

งานวิจัยนี้ศึกษาการใช้ไอโอดีนเพื่อบำบัดน้ำเสีย้อมด้วยกระบวนการเมมเบรนคอนแทคเตอร์ โดยการทดลองส่วนแรกเป็นการศึกษาผลของตัวแปรในการดำเนินการและสารช่วยย้อมที่มีต่อประสิทธิภาพการถ่ายเทน้ำของไอโอดีน เมมเบรนที่ใช้ในการทดลองเป็นเมมเบรนชนิด Polyvinylidenefluoride (PVDF) และ Polytetrafluoroethylene (PTFE) ทำการทดลองที่ความเข้มข้นไอโอดีน 40 mg/L ความเร็ว ก้าชไอโอดีนช่วง 0.12-0.22 m/s ความเร็วเฟสของเหลวช่วง 0.46-0.89 m/s (Re = 354-687) อุณหภูมิเฟสของเหลวช่วง 28-50°C เฟสของเหลวได้แก่น้ำ (Physical absorption) สารละลายน้ำ Acid blue 113 และ Direct red 23 (Chemical absorption) ความเข้มข้น 100 mg/L สารช่วยย้อมที่ใช้คือ NaCl และ Na_2CO_3 ผลการทดลองพบว่าทั้งกรณี Physical absorption และ Chemical absorption ค่าฟลักซ์ของไอโอดีนเพิ่มขึ้นเมื่อความเร็วเฟสของเหลวเพิ่มขึ้นแต่ความเร็วของเฟสก้าชไม่มีผลต่อฟลักซ์ของไอโอดีน เมื่อเปรียบเทียบค่าฟลักซ์ของไอโอดีนกรณีใช้เมมเบรนชนิด PVDF และ PTFE พบว่าเมมเบรน PVDF ให้ค่าฟลักซ์ของไอโอดีนสูงกว่าเมมเบรน PTFE อย่างไรก็ตามเมื่อทำการทดลอง 16 ชั่วโมงพบว่าค่าฟลักซ์ของไอโอดีนในกรณีที่ใช้เมมเบรนชนิด PVDF และ PTFE มีค่าลดลงร้อยละ 31.13 และ 9.44 ตามลำดับ เมื่อศึกษาผลของอุณหภูมิของเฟสของเหลวพบว่าในกรณี Chemical absorption เมื่ออุณหภูมิเพิ่มขึ้นทำให้ฟลักซ์ของไอโอดีนมีค่าเพิ่มขึ้นแต่ในกรณี Physical absorption เมื่ออุณหภูมิเพิ่มขึ้นทำให้ฟลักซ์ของไอโอดีนมีค่าลดลง การศึกษาผลของสารช่วยย้อมพบว่า Na_2CO_3 ทำให้ฟลักซ์ของไอโอดีนเพิ่มขึ้นแต่ NaCl ทำให้ค่าฟลักซ์ของไอโอดีนลดลง ส่วนที่ 2 เป็นการศึกษาผลของตัวแปรในการดำเนินการและสารช่วยย้อมต่อประสิทธิภาพการบำบัดสารละลายน้ำสีเข้มเริ่มต้น 300 mg/L ปริมาตร 500 mL ความเข้มข้นไอโอดีน 40 mg/L ความเร็ว ก้าชไอโอดีน 0.12 m/s และใช้เวลาในการบำบัด 60 นาที ผลการทดลองพบว่าเมื่อความเร็วของสารละลายน้ำสีเข้มเพิ่มขึ้น ทำให้ประสิทธิภาพในการลดความเข้มสีสารละลายน้ำสีเข้มเพิ่มขึ้น และเมื่อเพิ่มอุณหภูมิของสารละลายน้ำสีเข้มทำให้ประสิทธิภาพการลดความเข้มสีเพิ่มขึ้นเล็กน้อย การศึกษาผลของสารช่วยย้อมพบว่าทั้ง Na_2CO_3 และ NaCl ทำให้ประสิทธิภาพการลดความเข้มสีลดลง เมื่อทำการทดลองที่ความเร็วสารละลายน้ำสีเข้ม 0.46 m/s อุณหภูมิ 28°C ในเมมเบรน PVDF สามารถลดความเข้มข้นสารละลายน้ำสีเข้ม Acid blue 113 ได้ร้อยละ 97.11 ลดค่า COD ได้ร้อยละ 44.44 ส่วนในกรณีสารละลายน้ำสีเข้ม Direct red 23 สามารถลดความเข้มข้นสารละลายน้ำสีเข้ม Acid blue 113 ได้ร้อยละ 72.83 ลดค่า COD ได้ร้อยละ 41.51 ตามลำดับ เมื่อเวลาในการทำการบำบัดสารละลายน้ำสีเข้มเพิ่มขึ้น ค่า BOD₅/COD ของสารละลายน้ำสีเข้มมีค่าสูงขึ้น นอกจากนั้นพบว่าปฏิกิริยาการลดความเข้มสีเข้มด้วยไอโอดีนเป็นแบบ Pseudo-first order ซึ่งมีค่าคงที่ของปฏิกิริยาในสีเข้ม Acid blue 113 และ Direct red 23 เท่ากับ 0.065 min^{-1} และ 0.023 min^{-1} ตามลำดับ

This research investigated the ozonation of dye solutions by membrane contacting process. The first part studied the effect of operating parameters and dyeing auxiliary reagents on ozone mass transfer efficiency. The membranes used in this work were Polyvinylidenefluoride (PVDF) and Polytetrafluoroethylene (PTFE). The experiments were carried out at 40 mg/L ozone concentration, 0.12-0.22 m/s gas phase velocity, 0.46-0.89 m/s liquid phase velocity ($Re = 354-687$) and 28-50°C liquid phase temperature. Pure water (physical absorption), 100 mg/L dye solution of Acid blue 113 and Direct red 23 (chemical absorption) were used as feeds. Dyeing auxiliary reagents were NaCl and Na_2CO_3 . It was found that, in both physical absorption and chemical absorption, the ozone flux increased with increasing liquid phase velocity. Change in gas phase velocity did not influence the ozone flux. The ozone flux of PVDF membrane was higher than that of PTFE membrane. However, it was found that, after 16 hours operation, ozone flux of PVDF and PTFE decreased by approximately 31.13 and 9.44 percent, respectively. In chemical absorption, ozone flux increased with increasing temperature. But ozone flux decreased with increasing temperature in physical absorption. The presence of Na_2CO_3 in the dye solution resulted in increasing the ozone flux. Conversely, when NaCl was added, ozone flux decreased. The second part studied the effect of operating parameters and dyeing auxiliary reagents on the treating performance of dye solutions and ozonation kinetics. The operating conditions applied were 300 mg/L initial dye solution, 500 mL volume, 40 mg/L ozone concentration, 0.12 m/s ozone velocity and 60 minutes ozonation time. It was found that the removal of dye color increased with increasing dyes solution velocity. The removal of dye color increased slightly with increasing dye solution temperature. The presence of Na_2CO_3 and NaCl in dye solution resulted in decreasing the removal of dye color. At 0.46 m/s dye solution velocity, 28°C temperature and PVDF membrane, the removal of dye color and COD of Acid blue 113 dye solution were 97.11 and 44.44 percent, respectively. In case of Direct red 23, the removal of dye color and COD were 72.83 and 41.51 percent, respectively. BOD_5/COD values increased with operation time. It was found that kinetics of ozonation between dye and ozone was pseudo-first order reaction. Ozonation rate constants of Direct red 23 and Acid blue 113 were 0.065 min^{-1} and 0.023 min^{-1} , respectively.