

การศึกษาความสามารถในการสะสมและผลทางสุริวิทยาของตะกั่วในต้นผักกาดภูมิน
ดร.จิตินันท์ สำราญวนิช* และ ศาสตราจารย์ ดร.มาลียา เครือตราชู
ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ถ.พระรามที่ 6 กรุงเทพ 10400

ผักกาดภูมิน (*Sonchus arvensis*) ซึ่งสามารถสะสมตะกั่วในลำต้นได้สูงเมื่อเจริญในดินที่ปนเปื้อนสารตะกั่วได้ถูกนำมาศึกษาในห้องปฏิบัติการเพื่อสังเกตความสามารถในการดูดซับตะกั่วจากสารละลายน้ำ (Pb removal) ความสามารถในการสะสมตะกั่ว (Pb accumulation) และผลของตะกั่วต่ออัตราการเจริญเติบโต โดยทดสอบเปรียบเทียบกับผักกาดเขียว (*Brassica juncea*) ซึ่งเป็นพืชที่ได้รับการยอมรับว่าสามารถสะสมโลหะหนักได้ในปริมาณที่สูง (*hyperaccumulator*) พืชทั้งสองชนิดถูกเลี้ยงในอาหารเหลวสูตร Hoagland's ที่มีสารละลายน้ำตะกั่วเข้มข้น 0, 1, 5, 10 และ 20 มิลลิกรัม/ลิตร เป็นเวลา 15 วัน และเปลี่ยนอาหารเหลวทุกๆ 3 วัน ผลการทดลองพบว่าพืชทั้งสองชนิดสามารถดูดซับสารละลายน้ำตะกั่วได้ดีที่ความเข้มข้น 1 มก./ล. ที่ความเข้มข้น 10 และ 20 มก./ล. ผักกาดเขียวมีอาการเหลืองและตาย ในขณะที่ผักกาดภูมินยังสามารถเจริญได้ดีและมีเปอร์เซ็นต์การดูดซับตะกั่ว 37% จากสารละลายน้ำตะกั่ว 10 มก./ล. พืชทั้งสองชนิดมีการสะสมตะกั่วในรากมากกว่าลำต้น โดยความสามารถในการสะสมตะกั่วของต้นผักกาดภูมินสูงขึ้นเมื่อเพิ่มความเข้มข้นของสารละลายน้ำตะกั่ว ในขณะที่ผักกาดเขียว มีการสะสมตะกั่วสูงสุดที่ความเข้มข้น 10 มก./ล. และลดลงเมื่อเลี้ยงในสารละลายน้ำตะกั่วเข้มข้น 20 มก./ล. ปริมาณตะกั่วสูงสุดที่พบในลำต้นของผักกาดภูมินและผักกาดเขียวคือ 854 และ 1,101 มก./ล. ตามลำดับ และปริมาณตะกั่วสูงสุดที่พบในรากของผักกาดภูมินและผักกาดเขียว คือ 8,121 มก./ล. และ 24,075 มก./ล. ตามลำดับ ความเข้มข้นของสารละลายน้ำตะกั่วในระดับสูง (10 และ 20 มก./ล.) มีผลทำให้อัตราการเจริญเติบโตของผักกาดเขียวลดลงอย่างมีนัยสำคัญ ($p < 0.05$) แต่ไม่มีผลต่อการเจริญของผักกาดภูมิน นอกจากนี้ยังพบว่าสารละลายน้ำตะกั่วเข้มข้น 10 และ 20 มก./ล. สามารถกระตุ้นการทำงานของเอนไซม์ glutathione S-transferase (GST) ในรากของต้นผักกาดภูมินได้ โดยเอนไซม์ GST เพิ่มสูงสุดเมื่อเลี้ยงพืชไว้ในสารละลายน้ำตะกั่ว 20 มก./ล. นาน 12 ชม. การศึกษานี้แสดงให้เห็นว่าผักกาดเขียวและผักกาดภูมินมีความสามารถในการสะสมสารตะกั่วได้ใกล้เคียงกันแต่ผักกาดภูมินสามารถทนทานต่อความเป็นกรดของตะกั่วได้ดีกว่าผักกาดเขียว ดังนั้นผักกาดภูมินจึงเป็นพืชที่น่าสนใจสำหรับนำมาศึกษาเพื่อประยุกต์ใช้ในกระบวนการกำจัดโลหะหนักโดยใช้พืช หรือ phytoremediation

Bioaccumulation and physiological effects of lead in *Sonchus arvensis*

Sumranwanich, T.* and Kruatrachue, M.

Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand

A field survey of abandoned lead mine in Kanchanaburi has discovered that *Sonchus arvensis*, a deep-rooted perennial herb, accumulated a high concentration of lead (9,316 mg/kg in shoots and 3,686 mg/kg in roots). The plant could also tolerate high concentrations of lead in the soil (165,500 mg/kg). A hydroponic culture study was conducted to investigate phytoextraction and accumulation of lead in *S. arvensis* comparing to a hyperaccumulator *Brassica juncea*. Three month old plants were acclimatized in Hoagland's solution for 7 days before subjecting to different lead concentrations (0, 1, 5, 10 and 20 mg/L) for 15 days. It was found that both plants could remove and accumulate a large amount of lead. *S. arvensis* showed greater removal percentages with increased concentrations of lead, while *B. juncea* died after 6 days of 10 and 20 mg/L lead applications. The removal percentage was correlated with amount of lead accumulated in both plants. Lead was found to accumulate more in the roots than in the shoots. The highest lead concentrations in the shoots were 854 and 1,101 mg/kg for *S. arvensis* and *B. juncea*, respectively. The highest lead concentrations accumulated in the roots of *S. arvensis* and *B. juncea* were 8,121 and 24,075 mg/kg, respectively. High concentrations of lead (10 and 20 mg/L) resulted in decrease in growth and biomass of both species. Toxicity symptoms e.g. burning leaf margins and leaf abscission were also observed. Although *S. arvensis* accumulated less amounts of lead, the plant was more tolerant to lead than *B. juncea* and possibly be useful for lead phytoremediation.

We are also interested in mechanisms that contribute to Pb accumulation and tolerance in *S. arvensis*. One mechanism may involve glutathione-s transferase (GST), an enzyme that catalyzes the conjugation of heavy metals with glutathione (GSH). GST activities were significantly increased in the roots of Pb-treated plants. The GST activities have been found to increase 12 h after Pb treatment. Increasing concentrations of Pb (10 and 20 mg/L) drastically stimulated activity of GST. These results suggest that increases in GST activity may contribute to Pb accumulation and tolerance in *S. arvensis*. Further experiment is planned to purify GSTs using affinity chromatography and analyzed by high performance liquid chromatography (HPLC).