cell fusion leading to multinucleated giant cell (MNGC) formation in tissue culture models of infection. In addition to MNGC formation, *B. pseudomallei* is able to induce apoptotic death in infected host cells. The virulence factors contributed to these pathogenic characteristics have not been elucidated. In this study, mutagenesis of *B. pseudomallei* *bipB* gene was undertaken. The *bipB* mutant showed defective in MNGC formation, induction of apoptosis of J774A.1 macrophages and was also significantly attenuated following intranasal challenge of BALB/c mice. It is indicated that MNGC formation and apoptosis in infected host cells is mediated by *B. pseudomallei* BipB.

Little is known about the regulatory mechanisms that determine adaptation of *B. pseudomallei* to environmental stress. In this study, we investigated the importance of *B. pseudomallei* RpoE in survival under different stress conditions. To accomplish this, an *rpoE* operon mutant was constructed by insertion mutagenesis in order to examine its response to osmotic stress and its survival within phagocytic cells. The result demonstrated that the *rpoE* operon contributes, at least in part, to the survival of *B. pseudomallei* in stressful environments.