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Abstract

In manufacturing processes, some process factors are involved with two or three previous processes conditions.
Current research has shown that strip-plot structure is an interestingly proposed for the experimental design in multi-stage
processes. Thus, this research is addressed to utilize the strip-plot structure in three multi-stage processes. The experimental
design involves first order and second-order, Central Composite Design (CCD), within strip-strip-plot structure. D-optimal
criteria are calculated to estimate the efficiency of the design. The expected response model is composed of main, quadratic,
within-stage interaction and cross-stage interaction effects. Two food manufacturing processes are chosen to prove the multi-
stage design of experiments. Their multiple regression models are calculated and optimized by standard software. The practical
confirmation results are in a favor of the approach.
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1. Introduction

Nowadays, design of experiment (DOE) is widely uti-
lized in all industries to improve quality in process. However,
there are some processes that their qualities depend on not
only parameters of final-stage process but also parameters of
a few previous-stage processes. Recent researches for DOE
in multi-stage processes are much more interested than in
the  past  ten  years.  The  industrial  applications  of  split-plot
and strip-plot designs have been performed for multi-stage
processes in which their main purposes to reduce the expense
of experiments. In order to investigate the cross-stage effects,
such  as  interaction  effects  between  stage-1  and  stage-2,
stage-1 and stage-3, etc., strip-plot design is more appropri-
ated than split-plot design. Vivacqua (2003) performed strip-
plot experimental design on two-stage processes in battery

factory. A strip-strip-plot design was proposed in investigat-
ing the effects of factors and their interactions in three-stage
processes of a wafer factory by Paniagua-Quinones and Box
(2008). Full factorial designs had been applied for all three
processes.  In  the  year  2009,  both  of  them  proposed  half
fractional designs for the final third-stage process in order to
reduce experimental cost. From that time, many researchers
had  published  literatures  involving  strip-plot  design  for
multi-stage  processes.  Recently,  Arnouts  et  al.  (2010)  was
proposed  D-optimal  strip-plot  structure  with  full  and  half
fractional factorial design to reduce the large numbers of row
crossing with column of strip-plot structure. In the year 2013,
they had performed D-optimal strip-plot experiments with 2-
level factors and a 4-level categorical factor for three-multi-
stage  processes  in  which  some  cells,  stage-3,  are  missing
experimental data.

The research is aimed to create experimental designs
that can provide quadratic terms and multi-stage interaction
effects for three-multi-stage processes. Standard designs,
such as factorial design and Central Composite Design (CCD),

* Corresponding author.
Email address: fengpsa@ku.ac.th

http://www.sjst.psu.ac.th



P. Tantiphanwadi & P. Sudasna na Ayudthya / Songklanakarin J. Sci. Technol. 39 (1), 59-67, 201760

are  utilized  within  strip-strip-plot  structure.  The  predicted
response model at final-stage should compose of all main,
quadratic,  within-stage  interaction  and  cross-stage  inter-
action effects.

2. Materials and Methods

2.1 Strip-Strip-plot structures for three-stage processes

In a strip-strip-plot structure, the two-ways classifica-
tion random model with balanced data is utilized. Searle et al.
(2006) introduced in matrix notation as

  Y X Zu  (1)

with    u u u1 2 m ;    Z Z Z1 2 m (2)

where,
Y is an N×1 vector of experimental data,
 is an p×1 vector of fixed effect parameters,
X is a N×p coefficient matrix,
u are random effect vectors that occur in the data,
Z are corresponding incidence matrices of u, and
 is an error of N×1 vector.
For three-multi-stage processes, m is equal to 2 in that

stage-1  and  stage-2  random  effect  vectors  are  u 1   and
u 2  with their corresponding matrices Z  and Z , respec-

tively. Stage-3 random effects will occur within unexplained
errors . The three-multi-stage model will be

    Y X Z Z    (3)
where rows (r), columns (c) and cells (k) are represented for
stage-1, stage-2 and stage-3 treatments, respectively. The
total sample size (N) is equal to rck runs. The crossing struc-
ture among stages of experimental treatments (T) is shown
in Table 1.

It is assumed that  
 0 I r rN , ,  

 0 I c cN ,
and  

 0 I N NN ,  are all random effects where 0 and I are
zero  vector  and  identity  matrix  and  normally  distributed
around their zero means. Their variances 

 , 
  and 

  are
referred as of stage-1, stage-2, stage-3, respectively.

Their  covariance,    0  r ccov , ,    0  r Ncov ,
and     0  c Ncov ,   are  zero  because  each  of  them  is
independent  to  others.  Thus  the  model  vector  Y  contains
variance-covariance matrix V = var (Y) as

  
          V Z Z Z Z ZN (4)

  I I I IN r c k ;    Z I 1 1r c k  and    Z 1 I 1r c k

(5)
where 1 and I are as
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with the introducing of variance ratio, 



 



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


 



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  
          V Z Z Z Z IN (8)

According to Arnouts et al. (2013), under the assump-
tion of normality, the maximum likelihood estimator of  is
generalized least-squares estimator as

  1
 

 -X V X X V Y 1 -1
GLS (9)

with its variance-covariance matrix

    1


 -X V X 1cov (10)

The optimal strip-plot design utilizes the information matrix
  -M X V X1  to form D-optimality criteria. The more value
of the determinant of information matrix, |M|, will provide the
better experimental design. This research use Borkowski
(2003)’s formula as

1

100
     
 

-X V X
D

1 p

eff N (11)

where p is the number of parameters in X matrix and N is the
total runs.

Table 1. Crossing structure of three multi-stage processes.
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2.2 Central Composite Design within strip-strip-plot
structure

Supposed some interested processes obtain second-
order properties, thus the model for the strip-strip-plot for
three-stage processes is as

  f X X X XR C Cell
i j ijk, , (12)

For example, letting each stage contains two vital few factors.
The expansion of second-order model of six factors will be

 X 0

2 2
1 2        1 2 1 2x x x x x x … stage-1 effects

2 2
3 4        3 4 3 4x x x x x x … stage-2 effects
2 2
5 6        5 6 5 6x x x x x x … stage-3 effects

      1 3 1 4 2 3 2 4x x x x x x x x
… stage-1  stage-2 effects

       1 5 1 6 2 5 2 6x x x x x x x x
… stage-1  stage-3 effects

      3 5 3 6 4 5 4 6x x x x x x x x
… stage-2  stage-3 effects

2.2 Constructing experimental design

We utilize the role of equivalence of ordinary least
square and generalized least square (OLS-GLS) to construct
designs  which  estimated  parameters  are  not  involved  with
variance-covariance matrix V.

   1 1      
 -X V X X V Y X X X Y 1 -1

GLS OLS (13)

The equivalence of OLS-GLS brings the benefit that the esti-
mated coefficient 


  can be calculated from standard software.

In order to construct the OLS-GLS equivalence experi-
mental design, Vining et al. (2005) and Parker et al. (2007) has
provided necessary conditions as balance and/or orthogonal
properties that each design should contain. The guideline
will be

1. Balance design: all main effects, within-stage inter-
action effects and cross-stage interaction effects should have
balance property, 


  r,c

i 1
1 0 .

2. Balance design: within row or stage-1 and within
column  or  stage-2  should  contain  balance  property,


  r,c

i 1
1 0 .
3. Each cell will contain equal number of k runs.
4. Each  cell  should  conform  balance  property,


  k

i 1
1 0 .
5. Cell allocation method is randomization.

3. Experiment, Results, and Discussion

3.1 Factory experiment

To  illustrate  the  CCD  design  construction  within
strip-strip-plot structure, two industrial processes are chosen
to confirm its design efficiencies. There are macaroni ready
meal and pork ham processing processes at a food company.

3.3.1  Macaroni ready meal experiment

1. Constructing experimental design
Considering historical data and our team’s experience,

three  multi-stages  are  selected  to  perform  the  experiment.
Based  on  macaroni  process  diagram  in  Figure  1,  all  raw
materials are prepared in parallel. The stage-1 critical process
is the mixing process between macaroni and tomato sauce
with its critical factor mixing time, defined as factor A. Then
the mixed staff is on waiting for loading into ready meal boxes.
The  waiting  process  is  the  stage-2  process  with  its  critical
factor  waiting  time,  defined  as  factor  B.  The  final  stage-3
process is the loading machine which it’s setting pressure
pushes  the  setting  volume  of  mixed  staff  into  ready  meal
boxes. Its critical factors are blow time, volume amount and
spray time, which are defined as factors C, D and E respec-
tively. Finally the mixing staff in ready meal boxes are weighed
and defined as experimental response, macaroni weight.

All key cooking parameters are sensitive and involved
to others that causes CCD is chosen for all three stages. The
total numbers of key cooking factors are five. Stage-1 factor
A and stage-2 factor B contain 3 levels, -1, 0, 1. Stage-3 factor
C and D, CCD is provided with  = ±1 whereas factor E
contain only 2 levels, -1, 1. Utilizing balance property to all
main effects within their columns, the OLS-GLS CCD within
strip-strip-plot design is shown in Table 2. The strip-strip-plot
design is started with all treatments in stage-1 are stripped

Figure 1. Three multi-stages process diagram for macaroni and pork
ham.
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with all treatments in stage-2. The total cell numbers is equal
to 3×3 = 9 cells. Stage-3 treatments will be randomly placed
within all 9 cells for balanced data case. Each cell contains 6
treatments that causes the total run (rck) is 54 runs.

2. Design efficiency analysis
To calculate the D-optimal efficiency in Equation 11,

the matrix V of Equation 8 is calculated starting from the
matrices Z , Z  and X which are in the form of
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where,
S1 S3 : represents main effects A, B and C, D, E

belonged  to  stage-1,  stage-2  and  stage-3,
respectively,

S1 S3int int: represents within-stage and cross-stage inter-
action effects. CD, DE, CE, AB, AC, BC, AD,
BD, AE and BE, and

S1 S3Q Q: represent quadratic effects A2, B2 and C2, D2

belonged  to  stage-1,  stage-2  and  stage-3,
respectively.

By historical process data, the value of 
 ,   and

  are selected as 0.3, 0.5 and 0.5 respectively. Together with
the number of p is 20 and N is 54, the design efficiency  Deff
of macaroni process is 82.08% according to Equation 11.

Table 2. Three-stage processes DOE for macaroni process.

Stage-2
B

-1 0 1
Stage-3 C D E C D E C D E

-1 -1 -1 -1 -1 1 -1 1 1
1 -1 -1 -1 1 -1 1 1 1

-1 -1 0 1 1 -1 1 -1 0 -1
0 -1 -1 1 1 -1 0 1 1
1 0 1 0 -1 1 1 0 -1
0 0 1 0 1 -1 0 0 -1
-1 1 1 -1 -1 -1 -1 -1 1
1 1 1 1 -1 -1 -1 1 -1

A 0 -1 0 -1 -1 0 1 1 -1 1
0 1 1 0 -1 -1 1 1 -1
1 0 -1 1 0 1 0 -1 1
0 0 -1 0 0 1 0 1 -1
-1 0 -1 -1 -1 1 -1 -1 -1
-1 1 1 -1 1 -1 -1 0 1

1 0 0 -1 0 -1 1 0 -1 -1
0 1 1 0 1 -1 0 0 1
1 0 -1 1 -1 1 1 -1 -1
1 1 1 1 1 -1 1 0 1
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3. Multiple regression analysis
The macaroni process is able to provide us a lot of

experiment data with 15 replications of macaroni weight. The
distribution of all data is presented in histogram diagram and
normality test as shown in Figure 2. The experiment design
pattern  is  conformed  to  OLS-GLS  equivalence  which  its
model estimation    is straightforward calculated with any
statistical software package because of the independency of
variance-covariance, V. The multiple regression coefficients
   of both GLS and OLS are manually confirmed to be equal.
The estimation analysis from a software package is shown in
Table 3 and its ANOVA table as well.

From Table 3, essential information of main effects,
A, B, C, D, E, quadratic effects, AA, CC, within-stage inter-
action effects, CD, and cross-stage interaction effects, AC,
are able to be extracted out. The interaction effects, CD and

AC, are graphically presented in Figure 3. The cross-stage
interaction  between  stage-1  mix  temp  and  stage-3  volume
can provide information that the volume setting at loading
machine  should  be  set  up  in  accordance  with  its  mixing
temperature. These significant terms are able to provide more
accuracy into the final response model. The optimized solu-
tion  will  be  more  accurate  because  the  previous  stages’
parameters can be suitably adjusted.

3.3.2  Ham processing meal experiment

Another  example  is  the  experiment  in  pork  ham
processing process. Based on pork ham process diagram in
Figure 1, raw pork pieces are filled into ham rectangular metal
blocks. The stage-1 critical process is the boiling processes,
which all filled metal blocks are put into boiling wells with

Figure 2.  Macaroni experiment data with normal distribution properties.

Table 3.

OLS  estimation and ANOVA table for macaroni process.


OLS  estimation

Stage Variable Variable Name Regression P-value
Coefficient

Const 161.0699 0.0000
1 A Mix temp -0.5385 0.0000
2 B Wait time 0.1886 0.0185
3 C Volume 1.2481 0.0000
3 D Blow time 0.3213 0.0001
3 E Spray time 0.1242 0.0564
1 AA Mix temp * Mix temp -1.0159 0.0000

1 × 3 AC Mix temp * Volume 0.2353 0.0161
3 CC Volume * Volume -0.6537 0.0000
3 CD Volume * Blow time -0.4300 0.0000

 ANOVA for two way crossed classification

Source df SS MSS F P-value

Stage-1 2 342.38 171.19 36.1870 0.0000
Stage-2 2 16.97 8.485 1.7936 0.1670
Stage-3 805 3808.22 4.7307
(error)
Total 809 4167.57
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its critical factor boil temperature and boil time, defined as
factor A and B. Then the well-done pork in ham blocks is
loaded into cool water of cool down wells. The cool down
process  is  the  stage-2  process  with  its  critical  factor  cool
down  time,  defined  as  factor  C.  After  cool  down,  all  ham
blocks are moved into chilled room and frozen room waiting
for  slicing.  The  final  stage-3  process  is  the  slice  machine
which slices well-done pork into ham pieces. Their critical
factors  are  knife  sharpness,  pork  surface  temperature  and
slicing speed which are defined as factors D, E and F respec-
tively. During slicing, defective ham pieces, such as holes,
tear-off and others, are segregated, weighed and defined as
experimental response, loss slice weight.

The  total  numbers  of  key  cooking  factors  are  six.
Stage-1 factor A, B and stage-2 factor C contain 2 levels, -1,
1. Stage-3 factor D and F, CCD is provided with  = ±1
whereas factor D contain only 2 levels, -1, 1. The OLS-GLS
CCD within strip-strip-plot design is shown in Table 4.

The strip-strip-plot design is started with all treatments
in stage-1 are stripped with all treatments in stage-2. The total
cell numbers is equal to 4×2 = 8 cells. Stage-3 treatments will
be randomly placed within all 8 cells for balanced data case.
Each cell contains seven treatments that cause the total run,
rck is 56 runs.

To calculate the D-optimal efficiency in Equation 11,
with historical process data, the value of 

 ,   and   are
selected as 0.5, 0.5 and 0.5 respectively. Together with the
number of p is 24 and N is 56, the design efficiency  Deff  of
pork ham process is 84.12%.

The collected loss slice weight data is widely ranged
between closed to zero and closed to eight hundred gram.
It is necessary to perform logarithm based ten transformation
to raw data. The distribution of logarithm transformed data is
presented in histogram diagram and normality test as shown
in  Figure  4.  The    estimation  analysis  from  a  software
package is shown in Table 5 and its ANOVA table as well.

Figure 3.  Interaction effects of macaroni multi-stage processes.
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Table 4. Three-stage processes DOE for pork ham process.

Stage-2
C

-1 1
Stage-3 D E F D E F

A B
-1 -1 -1 -1 -1 0
-1 -1 1 -1 0 0
-1 0 1 -1 1 -1

-1 -1 -1 1 1 1 -1 -1
1 -1 1 1 0 -1
1 0 0 1 1 -1
1 1 0 1 1 1
-1 -1 0 -1 -1 -1
-1 0 0 -1 -1 1
-1 1 -1 -1 0 1

-1 1 1 -1 -1 -1 1 1
1 0 -1 1 -1 1
1 1 -1 1 0 0
1 1 1 1 1 0
-1 -1 -1 -1 -1 0
-1 -1 1 -1 0 0
-1 0 1 -1 1 -1

1 -1 -1 1 1 1 -1 -1
1 -1 1 1 0 -1
1 0 0 1 1 -1
1 1 0 1 1 1
-1 -1 0 -1 -1 -1
-1 0 0 -1 -1 1
-1 1 -1 -1 0 1

1 1 1 -1 -1 -1 1 1
1 0 -1 1 -1 1
1 1 -1 1 0 0
1 1 1 1 1 0
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From Table 5, essential information of main effects, A,
C, quadratic effects, EE, within-stage interaction effects, EF,
and cross-stage interaction effects, BC, BE, are able to be
extracted out. The interaction effects, EF, BC and BE, are
graphically presented in Figure 5. The cross-stage interaction
between stage-1 boil time and stage-2 cool down time can
provide information that the lower setting of both factors will
provide small amount of defective ham slice pieces. Another
cross-stage interaction between boil time and ham surface
temperature shows that both factors have proportional rela-
tionship.  For  example,  longer  boil  time  with  low  surface
temperature will provide small amount of defective ham slice
pieces. These significant added terms in the final response

model provide previous stages’ parameters can be adjusted
to obtain better optimized solution.

4. Conclusions

In this paper, we discuss the second-order, CCD, within
strip-strip-plot structure for three multi-stage processes. The
cross pattern of strip-strip-plot design is expected to extract
cross-stage interaction effects significantly including qua-
dratic effects from processes. The pattern of design is strongly
required the balance property in order to obtain the maximum
information of matrix M and the GLS-OLS equivalence condi-
tion. For cell balance properties, all cells must be filled with

Figure 4.  Pork ham experiment data with normal distribution properties.

Table 5.

OLS  estimation and ANOVA table for pork ham process.


OLS  estimation

Stage Variable Variable Name Regression P-value
Coefficient

Const 2.3528 0.0000
1 A Boil Temp 0.3156 0.0001
1 B Boil Time 0.0924 0.1968
2 C Cool Time 0.1706 0.0214
3 D Sharpness -0.0941 0.2020
3 E Surface Temp -0.0412 0.6350
3 F Speed 0.0700 0.4793

1 × 2 BC Boil Time * Cool Time -0.2323 0.0079
1 × 3 BE Boil Time * Surface Temp 0.2294 0.0095

3 EF Surface Temp * Speed 0.1632 0.0871
3 FF Speed * Speed -0.2986 0.0622

 ANOVA for two way crossed classification

Source df SS MSS F P-value

Stage-1 3 6.6501 2.2167 6.1023 0.0013
Stage-2 1 1.0643 1.0643 2.9300 0.0930
Stage-3 51 18.5260 0.3633
(error)
Total 55 26.2404
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equal runs and allocation method will be randomization. The
D-optimality criteria, Deff , is utilized to judge the quality of
design however it is still depended on historical data of 

 ,
  and  .

In practice, two GLS-OLS equivalence experiments
have  been  performed  in  a  food  factory.  The  estimation  of
fixed effects, 


 , which can be resulted from standard software

have shown significantly all effects, main, quadratic, within-
stage interaction and cross-stage interaction effect for both
processes, macaroni and pork ham processes. This result can
proved that strip-strip-plot design is suitable for cross-stage
information.  Based on the experimental results, for our next
research, Deff  level, 80%, with 

 ,    and  , 0.5 for all, will
be preferable level to generate the second order strip-strip-
plot design patterns.

This paper deliberately provides the model and appli-
cation of strip-strip-plot design for three multi-stage processes
in a factory. Its applications are possible to all industries. In
our next research, many OLS-GLS patterns for three multi-
stages DOE will be generated to let the DOE will be widely
utilized.
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