ภาคผนวก

บทความสำหรับการเผยแพร่งานวิจัย

- (1) บทความวิจัยเรื่อง PREPARATON OF SiO₂ AND Si FROM RICE HUSK ASH ได้รับการตีพิมพ์ เผยแพร่ใน Journal of Metals, Materials and Minerals Vol.19 No.2 pp33-37, 2009.
- (2) บทความวิจัยเรื่อง Preparation of SiO₂ and Si from rice husk ash ได้รับการตีพิมพ์เผยแพร่ใน Proceeding of PACCON2010 (Pure and Applied Chemistry International Conference) pp417-419, 2010.

PREPARATON OF SiO, AND SI FROM RICE HUSK ASH

S. Pukird^{1*}, P. Kasian K. Noipa, S. Sumran, U. Tipparach and P. Limsuwan

¹Department of physics, Faculty of science, Ubon Ratchathani University,

Ubon Ratchathani, Thailand, 34190

²Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi,

Bangkok, Thailand, 10140.

* Corresponding Author: E-mail: supakorn@sci.ubu.ac.th

Abstract: High purity SiO₂ was prepared by burning rice husk in a furnace at temperature of 600 degree Celsius in normal atmosphere. The rice husk firstly was soaked in 1 M hydrochloric acid solution for 1 hour, and then rinsed in distilled water and dried in air. The acid-treated rice husk was heated in the furnace with air circulation for 1 hour. The purity of SiO₂ in silica ash was studied. The silica ash mixed with Mg or Al was heated at various temperature and atmosphere in furnace again. After, the furnace was cooled down to room temperature, naturally. The products were treated by hydrofluoric acid and washed in distilled water several times, then filtered. The prepared products were investigated by X-rays diffraction instrument. The high purity of Si prepared from rice husk ash was observed.

Introduction

Rice husk (or rice hull) is an agricultural residue abundantly available in rice producing Thailand. The number of rice production of world is approximate 400 million metric tons per year. 10 % of rice husk is a by-product of rice milling process [1]. It consists 13-29 % inorganic components, of which 87-97 % is SiO₂ (silica) in an amorphous state [2]. The major contamination are metal oxides such as Na, K, Mg, Ca and Fe and silicates can vary from 3 to 13 % in ash. They can be eradicated easily by acid-leaching, while life-time killing impurities such as Mo, Ti, Ta, Ni, V, Cr are either absent or present in very low condensing and can also be similarly easily taken. The importance of rice husk used as a potential source for useful materials such as silica, silicon carbide, silicon nitride or pure silicon for solar cells solar-grade silicon [4-9]. The burning of rice husk in air takes to the

production of silica ash, their color varies from black gray to white gray depending on temperature, air and the impurities. The temperature of heating also effected to structure or phase of amorphous silica or crystalline silica of rice husk ash. Amorphous silica can be easily transformed into the crystalline form [10].

Materials and Methods

The rice husks used in this work were obtained by product from rice mills and were washed with tap water to remove all adhering soil and dirt. They were dried in the sunlight. The dried husks were then washed with distilled water and dried again in an oven with temperature at 60 °C. The dried husks were subjected to chemical treatment. The 37% HCl acid used in this study was produced by MERCK, Germany, and was used as received. A proper amount of the HCl was mixed with distilled water to form 1 molar of HCl. The rice husks were soaked with 1 molar of HCl in a glass beaker placed on hot plate at 90 °C for 1 hr. The solution was filtered and the rice husks were washed with distilled water several times until they were acid free. The acid-leached rice husks were dried in an oven at 60 °C. They were fired at 600 °C for 1 hr. The rice husk ash was investigated by X-rays diffraction (XRD) and X-ray fluorescence (XRF) instruments. The coconut shell was cleaned by tap water and distilled water several times and dried in oven at 60 °C. The cleaned coconut shell was burned at 400 °C for form charcoal. The coconut shell charcoal was grounded to be fine powder (~90µm), and put in a glass beaker. The 1 molar of HCl was filled in the beaker and soaked for 1 hr. The solution was filtered and the charcoal powder was washed with distilled water

several times until acid free. These processes were explained by previous report [11]. We prepared silicon from silica ash using 2 metallothermic reduction methods, (1) the silica ash, magnesium powder and charcoal powder were mixed with ratio of 2:1:0.1 by weight, the mixtures powder were grounded and put in alumina crucible, then heated at 600 °C in the furnace chamber under atmosphere of nitrogen with flow rate of 2 L/min. The burn products were soaked in 1 M of HCl and H_2SO_4 for 1 hr. The solution was filtered and the burn products were washed with distilled water several times until acid free and dried in oven at 60 °C. The burn products were soaked again in HF for 4 hrs. They were washed with distilled water several times then, filtered and dried again. The prepared silicon was investigated by XRD instrument. (2) the silica ash, aluminum powder and charcoal powder were mixed with ratio of 3:0.5:0.1 by weight, the mixtures powder were grounded and put in alumina crucible, then heated at 1100 °C in the furnace chamber under atmosphere of nitrogen with flow rate of 2 L/min for 2 hrs. The burn products were carried for production of silicon with the same process of method (1). The prepared product was investigated by XRD instrument.

Results and Discussion

The rice husk silica was taken from the furnace. The white color of silica ash can be observed by naked eye. The silica ash was characterized by XRD and XRF instruments, as shown in Figure 1, Figure 2 and Table 1.

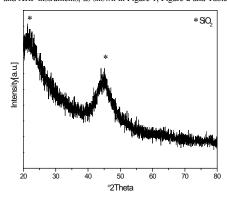


Figure 1. XRD curved of white rice husk ash.

Figure 1 show the broad peak XRD of white rice husk ash prepared form rice husk. The Figure 2 and Table 1 show the XRF curve of pure silicon dioxide from white rice husk ash. The white rice husk ash consist of silicon dioxide (SiO₂) 99.86 % and CaO 0.1419 %, GeO and FeO can not be observed.

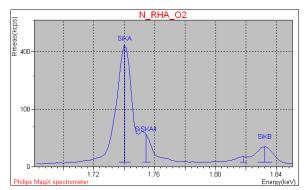


Figure 2. XRF curve of white rice husk ash.

Table 1. The composition of white rice husk ash.

Compound	Conc.	Compound	Conc.
Name	(%)	Name	(%)
SiO_2	99.86	GeO	<<
CaO	0.1419	FeO	<<
Element	Conc.	Element	Conc.
Name	(%)	Name	(%)
O	53.22	Ge	<<
Si	46.68	Fe	<<
Ca	0.1014		

Normalized to: 100 %

After production of SiO_2 , we carried for preparation of silicon from white rice husk ash using metallothermic reduction process. The products was very clearly different form source materials before reaction. Figure 3 show the XRD curved burn product before soaked in HF solution. We can see many peaks of the composition of burn product including of silicon.

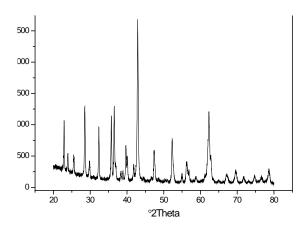


Figure 3. XRD curved of burn products before soaked in HF.

The burn product was soaked in HF solution for 4 hrs then, filtered and washed in distilled water many time. The dried product was studied by XRD instrument. Figure 4 show XRD curved of silicon prepared from rice husk ash using Mg metallothermic reduction.

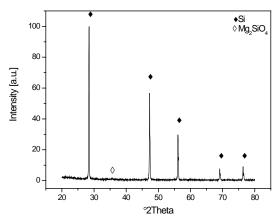


Figure 4. XRD curved of prepared silicon from rice husk ash using Mg metallothermic reduction.

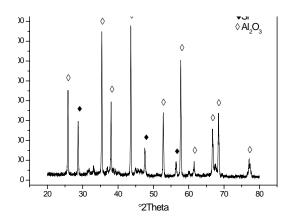


Figure 5. XRD curved of prepared silicon from rice husk ash using Al metallothermic reduction.

We studied the composition of the product from Figure 4 by using equation, % Si = $[I_{si}/I_{Me2SiO4}] \times 100$.

From equation, we calculated the 99.65 % of silicon in this prepared product.

Conclusions

In summary, high purity SiO_2 was prepared by burning acid-treated rice husk in a furnace at temperature of 600 degree Celsius in normal atmosphere for 1 hr. The XRD and XRF data show purity of SiO_2 in silica ash was around 99.86 %. The silicon was prepared from rice husk ash using Mg metaalothermic reduction. The calculation from XRD curved showed around 99.65 % purity of Si from this process. The SiO_2 and Si prepared from rice husk ash may be used in materials technology.

Acknowledgements

This research is supported by Ubon Ratchathani University, the National Research Council Thailand (NRCT), the Commission on Higher Education (CHE) and the Thailand Research Fund (TRF). The authors gratefully thank them for financial support.

References

- R. Conradt, P. Pimkhaokham and U. Leela-Adisom, Nano-structured silica from rice husk, *Journal of Non-Crystalline Solid* 145, 1992, 75-79.
- [2] Y.Shinohara and N. Kohyama, Quantitative analysis of tridymite and crystobalite crystallized in rice husk ash, *Industrial Health*, 42, 2004, 277-285.
- [3] D.N. Bose, P.A. Govindachargulu and H.D. Banerjee, Large grain polycrystalline silicon from rice husk, Solar Energy Materials, 7, 1982, 319-321
- [4] Amick, J. A. (1982) Purification of rice hulls as a source of solar grade silicon for solar cell, *The Journal of The Electrochemical Society*, 29, (4), pp. 864-866.
- [5] Hunt, L.P., Dismukes, J.P. and Amick, J.A. (1984) Rice hulls as a raw materials for producing silicon, *The Journal of The Electrochemical Society*, 131, (7), pp. 1683–1686.
- [6] Real, C., Aleala, M.D. and Criado, J.M. (1996) Preparation of silica from rice husk, The Journal of the American Ceramic Society, 79, (8), pp. 2012 – 2016.
- [7] Mishra P., Chakraverty, A. and Banerjee, H.D. (1985) Production and purification of

- silicon by calcium reduction of rice-husk white ash, *Journal of Materials Science*, 20, pp. 4387 4391.
- [8] Patel, M., Karera, A. and Prasanna, P. (1987) Effect of thermal and chemical treatments on carbon and silica contents in rice husk, *Journal of Materials Science*, 22, pp. 2457 – 2464.
 [9] Chakraverty, A., Mishra, P. and Banerjee H.D. (1988) Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica, *Journal of Materials Science*, 23, pp. 21–24.
- [10] L.A. Zemnukhova, G..A. Fedorishcheva, A.G. Egorov, and V.I. Sergienko, Russian J. Appl. Chem., 78(2005), pp.319-323.
- [11] S. Pukird, P.Chamninok, S. Sumran, P. Kasian, K. Noipa and L. Chow, J. Matals, Materials and Minerals, 19(2) (2009), pp. 33-37.
- X. Kong and Y. Li , Sens. Actuators. B 105 (2005), pp. 449–453.
- [2] H. W. Kim and S. H. Shim, J. Alloys. Comp. 426(2006), pp. 286–289.
- [3] H. W. Kim, S. H. Shim and C. Lee, Ceram. Inter. 32 (2006), pp. 943–946.
- [4] J. K. Jian, X. L. Chen, W. J. Wang, L. Dai and Y. P. Xu, Appl. Phys. A 76 (2003), pp. 291–294.
- [5] J. Q. Hu, Y. Bando and D. Golberg, Chem. Phys. Lett. 372 (2003), pp. 758–762.
- [6] Y. Chen, X. Cui, K. Zhang, D. Pan, S. Zhang, B. Wang and J. G. Hou, Chem. Phys. Lett. 369 (2003), pp. 16–20
- [7] J. X. Wang, D. F. Liu, X. Q. Yan, H. J. Yuan, L. J. Ci, Z. P. Zhou, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, G. Wang and S. S. Xie, *Solid State Common.* 130 (2004), pp 89-94.
- [8] L. Li, F. Zong, X. Cui, H. Ma, X. Wu, Q. Zhang, Y. Wang, F. Yang and J. Zhao, *Mater. Lett.* 61 (2007), pp. 4152–4155.
- [9] Z. Huang and C. Chai, Mater. Lett. 61 (2007), pp. 5113–5116.
- [10] H. Xiangming, Z. Bing, G. Shaokang, L. Jindun, Z. Xiang, C. Rongfeng, J. Alloys. Comp. 461 (2008), pp L26–L28.
- [11] H. X. Bai, Mater. Lett. 63 (2009), pp 221–223.
- [12] J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. X. Guo and S. Wu, Sens. Actuators. B 139 (2009), pp 369–374.
- [13] L.A. Ma and T.L. Guo, Mater. Lett. 63 (2009), pp 295– 297
- [14] R. S. Ningthoujam and S.K. Kulshreshtha, *Mater. Res. Bull.* 44 (2009), pp 57–62.
- [15] P. Chumninok, P. Kasian, P. Limsuwan, U. Tipparach, S. Samran, L. Chow and S. Pukird, Adv. Mater. Res. 55 (2008), pp. 637- 640.

PREPARATON OF SiO, AND SI FROM RICE HUSK ASH

S. Pukird^{1*}, P. Kasian¹ K. Noipa¹, S. Sumran¹, U. Tipparach¹ and P. Limsuwan²

¹Department of physics, Faculty of science, Ubon Ratchathani University,

Ubon Ratchathani, Thailand, 34190

²Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi,

Bangkok, Thailand, 10140.

* Corresponding Author: E-mail: supakorn@sci.ubu.ac.th

Abstract: High purity SiO₂ was prepared by burning rice husk in a furnace at temperature of 600 degree Celsius in normal atmosphere. The rice husk firstly was soaked in 1 M hydrochloric acid solution for 1 hour, and then rinsed in distilled water and dried in air. The acid-treated rice husk was heated in the furnace with air circulation for 1 hour. The purity of SiO₂ in silica ash was studied. The silica ash mixed with Mg or Al was heated at various temperature and atmosphere in furnace again. After, the furnace was cooled down to room temperature, naturally. The products were treated by hydrofluoric acid and washed in distilled water several times, then filtered. The prepared products were investigated by X-rays diffraction instrument. The high purity of Si prepared from rice husk ash was observed.

Introduction

Rice husk (or rice hull) is an agricultural residue abundantly available in rice producing Thailand. The number of rice production of world is approximate 400 million metric tons per year. 10 % of rice husk is a by-product of rice milling process [1]. It consists 13-29 % inorganic components, of which 87-97 % is SiO₂ (silica) in an amorphous state [2]. The major contamination are metal oxides such as Na, K, Mg, Ca and Fe and silicates can vary from 3 to 13 % in ash. They can be eradicated easily by acid-leaching, while life-time killing impurities such as Mo, Ti, Ta, Ni, V, Cr are either absent or present in very low condensing and can also be similarly easily taken. The importance of rice husk used as a potential source for useful materials such as silica, silicon carbide, silicon nitride or pure silicon for solar cells solar-grade silicon [4-9]. The burning of rice husk in air takes to the production of silica ash, their color varies from black gray to white gray depending on temperature, air and the impurities. The temperature of heating also effected to structure or phase of amorphous silica or crystalline silica of rice husk ash. Amorphous silica can be easily transformed into the crystalline form [10].

Materials and Methods

The rice husks used in this work were obtained by product from rice mills and were washed with tap water to remove all adhering soil and dirt. They were dried in the sunlight. The dried husks were then washed with distilled water and dried again in an oven with temperature at 60 °C. The dried husks were subjected to chemical treatment. The 37% HCl acid used in this study was produced by MERCK, Germany, and was used as received. A proper amount of the HCl was mixed with distilled water to form 1 molar of HCl. The rice husks were soaked with 1 molar of HCl in a glass beaker placed on hot plate at 90 °C for 1 hr. The solution was

filtered and the rice husks were washed with distilled water several times until they were acid free. The acid-leached rice husks were dried in an oven at 60 °C. They were fired at 600 °C for 1 hr. The rice husk ash was investigated by X-rays diffraction (XRD) and X-ray fluorescence (XRF) instruments. The coconut shell was cleaned by tap water and distilled water several times and dried in oven at 60 °C. The cleaned coconut shell was burned at 400 °C for form charcoal. The coconut shell charcoal was grounded to be fine powder (~90µm), and put in a glass beaker. The 1 molar of HCl was filled in the beaker and soaked for 1 hr. The solution was filtered and the charcoal powder was washed with distilled water several times until acid free. These processes were explained by previous report [11]. We prepared silicon from silica ash using 2 metallothermic reduction methods, (1) the silica ash, magnesium powder and charcoal powder were mixed with ratio of 2:1:0.1 by weight, the mixtures powder were grounded and put in alumina crucible, then heated at 600 °C in the furnace chamber under atmosphere of nitrogen with flow rate of 2 L/min. The burn products were soaked in 1 M of HCl and H2SO4 for 1 hr. The solution was filtered and the burn products were washed with distilled water several times until acid free and dried in oven at 60 °C. The burn products were soaked again in HF for 4 hrs. They were washed with distilled water several times then, filtered and dried again. The prepared silicon was investigated by XRD instrument. (2) the silica ash, aluminum powder and charcoal powder were mixed with ratio of 3:0.5:0.1 by weight, the mixtures powder were grounded and put in alumina crucible, then heated at 1100 °C in the furnace chamber under atmosphere of nitrogen with flow rate of 2 L/min for 2 hrs. The burn products were carried for production of silicon with the same process of method (1). The prepared product was investigated by XRD instrument.

Results and Discussion

The rice husk silica was taken from the furnace. The white color of silica ash can be observed by naked eye. The silica ash was characterized by XRD and XRF instruments, as shown in Figure 1, Figure 2 and Table 1.

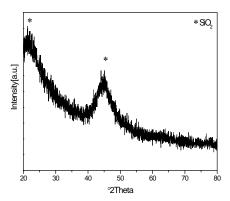


Figure 1. XRD curved of white rice husk ash.

Figure 1 show the broad peak XRD of white rice husk ash prepared form rice husk. The Figure 2 and Table 1 show the XRF curve of pure silicon dioxide from white rice husk ash. The white rice husk ash consist of silicon dioxide (SiO_2) 99.86% and CaO 0.1419%, GeO and FeO can not be observed.

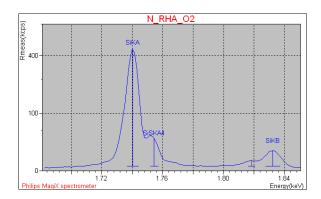


Figure 2. XRF curve of white rice husk ash.

Table 1. The composition of white rice husk ash.

Compound	Conc.	Compound	Conc.
Name	(%)	Name	(%)
SiO_2	99.86	GeO	<<
CaO	0.1419	FeO	<<
Element	Conc.	Element	Conc.
Name	(%)	Name	(%)
O	53.22	Ge	<<
Si	46.68	Fe	<<
Ca	0.1014		

Normalized to: 100 %

After production of ${
m SiO}_2$, we carried for preparation of silicon from white rice husk ash using metallothermic reduction process. The products was very clearly different form source materials before reaction. Figure 3 show the XRD curved burn product before soaked in HF solution. We can see many peaks of the composition of burn product including of silicon.

Figure 3. XRD curved of burn products before soaked in HF.

The burn product was soaked in HF solution for 4 hrs then, filtered and washed in distilled water many time. The dried product was studied by XRD instrument. Figure 4 show XRD curved of silicon prepared from rice husk ash using Mg metallothermic reduction.

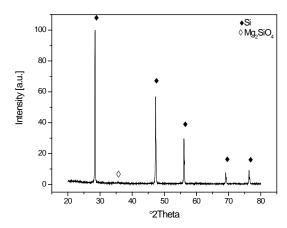


Figure 4. XRD curved of prepared silicon from rice husk ash using Mg metallothermic reduction.

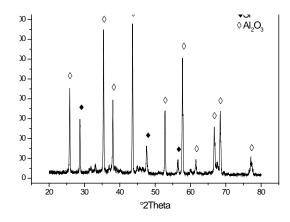


Figure 5. XRD curved of prepared silicon from rice husk ash using Al metallothermic reduction.

We studied the composition of the product from Figure 4 by using equation, % Si = $[I_{si} / I_{Mg2SiO4}] \times 100$.

From equation, we calculated the 99.65 % of silicon in this prepared product.

Conclusions

In summary, high purity SiO_2 was prepared by burning acid-treated rice husk in a furnace at temperature of 600 degree Celsius in normal atmosphere for 1 hr. The XRD and XRF data show purity of SiO_2 in silica ash was around 99.86 %. The silicon was prepared from rice husk ash using Mg metaalothermic reduction. The calculation from XRD curved showed around 99.65 % purity of Si from this process. The SiO_2 and Si prepared from rice husk ash may be used in materials technology.

Acknowledgements

This research is supported by Ubon Ratchathani University, the National Research Council Thailand (NRCT), the Commission on Higher Education (CHE) and the Thailand Research Fund (TRF). The authors gratefully thank them for financial support.

References

- R. Conradt, P. Pimkhaokham and U. Leela-Adisom, Nano-structured silica from rice husk, *Journal of Non-Crystalline Solid* 145, 1992, 75-79.
- [2] Y.Shinohara and N. Kohyama, Quantitative analysis of tridymite and crystobalite crystallized in rice husk ash, *Industrial Health*, 42, 2004, 277-285.
- [3] D.N. Bose, P.A. Govindachargulu and H.D. Banerjee, Large grain polycrystalline silicon from rice husk, Solar Energy Materials, 7, 1982, 319-321
- [4] Amick, J. A. (1982) Purification of rice hulls as a source of solar grade silicon for solar cell, *The Journal of The Electrochemical Society*, 29, (4), pp. 864-866.
- [5] Hunt, L.P., Dismukes, J.P. and Amick, J.A. (1984) Rice hulls as a raw materials for producing silicon, *The Journal of The Electrochemical Society*, 131, (7), pp. 1683–1686.
- [6] Real, C., Aleala, M.D. and Criado, J.M. (1996) Preparation of silica from rice husk, The Journal of the American Ceramic Society, 79, (8), pp. 2012 – 2016.
- [7] Mishra P., Chakraverty, A. and Banerjee, H.D. (1985) Production and purification of silicon by calcium reduction of rice-husk white ash, *Journal of Materials Science*, 20, pp. 4387 – 4391.
- [8] Patel, M., Karera, A. and Prasanna, P. (1987) Effect of thermal and chemical treatments on carbon and silica contents in rice husk, *Journal of Materials Science*, 22, pp. 2457 – 2464.
 [9] Chakraverty, A., Mishra, P. and Banerjee H.D. (1988) Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica, *Journal of Materials Science*, 23, pp. 21–24.
- [10] L.A. Zemnukhova, G.A. Fedorishcheva, A.G. Egorov, and V.I. Sergienko, Russian J. Appl. Chem., 78(2005), pp.319-323.
- [11] S. Pukird, P.Chamninok, S. Sumran, P. Kasian, K. Noipa and L. Chow, J. Matals, Materials and Minerals, 19(2) (2009), pp. 33-37.
- X. Kong and Y. Li , Sens. Actuators. B 105 (2005), pp. 449–453.
- [2] H. W. Kim and S. H. Shim, J. Alloys. Comp. 426(2006), pp. 286–289.
- [3] H. W. Kim, S. H. Shim and C. Lee, Ceram. Inter. 32 (2006), pp. 943–946.
- [4] J. K. Jian, X. L. Chen, W. J. Wang, L. Dai and Y. P. Xu, Appl. Phys. A 76 (2003), pp. 291–294.

- [5] J. Q. Hu, Y. Bando and D. Golberg, Chem. Phys. Lett. 372 (2003), pp. 758–762.
- [6] Y. Chen, X. Cui, K. Zhang, D. Pan, S. Zhang, B. Wang and J. G. Hou, Chem. Phys. Lett. 369 (2003), pp.16–20.
- [7] J. X. Wang, D. F. Liu, X. Q. Yan, H. J. Yuan, L. J. Ci, Z. P. Zhou, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, G. Wang and S. S. Xie, Solid State Common. 130 (2004), pp 89-94.
- [8] L. Li, F. Zong, X. Cui, H. Ma, X. Wu, Q. Zhang, Y. Wang, F. Yang and J. Zhao, Mater. Lett. 61 (2007), pp. 4152–4155.
- [9] Z. Huang and C. Chai, Mater. Lett. 61 (2007), pp. 5113–5116.
- [10] H. Xiangming, Z. Bing, G. Shaokang, L. Jindun, Z. Xiang, C. Rongfeng, J. Alloys. Comp. 461 (2008), pp 126–128.
- [11] H. X. Bai, Mater. Lett. 63 (2009), pp 221-223.
- [12] J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. X. Guo and S. Wu, Sens. Actuators. B 139 (2009), pp 369–374.
- [13] L.A. Ma and T.L. Guo, Mater. Lett. 63 (2009), pp 295– 297
- [14] R. S. Ningthoujam and S.K. Kulshreshtha, *Mater. Res. Bull.* 44 (2009), pp 57–62.
- [15] P. Chumninok, P. Kasian, P. Limsuwan, U. Tipparach, S. Samran, L. Chow and S. Pukird, *Adv. Mater. Res.* 55 (2008), pp. 637-640.

ประวัตินักวิจัย

หัวหน้าโครงการวิจัย รองศาสตราจารย์ ดร. ศุภกร ภู่เกิด

(Associate Professor Dr. Supakorn Pukird)

ตำแหน่ง รองศาสตราจารย์ ระดับ 9
ที่ทำงาน ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลาชธานี
อำเภอวารินชำราบ จังหวัดอุบลราชธานี 34190
โทร/โทรสาร 045-28838 081-2654535

การศึกษา

ปริญญาตรี วท.บ. (ฟิสิกส์) มหาวิทยาลัยศรีนครินทรวิโรฒ พิษณุโลก ศษ.บ. (บริหารการศึกษา) มหาวิทยาลัยสุโขทัยธรรมาธิราช ปริญญาโท วท.ม. (การสอนฟิสิกส์) มหาวิทยาลัยเชียงใหม่ หัวข้อวิจัย "Preparation of Silicon-dioxide from Rice-Husk." ปริญญาเอก วท.ค. (ฟิสิกส์) มหาวิทยาลัยเทคโนโลยีสุรนารี

Topic of Ph.D. thesis:

"Photoemission Study of 3d Transition Metals"

ณ สถาบัน KEK High Energy Accelerator Research Organization, Tsukuba, Japan การวิจัยหลังปริญญาเอก Research Scholar, Nanoscience/Nanotechnology, University of Central Florida, U.S.A. 2005.

Visiting Professor, Device Materials Research Center, Korea Research Institute of Chemical Technology, Daejon, Korea, 2008.

ประสบการณ์การทำงาน

- 1. อาจารย์และศึกษานิเทศก์ กรมสามัญศึกษา กระทรวงศึกษาธิการ (2527-2536)
- 2. อาจารย์ ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี (2536-2540)
- 3.เลขานุการ และหัวหน้าสำนักงาน คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี (2537)
- 4.รองคณบดีคณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี (2538-2540)
- 5. หัวหน้าภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชชานี (2544-2548)
- 5. ผู้ช่วยศาสตราจารย์ ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี (2545-2548)
- 6. กรรมการสภามหาวิทยาลัยอุบลราชธานี (ประเภทคณาจารย์ประจำ) (2547-2548)

- 7. รองศาสตราจารย์ ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี (2548-ปัจจุบัน)
- Certificate of Internship "Synthesis and Scanning Electron Microscopic Study of ZnO
 Nanorods and Nanoparticles" Department of Physics, University of Central Florida, USA.
 March1-April26, 2005.
- 2005 Annual Joint Symposium, Florida Society for Microscopy, Florida Chapter of AVS, and Applied Surface Analysis 2005.
 March13-17,2005, University of Central Florida, USA.
- 10. ศึกษาดูงานด้านนิติวิทยาศาสตร์ ที่ประเทศอังกฤษ และประเทศสกอตแลนด์ (2548)
- 11. Visiting Professor สถาบัน Device Materials Research Center, Korea Research Institute of Chemical Technology ประเทศเกาหลี ระหว่างวันที่ 15 มีนาคม 2551 ถึงวันที่ 5 เมษายน 2551
- 12. กรรมการผู้ทรงคุณวุฒิภายนอกสอบวิทยานิพนธ์ระดับปริญญาโทมหาวิทยาลัยราชภัฎ อุบลราชธานี
- 13. ประธานคณะกรรมการประเมินคุณภาพการศึกษาภายในคณะวิทยาศาสตร์ และบัณฑิตวิทยาลัย มหาวิทยาลัยราชภัฏอุบลราชธานี
- 14. ได้รับการแต่งตั้งเป็นอาจารย์ที่ปรึกษาวิทยานิพนธ์ระดับปริญญาเอกหลักสูตรคุษฎีบัณฑิต สาขาวิชาฟิสิกส์ คณะวิทยาศาสตร์ จำนวน 3 เรื่อง ปริญญาโทหลักสูตรวิทยาศาสตร มหาบัณฑิตจำนวน 2 เรื่อง
- 15. ได้รับการเสนอชื่อจากคณะกรรมการสรรหาฯ ไปแสดงวิสัยทัศน์และพันธกิจการบริหาร มหาวิทยาลัยราชภัฏอุบลราชธานี (26 กันยายน 2551)
- 16. ประธานคณะกรรมการบริหารหลักสูตรบัณฑิตศึกษา สาขาวิชาฟิสิกส์ มหาวิทยาลัยอุบลราชธานี (2552-2553)
- 17. รองประธานสภาอาจารย์มหาวิทยาลัยอุบลราชธานี (2552- 2553)
- 18. กรรมการสภาวิชาการผู้ทรงคุณวุฒิภายนอก มหาวิทยาลัยราชภัฏสกลนคร (พ.ย. 2552- 2554)

ผลงานวิจัยและงานตีพิมพ์เผยแพร่

- Atomic and electronic stuctures of Si(113)1x1-Sb surface: core-level shifts and surface states.

 K.S. An, C.C. Hwang, Y.K. Kim, E.S. Cho, C.-Y. Park, **S. Pukird**, A. Kakizaki, T. Ohuda, T. Kinoshita, Surface Science 513 (2002) 49-56.
- Re-investigation of electronic structure and ferromagnetism of non-reconstructed Cr (001) 1x1 surface. N.Nakajima, **S. Pukird**, W.Suraban, T.Saibtoh, A.Kakizaki, Surface Review and Letters, Vol.9, No.2 (2002) 861-864.
- แสงซินโครตรอน, **ศุภกร ภู่เกิด**, วารสารวิทยาศาสตร์ มศว. ปีที่ 15 ฉบับที่ 1 มกราคม 2542,

- Photoemission Spectroscopy, **ศุภกร ภู่เกิด**, วารสารวิทยาศาสตร์และเทคโนโลยี, สถาบันราชภัฏ อุบลราชธานี, (ฉบับพิเศษ), 16-18 สิงหาคม 2545, 25-33.
- Physical Properties of Silica from Mixture of Rice Husk and Carbon from Coconut Shell.
 - **S. Pukird**, K. Tumboon 28th Congress on Science and Technology of Thailand. Bangkok, Thailand. 2002.
- Electronic Structure and Magnetism of Cr(001) Surface Investigated by Photoemission Spectroscopy, H. Nakajima, **S. Pukird**, W. Suraban, T. Saito and A. Kakizaki28th Congress on Science and Technology of Thailand. Bangkok, Thailand. 2002.
- กุณสมบัติทางไฟฟ้าของวัสคุที่เตรียมจากเถ้าแกลบ, **ศุภกร ภู่เกิด** และ อรทัย ทุมทัน, สารประชาสัมพันธ์ มหาวิทยาลัยอุบลราชธานี, ปีที่ 10 ฉบับที่ 177 ประจำเคือนพฤษภาคม, 2546.
- การเตรียมซิลิกอน ไดออก ไซด์ที่มีความบริสุทธิ์จากแกลบข้าว, **ศุภกร ภู่เกิด** และ ยุภาพักต์ นีระพจน์, วารสารวิทยาศาสตร์และเทค โนโลยี, สถาบันราชภัฏอุบลราชธานี, (ฉบับพิเศษ), 18-20 สิงหาคม 2546.
- 9. Superconductivity of Yba₂Cu₃O₇/PrBa₂(Cu_{1-x}M_x)₃O₇ multilayered thin films, M=Al and Ga, U. Tipparach, **S. Pukird**, Tar-Pin Chen, และ John L. Wagner, 29th Congress on Science and Technology of Thailand. Bangkok, Thailand. KhonKan University, Khonkan, Thailand. 2003.
- 10. Electrical resistivity of ceramics prepared from rice husks ash, S. Pukird, K. Hirunnawakun, U. Tipparach. 29th Congress on Science and Technology of Thailand. KhonKan University, Khonkan, Thailand. 2003.
- 11. Structure and Electrical resistivity of PrBa₂(Cu_{0.80}Ga_{0.20})₃O_{7-δ}, U. Tipparach, S. Pukird, L.Trakulrum, S. Kulna, and T-P. Chen, 30th Congress on Science and Technology of Thailand. Bangkok, Thailand, 2004.
- Surface Energy Bands of p(1x1)Cr(100) and p(1x1)O/Cr(100), H. Nakajima,
 S. Pukird, A. Kakizaki, and T. Ishii , J. Elect. Spectrosc. And Relat. Phenom.,144-147,
 (2005) 409-412
- 13. สมบัติเชิงกายภาพและเชิงกลของผ้าใหมไทยที่เคลือบด้วยโลหะ โดยวิธีดีซีสปัตเตอริง, ศุภกร ภู่เกิด, สุขอังคณา ชาหยอง, ภิยโย ปัญยารชุน, จตุพล ใกรยบุตร และ อุดม ทิพราช วารสารวิทยาศาสตร์, สมาคมวิทยาศาสตร์แห่งประเทศไทยในพระบรมราซูปถัมภ์, ปีที่ 59, ฉบับที่ 2 มีนาคม-เมษายน 2548

- 14. Synthesis of SiOx nanowires and nanorods by carbon-assisted, Supakorn Pukird, Udom Tipparach and Supon Sumran 31th Congress on Science and Technology of Thailand. Suranaree University, Nakhon Ratchasima, Thailand, 2005.
- 15. Fabrication and characterizations of Fe:Ni nanoparticles for carbon nanotubes growth,.
 Tippawan Saipin, Udom Tipparach, and Supakorn Pukird, Chiang Mai
 University Journal, Vol4, November 2005.
- 16. Structure and electrical resistance of SiO2 prepared from rice husk ash, Pattanasuk Chamninok, Supakorn Pukird and Sombat Suksamae, 31th Congress on Science and Technology of Thailand. Suranaree University, Nakhon Ratchasima, Thailand, 2005.
- 17. วัสคุเทอร์ โมอิเล็กตริก, ศุภกร ภู่เกิด และ Bounkong Khamkhoutlavong วารสารวิทยาศาสตร์ และเทคโน โลยี, มหาวิทยาลัยราชภัฏอุบลราชธานี, (ฉบับพิเศษ), 16- 18 สิงหาคม 2548.
- 18. The Electrical Properties of SiO₂ Ceramics Prepared from Rice Hush Ash, Supakron Pukird, Orathai ThumThan and Udom Tipparach, Proceeding of the First Workshop on Utilization of Rice Husk and Rice Husk Silica, September 19, 2005, Faculty of Science, Chulalongkorn University, Thailand.
- 19 The effect of Temperature on the growth of carbon nanotubes by catalytic chemical vapor deposit, Tippawan Saipin, Udom Tipparach and Supakorn Pukird, 31th Congress on Science and Technology of Thailand. Suranaree University, Nakhon Ratchasima, Thailand, 2005.
- 20. วัสคุนาโน, **ศุภกร ภู่เกิด**, อุคม ทิพราช และ ทิพวรรณ สายพิณ, วารสารวิชาการ ม.อบ. ปีที่ 8 ฉบับที่ 1 มกราคม-เมษายน 2549
- 21. Growth and Structure of Carbon Fibers with a Carbon Nanotube Core, U. Tipparach,
 T. Saipin, S. Sumran, and S. Pukird, Siam Physics Congress 2006, Frontier Research in
 Physics and Key Technologies for Development, March 23-25, 2006, Chonburi, Thailand.
- 22. สมบัติของวัสดุที่เตรียมจากเถ้าแกลบและถ่านกะลามะพร้าว, **ศุภกร ภู่เกิด**, สุดารัตน์ ศิลปศร, อุดม ทิพราช และฉวีวรรณ ชัยวัฒนา, 2549, วารสารวิทยาศาสตร์, สมาคมวิทยาศาสตร์แห่ง ประเทศไทยในพระบรมราชูปถัมภ์, ปีที่ 61, ฉบับที่ 1, มกราคม-กุมภาพันธ์ 2550.
- 23. Thermo-electrical Property of Materials Prepared from Rice Husk Ash, Supakorn Pukird, Pattanasuk Chamninok, Dheerachai Polsongkram, Pakin Inchidjuy, and Udom Tipparach, The 2nd Workshop on the Utilization of Rice Husk and Rice Husk Silica, July 18th, 2007, NSTDA Building, National Metal and Materials Technology Center (MTEC), Bangkok, Thailand.
- 24. Synthesis of ZnO Nanowires and Nanobelts by Thermal Evaporation, Supakorn Pukird,

- Pattanasuk Chamninok, Dheerachai Polsongkram, Pakin Inchidjuy, Udom Tipparach and Lee Chow, The First Thailand National Nanotechnology Conference on Nanomaterials, Pharmaceuticals, Devices and Applications,14-16 August 2007, Chiang Mai University, Chiang Mai, Thailand.
- 25. Investigation of Nanomaterials Prepared by Thermal Evaporation of Carbon-ZnO mixtures, D. Polsongkram, P. Kasian, P. Limsuwan, U. Tipparach, S. Samran, L. Chow and S. Pukird ,International Conference on Smart Materials Smart/Intelligent Materials and Nanotechnology and 2nd International Workshop on Functional Materials and Nanomaterials, 22-25 April 2008, Chiang Mai Thailand.
- 26. Synthesis and Characterization of Nanostructured Materials Prepared from SiO₂ and GeO₂ Mixture by Carbon Assisted Method, P. Chamninok, P. Kasian, P. Limsuwan, U. Tipparach, S. Samran, L. Chow and S. Pukird, International Conference on Smart Materials Smart/Intelligent Materials and Nanotechnology and 2nd International Workshop on Functional Materials and Nanomaterials, 22-25 April 2008, Chiang Mai Thailand.
- 27. The Effects of Substrate Temperature on Optical Properties and Surface Morphology of Nickel Phthalocyanine Thin Films Grown by Organic Evaporator System, P. Inchidjuy, S. Pukird and J. Nukeaw, International Conference on Smart Materials Smart/Intelligent Materials and Nanotechnology and 2nd International Workshop on Functional Materials and Nanomaterials, 22-25 April 2008, Chiang Mai Thailand.
- 28. Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method, D. Polsongkram, P. Chamninok, **S. Pukird**, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, and A. Schulte, *Physica B* (2008), doi: 10.1016/j.physb.2008.06.020
- 29. Thermoelectric properties and nanostructures of materials prepared from rice hush ash Supakorn Pukird, Udom Tipparach, Pristanuch Kasian and Pichet Limsuwan, the IASTED International Conference on Solar Energy ~SOE 2009~, March16-18, 2009, Phuket, Thailand.
- 30. The Effect of temperature on the performance of dye-sensitized solar cells using nanostrucrured TiO₂, Tippawan Saipin, Pakawat Wongwanwattana, Thossaporn Sompun, Supakorn Pukird and Udom Tipparach, Proceedings of the IASTED International Conference on Solar Energy (SOE 2009), March16-18, 2009, Phuket, Thailand, 20-23.

- 31. Synthesis of nanofibers and nanowires from rice husk ashes by thermal evaporation, **Supakorn Pukird**, Pichet Limsuwan, Udom Tipparach, Supon Samran, Pattanasuk

 Chamninok, Guangyu Chai and Lee Chow, Commemorative International Conference of the

 Occasion of the 4th Cycle Anniversary of KMUTT, Sustainable Development to Save the

 Earth: Technology and Strategies Vision 2050: (SDSE2008), 7-9 April 2008,

 Bangkok, Thailand.
- 32. Synthesis and structure of TiO₂ nanocrystalline photoanodes for solar hydrogen production, Thossaporn sompun, Pakawat Wongwanwattana, **Supakorn pukird**, Pichet Limsuwan, and Udom Tipparach, Proceedings of Commemorative International Conference of the Occasion of the 4th Cycle Anniversary of KMUTT, Sustainable Development to Save the Earth: Technology and Strategies Vision 2050: (SDSE2008), April7-9, 2009, Bangkok, Thailand.
- 33. Fabrication and efficiency of nanostructured ${\rm TiO_2}$ working electrodes of photoelectrochemical

cells for solar hydrogen generation, P. Wongwanwattana, T. Sompun, **S. Pukird**, P. Krongkitsiri and U. Tipparach, Proceedings of Commemorative International Conference of the Occasion of the 4th Cycle Anniversary of KMUTT, Sustainable Development to Save the Earth: Technology and Strategies Vision 2050: (SDSE2008), April7-9, 2009, Bangkok, Thailand.

- 34. Synthesis and Charaterization of SnO₂ nanowires and microsphere by thermal evaporation, Kiattisak Noipa and Supakorn Pukird, 35th Congress on Science and Technology of Thailand. Burapha University, Chonburi, Thailand, 2009
- 35. Time controlling on synthesization of CuO nanowires prepared from Cu plate, Prittanuch Kasian, Pattanasuk Chamninok and Supakorn Pukird, 35th Congress on Science and Technology of Thailand. Burapha University, Chonburi, Thailand, 2009

เอกสาร/ตำรา

- 1. เอกสารประกอบการสอนวิชา กลศาสตร์ ระดับปริญญาตรีสำหรับนักศึกษาวิชาเอกฟิสิกส์ กณะวิทยาศาสาตร์ มหาวิทยาลัยอุบลราชธานี, (151 หน้า) 2544.
- 2. เอกสารคำสอนวิชา แม่เหล็ก ไฟฟ้า ระดับปริญญาตรีสำหรับนักศึกษาวิชาเอกฟิสิกส์ คณะวิทยาศาสาตร์ มหาวิทยาลัยอุบลราชธานี, (184หน้า) 2547.

ผู้ร่วมวิจัย รศ. ดร. พิเชษฐ ลิ้มสุวรรณ

ตำแหน่ง รองศาตราจารย์ ระดับ 9 ที่ทำงาน ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี กรุงเทพฯ

คุณวุฒิการศึกษา

วท.บ. (ฟิสิกส์) จุฬาลงกรณ์มหาวิทยาลัย Ph.D. (Physics) Pennsylvania State University, USA.

ตัวอย่างผลงานวิจัยและงานตีพิมม์

- Nitinai Udomkan, <u>Pichet Limsuwan</u> and Pongtip Winotai, "Characterization of Titanium Nitride Film Coating on Stainless Steel", 29th Congress on Science and Technology of Thailand, Kohn Kean University, 20-22 October 2003.
- Nitinai Udomkan, Vilaslinee Suton, and <u>Pichect Limsuwan</u>, "Properties of Titanium Nitride Film Coated on Stainless Steel 304", Kasetsart J. (Nat.Sci.) 37,209-218 (2003)
- Vilaslinee Suton, Pongtip Winotai, and <u>Pichect Limsuwan</u>, "Characterization of Titanium Nitride Film Coating on Stainless Steel", J. Sci. Res. Chula. Univ. Vol. 28, No.2, 119-129 (2003)
- N. Sinchaipanid, S. Pongwai, <u>P.Limsuwan</u> and A. Mitrevej and A. "Design of Salbutamol EOP Tablets from Pharmacokinetics", Pharmaceu. Devel. Tech. Vol.8 (2), 135 (2003).
- P. Winotai, <u>P.Limsuwan</u> and S.Rittikulsittichai, "Optimization of Heat Treatments of Vietnamese Rubies", J.Mod.Phys. Lett.B , Vol. 17, Nos. 29-30, 1537 (2003)
- S.Saiseng, P.Winotai , S.Nilpairuch, <u>P.Limsuwan</u> and I.M. Tang,
 "Nanocrystallization in amorphous Fe₄₀Ni₄₀(Si+B)₁₉Mo₁₋₂ribbons" Journal of
 Magnetism and Magnetic Materials 278 (2004) 172-178
- 7. P.Winotai, <u>P.Limsuwan</u>, I.M.Tang and S. Limsuwan, "Quality Enhancement of Vietnamese Ruby by Heat Treatments", Australian Gemologists (2004) 22, 72-77
- 8 . S.Saiseng, P.Winotai and <u>P.Limsuwan</u>, "Effects of heat treatment on nanocrystalline formations in $Fe_{40}Ni_{40}(Si+B)_{19}Mo_{1-2}$ amorphous ribbon" Phys.

- Stat. sol. (a) 202, No. 1, 46-54 (2005)
- P.Limsuwan , N. Udomkan , S. Meejoo and P. Winotai , "Surface morphology of submicron crystals in aluminum nitride films grown by dc magnetron sputtering", J. Mod. Phys. Lett.B , Vol. 19, No. 12,2073-2083 (2005)
- 10.N. Udomkan, S. Meejoo, <u>P.Limsuwan</u>, P. Winotai and Y.Chaimanee, "Electron Spin Resonance Studies of Mn²⁺ in Freshwater Snail Shells: Pomacea Canaliculata Lamarck and Fossilized Sanail Shell", Chin. Phys. Lett., Vol.22, No.7, 1780-1783 (2005)
- 11.N.Udomkan, P.Lumsuwan, P.Winotia and S. Meejoo, "Effect of Heat Treatment on Blue Sapphires as Monitored by ESR Spectroscopy", Inter.J.Mod.Phys.B,Vol.19, No.20, 3273-3284(2005)
- 12. Investigation of Nanomaterials Prepared by Thermal Evaporation of Carbon-ZnO mixtures, D. Polsongkram, P. Kasian, P. Limsuwan, U. Tipparach, S. Samran, L. Chow and S. Pukird ,International Conference on Smart Materials Smart/Intelligent Materials and Nanotechnology and 2nd International Workshop on Functional Materials and Nanomaterials, 22-25 April 2008, Chiang Mai Thailand.
- 13. Synthesis and Characterization of Nanostructured Materials Prepared from SiO₂ and GeO₂ Mixture by Carbon Assisted Method, P. Chamninok, P. Kasian, <u>P. Limsuwan</u>, U. Tipparach, S. Samran, L. Chow and S. Pukird, International Conference on Smart Materials Smart/Intelligent Materials and Nanotechnology and 2nd International Workshop on Functional Materials and Nanomaterials, 22-25 April 2008, Chiang Mai Thailand

ผู้ร่วมวิจัย ผศ. ดร. อุดม ทิพราช

ตำแหน่ง ผู้ช่วยศาสตราจาย์ ระดับ 8 ที่ทำงาน ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี จ.อุบลราชธานี การศึกษา: กศ.บ. (พิสิกส์) วท.ม. (พิสิกส์) Ph.D. (Physics) การวิจัยหลังปริญญาเอก:

- 1. Postdoctoral Research, Superconductors, University of North Dakota, U.S.A, 2003.
- 2. Research Scholar, Nanoscience/Nanotechnology, University of Central Florida, U.S.A. 2005. ตัวอย่างผลงานวิจัยและงานที่พิมพ์
 - Mingji Jin, Q. Y. Chen, Udom Tipparach, T.-P. Chen, C. Wang, H. W. Seo, Lixi Yuan, W. K. Chu, K. S. No, C. L. Chen, and Y. S. Song, Epitaxial PrBa₂(Cu_{0.8}Al_{0.2})₃O₇ thin films grown by rf sputtering, Applied Physics Letter, 80(2002), 3991.
 - Tar-Pin Chen, Udom Tipparach, H. D. Yang, J.T. Wang, Benjamin Chen, and Jean C.J. Chen Proximity effect of Pb on CeCu₆ and La_{0.05}Ce_{0.95}Cu₆. International Journal of Modern Physics B, Vol. 13, Nos. 29, 30&31(1999) 2642.
 - 3. K. Wu, U. Tipparach, T.-P. Chen, Q. Li, X.H. Zeng, , E. Wert, , J.L. Wagner, Q.Y. Chen, H.C. Wang, H.C Yang, and H.Er. Horng, Transport Studies on Nanometer Thick YBa₂Cu₃O₇ Multilayers using Y_{0.4}P_{0.6}Cu₃O₇ and PrBa₂(Cu_{0.8}T_{0.2})₃O₇ as Buffer Layers, International Journal of Modern PhysicsB, 15(2001), 3317.
 - X. Yang, Udom Tipparach, Tar-Pin Chen, John L. Wagner, B. Helmowski, and J.T. Wang Fabrication of and transport studies on PrBa₂(Cu_{0.8}T_{0.2})₃O₇, Physica C341-348, (2000) 2447.
 - U. Tipparach, T.-P. Chen, J.L. Wagner, K. Wu, Q.Y. Chen, Q. Li, J.T. Wang, H.C. Yang, and H.-E. Horng, Fabrication of and transport studies on PrBa₂(Cu_{1-x}M_x)₃O₇, M= Ga, Zn and Co, Physica C, 364-365(2001),404.
 - 6. T-P Chen, X. Yang, U. Tipparach, A. Zhou, B. Chen, Q.Y. Chen, and J.T. Wang, Structure and transport studies on PrBa₂(Cu_{1-x}M_x)₃O₇: M= Al, Fe and Ni, International Journal of Modern Physics B, Vol. 17, Nos. 18, 19&20(2003) 2655. Fabrication and characterizations of Fe:Ni nanoparticles for carbon nanotubes

- growth, Tippawan Saipin, Udom Tipparach, and Supakorn Pukird, Chiang Mai University Journal, Vol.40(1) (2005)
- Xioachu Yang, Tar-Pin Chen, John Wagner, and Udom Tipparach, Transport Studies on Fe and Al Doped PBCO, APS march 1999, March 20-26, 1999, Atlanta, GA, American Physical society V. 44 (1999).
- 8. **อุดม ทิพราช**, ศุภกร ภู่เกิด, Tar-Pin Chen, และ John L. Wagner, สภาพความนำยิ่งยวด ของ YBa $_2$ Cu $_3$ O $_7$ /PrBa $_2$ (Cu $_{1-x}$ M $_x$) $_3$ O $_7$ ฟิลมบางหลายชั้น เมื่อ M = Al และ Ga, การ ประชุมวิทยาศาสตร์และเทค โน โลยีแห่งประเทศไทย ครั้งที่ 29, 2546.
- 10. ศุภกร ภู่เกิด, กัลยา หิรัญนวกุล, และ **อุดม ทิพราช**, ความต้านทานไฟฟ้าของเซรามิกซ์ที่ เตรียมจากเถ แกลบ, การประชุมวิทยาศาสตร์และเทค โนโลยีแห่งประเทศไทย ครั้งที่ 29, 2546.
- 11. **อุดม ทิพราช**, ลัดดา ตระกุลรัมย์, สุปิยา กุลนา, โครงสร้างและสภาพความต้านทาน ไฟฟ้าของ $\Pr Ba_2(Cu_{0.80}Ga_{0.20})_3O_{7.}$ σ , การประชุมวิทยาศาสตร์และเทค โนโลยีแห่ง ประเทศไทย ครั้งที่ 30, 2547
- 12. **อุดม ทิพราช** และ ทิพวรรณ สายพิณ, การปลูกท่อนาโนคาร์บอนผนังหลายชั้นด้วยวิธี ใอระเหยทางเคมีด้วยตัวเร่งปฏิกิริยาเหล็กและนิเกิล, วทท 31, accepted 2548.
- 13. ทิพวรรณ สายพิณ, **อุดม ทิพราช**, และ ศุภกร ภู่เกิด, ผลของอุณหภูมิต่อการปลูกท่อนา โนคาร์บอนด้วยวิธีไอระเหยทางเคมีที่มีตัวเร่งปฏิกิริยา, วทท 31, accepted 2548.
- 14. การสังเคราะห์เส้นใยนาโนและแท่งนาโนซิลิกอนออกไซค์โดยการกระตุ้นค้วยคาร์บอน,
 ศุภกร ภู่เกิด, อ**ุดม ทิพราช**, สุพล สำราญ การประชุมวิชาการวิทยาศาสตร์ และ
 เทคโนโลยีแห่งประเทศไทย วทท. 31, 18 20 ตุลาคม 2548. ณ เทคโนธานี
 มหาวิทยาลัยเทคโนโลยีสุรนารี นครราชสีมา
- 15. Investigation of Nanomaterials Prepared by Thermal Evaporation of Carbon-ZnO mixtures, D. Polsongkram, P. Kasian, P. Limsuwan, U. Tipparach, S. Samran, L. Chow and S. Pukird ,International Conference on Smart Materials Smart/Intelligent Materials and Nanotechnology and 2nd International Workshop on Functional Materials and Nanomaterials, 22-25 April 2008, Chiang Mai Thailand.
- 16. Synthesis and Characterization of Nanostructured Materials Prepared from SiO₂ and GeO₂ Mixture by Carbon Assisted Method, P. Chamninok, P. Kasian, P. Limsuwan, U. Tipparach, S. Samran, L. Chow and S. Pukird, International Conference on Smart Materials Smart/Intelligent Materials and Nanotechnology and 2nd International Workshop on Functional Materials and Nanomaterials, 22-25 April 2008, Chiang Mai

Thailand

ผู้ร่วมวิจัย ผศ. สุพล สำราญ

ตำแหน่ง ผู้ช่วยศาสตราจารย์ระดับ 8
 ที่ทำงาน ภาควิชาฟิสิกส์

 คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี จ.อุบลราชธานี
 โทร. (045)288381

ประวัติการศึกษา

ปีที่จบ	ระดับปริญญา	อักษรย่อ	สาขาวิชา	ชื่อสถาบันการศึกษา
การศึกษา				
2531	ปริญญาตรี	วท.บ	ฟิสิกส์	มหาวิทยาลัยรามคำแหง
2540	ปริญญาโท	วท.ม	ฟิสิกส์	สถาบันเทคโน โลยี
				พระจอมเกล้าธนบุรี

สาขาที่มีความชำนาญเป็นพิเศษ

- 1. Mechanics เน้นการสร้างเครื่องมือทางกล
- 2. Applied Electronics

ผลงานวิจัยและงานตีพิมม์ที่ได้รับการเผยแพร่

- 1. **สุพล สำราญ**, พิเชษฐ ลิ้มสุวรรณ และขวัญ อารยะชนิตกุล "การเกิดฮามอนิก ที่สองโดยใช้นีโอดีเมียมแย๊กเลเซอร์" การประชุมวิชาการวิทยาศาสตร์และ เทคโนโลยีแห่งประเทศไทย ครั้งที่ 23, 20-22 ตุลาคม 2540 ณ โรงแรมโลตัส ปางสวนแก้ว จ.เชียงใหม่
- 2. อภิชัย ศิวประภากร, **สุพล สำราญ** และปรเมสฐ์ บุญศรี "อิทธิพลของกระแสไฟฟ้าตรง บนซับฟิลด์ (หรือสนามเวลา) ต่อการเพิ่มอัตราเร็วของปฏิกิริยารีคอกซ์" การประชุม วิชาการวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย ครั้งที่ 30 19-21 ตุลาคม 2547 ณ ศูนย์แสดงสินค้าและการประชุมอิมแพ็ค เมืองทองธานี กรุงเทพมหานคร
- 3. สุพล สำราญ, พิเชษฐ ลิ้มสุวรรณ และขวัญ อารยะธนิตกุล "การเกิดฮามอนิกที่สองโดย

- ใช้นีโอดีเมียมแย๊กเลเซอร์" การประชุมวิชาการวิทยาศาสตร์และเทคโนโลยีแห่งประเทศ ไทย ครั้งที่ 23, 20-22 ตุลาคม 2540 ณ โรงแรมโลตัส ปางสวนแก้ว จ.เชียงใหม่
- 4. อภิชัย ศิวประภากร, **สุพล สำราญ** และปรเมสฐ์ บุญศรี "อิทธิพลของกระแสไฟฟ้าตรงบน ซับฟิลด์ (หรือสนามเวลา)ต่อการเพิ่มอัตราเร็วของปฏิกิริยารีคอกซ์" การประชุมวิชาการ วิทยาศาสตร์และ เทค โนโลยีแห่งประเทศไทย ครั้งที่ 30, 19-21 ตุลาคม 2547 ณ ศูนย์แสดง สินค้าและการประชุมอิมแพ็ค เมืองทองธานี กรุงเทพมหานคร
- 5. อภิชัย ศิวประภากร, **สุพล สำราญ** และปรเมสฐ์ บุญศรี "อิทธิพลของสนามเวลาแบบใหม่ (ซับฟิลค์แบบกลับทิศ)ต่อการเพิ่มอัตราเร็วของปฏิกิริยารีคอกซ์" การประชุมวิชาการ วิทยาศาสตร์และ เทคโนโลยีแห่งประเทศไทย ครั้งที่ 31, 18-20 ตุลาคม 2548 ณ เทคโน ธานี มหาวิทยาลัยเทคโนโลยีสุรนารี นครราชสีมา
- 6. อภิชัย ศิวประภากร, **สุพล สำราญ** และปรเมสฐ์ บุญศรี "อิทธิพลของสนามเวลาแบบใหม่ แบบที่สอง(ซับฟิลค์แบบที่สองกลับทิศ)ต่อการเพิ่มอัตราเร็วของปฏิกิริยารีคอกซ์" การ ประชุมวิชาการวิทยาศาสตร์และ เทคโนโลยีแห่งประเทศไทย ครั้งที่ 31, 18-20 ตุลาคม 2548 ณ เทคโนธานี มหาวิทยาลัยเทคโนโลยีสุรนารี นครราชสีมา
- 7. U. Tipparach*, T. Saipin, S. Sumran and S. Pukird, Growth and Structure of Carbon Fibers with a Carbon Nanotube Core, Siam Physics Congress 2006, March 23-25, 2006, The Tide Resort, Bangsaen Chonburi, Thailand
- 8. **สุพล สำราญ** และฉวีวรรณ ชัยวัฒนา, การศึกษาเปรียบเทียบสภาพการนำความร้อนของอิฐ ดินซีเมนต์หลายแบบโดยใช้ระเบียบวิธี ไฟในต์อิเลเมนต์, การประชุทวิชาการวิทยาศาสตร์ และเทคโนโลยีแห่งประเทศไทย ครั้งที่ 32 (วทท.32), 10-12 ตุลาคม 2549 ณ ศูนย์ประชุม แห่งชาติสิริกิติ์, กรุงเทพฯ.
- 9. Tanin Nutaro, Supon Sumran, Chaweewan Chaiwattana, David Ruffolo, Alejandro Saiz, Warin Sonsrettee, Manit Rujiwarodom, Paisan Tooprakai and Chakri Changchutoe, "Installation of the Princess Sirindhorn Neutron Monitor at a high cutoff rigidity in Thailand", The 4th Annual Meeting of the Asia Oceania Geosciences Society, Bangkok, 30 July 2007- 4 August 2007.
- 10. T. Nutaro, S. Sumran, C. Chaiwattana, D. Ruffolo, A. Sáiz, N. Kamyan, W. Sonsrettee, M. Rujiwarodom, P. Tooprakai, and C. Changchutoe, Initial Observations of Cosmic Rays by the Princess Sirindhorn Neutron Monitor at a High Cutoff Rigidity in Thailand: Part I (submitted to Siam Physics Congress and Thai National Astronomy Meeting, Nakorn Ratchasima, March, 2008)

- 11. T. Nutaro, S. Sumran, C. Chaiwattana, D. Ruffolo, A. Sáiz, N. Kamyan, W. Sonsrettee, M. Rujiwarodom (presenter), P. Tooprakai, and C. Changchutoe, Initial Observations of Cosmic Rays by the Princess Sirindhorn Neutron Monitor at a High Cutoff Rigidity in Thailand: Part II (submitted to Siam Physics Congress and Thai National Astronomy Meeting, Nakorn Ratchasima, March, 2008)
- 12. T. Nutaro, S. Sumran, C. Chaiwattana, D. Ruffolo, A. Sáiz, N. Kamyan, W. Sonsrettee, M. Rujiwarodom, P. Tooprakai, and C. Changchutoe, Initial Observations of Cosmic Rays by the Princess Sirindhorn Neutron Monitor at a High Cutoff Rigidity in Thailand (2nd Korea-Thailand Joint Workshop on Astronomy and Astrophysics, Seoul, Korea, February, 2008)
- 13. D. Ruffolo, A. Sáiz, N. Kamyan, W. Sonsrettee, T. Nutaro, S. Sumran, C. Chaiwattana, M. Rujiwarodom, P. Tooprakai, and C. Changchutoe, Installation of the Princess Sirindhorn Neutron Monitor at a High Cutoff Rigidity in Thailand accepted for 33rd Congress on Science and Technology of Thailand, Nakorn Si Thammarat, October, 2007.
- 14. Investigation of Nanomaterials Prepared by Thermal Evaporation of Carbon-ZnO mixtures, D. Polsongkram, P. Kasian, P. Limsuwan, U. Tipparach, S. Samran, L. Chow and S. Pukird ,International Conference on Smart Materials Smart/Intelligent Materials and Nanotechnology and 2nd International Workshop on Functional Materials and Nanomaterials, 22-25 April 2008, Chiang Mai Thailand.
- 15. Synthesis and Characterization of Nanostructured Materials Prepared from SiO₂ and GeO₂ Mixture by Carbon Assisted Method, P. Chamninok, P. Kasian, P. Limsuwan, U. Tipparach, S. Samran, L. Chow and S. Pukird, International Conference on Smart Materials Smart/Intelligent Materials and Nanotechnology and 2nd International Workshop on Functional Materials and Nanomaterials, 22-25 April 2008, Chiang Mai Thailand

ตารางเปรียบเทียบการดำเนินงานที่เสนอไว้ในแผนงานวิจัยกับงานวิจัยที่ได้ดำเนินการไปแล้ว

กิจกรรม (ตามแผน)	ผลที่คาคว่าจะได้รับ (ตามแผน)	ผลการคำเนินงาน
1)เตรียมตัวอย่างถ่าน	1) ใค้ตัวอย่างถ่านคาร์บอนและ	า) เป็นไปตาม
คาร์บอนจาก	วัสคุอุปกรณ์ที่ใช้ในการทคลอง	วัตถุประสงค์ของงาน
กะถามะพร้าว จัดหาวัสคุ		
อุปกรณ์ที่ใช้ในการ		
ปฏิบัติงาน		
2) ดำเนินการทดลอง	2) ได้ตัวอย่างผลิตภัณฑ์ที่	2) เป็นไปตาม
สังเคราะห์วัสคุโครงสร้าง	สังเคราะห์ใค้บนฐานรอง(silicon	วัตถุประสงค์ของงาน
นาโนโดยใช้ถ่าน	substrates) และวัสดุต้นกำเนิด	
กะลามะพร้าวเป็น	(materials source)	
ตัวกระตุ้น ในบรรยากาศ		
ต่างๆ		
3) วิเคราะห์ ตรวจสอบ	3) ได้ผลการตรวจสอบด้วยเครื่อง	3) เป็นไปตาม
สมบัติทางฟิสิกส์	SEM, TEM และ image analyzer.	วัตถุประสงค์ของงาน ใน
องค์ประกอบและ	และมีผลการตรวจสอบคั่วยเครื่อง	ส่วนที่ตรวจสอบค้วย
โครงสร้างนาโนของวัสคุ	EDS เพิ่มเติม	SEM, TEM และ image
ตัวอย่างโดยเครื่อง XRD,		analyzer. ได้กราฟ
XRF, SEM, AFM, TEM		องค์ประกอบของ
หรือ อื่นๆ จำแนกประเภท		โครงสร้าง
ของวัสคุโครงสร้างนาโน		
และวิธีการ/กระบวนการที่		
ใช้		
4) ศึกษาความเป็นไปได้	4) ทราบผลองค์ประกอบของ	4) ศึกษาการใช้ประโยชน์
ในการนำผลการ	โครงสร้างนาโนได้แนวทางใน	
สังเคราะห์ไปใช้	การศึกษาการใช้ประโยชน์	
ประโยชน์		
5) สรุปผลการคำเนินงาน	5) ได้ร่างรายงานการวิจัยฉบับ	5) คำเนินการแล้ว
และเขียนรายงาน	สมบูรณ์	