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Abstract

The problem of estimating parameters in a gamma distribution has been widely studied with respect to both theories
and applications. In special cases, when the parameter space is bounded, the construction of the confidence interval based
on the classical Neyman procedure is unsatisfactory because the information regarding the restriction of the parameter is
disregarded. In order to develop the estimator for this issue, the confidence intervals for the coefficient of variation for the
case of a gamma distribution were proposed. Extending to two populations, the confidence intervals for the difference and
the ratio of coefficients of variation with restricted parameters were presented. Monte Carlo simulations were used to investi-
gate the performance of the proposed estimators. The results showed that the proposed confidence intervals performed better
than the compared estimators in terms of expected length, especially when the coefficients of variation were close to the
boundary. Additionally, two examples using real data were analyzed to illustrate the findings of the paper.
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1. Introduction

Interval estimation is a common approach for estimat-
ing the parameter of interest. Since it is guaranteed by the
confidence level that the unknown parameter is contained in
the confidence interval with common probability, the interval
estimator is more meaningful, and it provides more informa-
tion with respect to the parameter than the point estimator
(Casella & Berger, 2002). In frequentist theory, when lacking
a priori knowledge of the parameter, the confidence interval
is usually derived from the classical Neyman procedure. That
means statistical inference based on that traditional approach
is available for the natural parameter space (Mandelkern,
2002). However, in fact, the bounded parameter is found in
many  practical  applications,  such  as  engineering  process
controls, health science, and physical experiments. In this case,

the crucial problem of the confidence interval obtained by the
Neyman procedure is that when the confidence interval partly
or  completely  departs  from  the  permissible  range  for  the
parameter, it invalidates the assertion of the (1 )100%  con-
fidence interval (Fraser et al., 2004). Therefore, alternative
approaches have been discussed for obtaining accurate con-
fidence intervals. Recent work related to statistical inference
for bounded parameters is as follows.

In the paper of Wang (2008), the confidence intervals
for  the  normal  mean  in  cases  where  the  parameter  space
is  bounded  were  derived  using  the  rp  interval,  Bayesian
interval, and likelihood interval. These confidence intervals
were compared with the standard confidence interval and the
minimax interval by simulation. It was found that, although
the coverage probabilities of the standard confidence interval
were lower than those of the rp interval and Bayesian interval,
they were greater than the nominal coverage level and simpler
to  use  in  practice.  The  standard  confidence  interval  also
provided the short length interval.  Furthermore, the standard
confidence intervals with bounded parameters in the normal
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distribution were studied by Niwitpong (2011) and Sappa-
kitkamjorn and Niwitpong (2013). The results via Monte Carlo
simulation showed that their confidence intervals performed
well in terms of coverage probability and expected length.

In  a  skewed  distribution,  Eeden  (1995)  introduced
minimax estimation for scale invariant square error loss when
the scale parameter is bounded below. Chang (2010) presented
the admissible estimators of the restricted scale parameters in
the gamma distributions. Using the rp interval, Wang (2012)
studied the confidence intervals for the means with bounded
parameter  spaces  in  the  exponential  families.  Moreover,
Niwitpong  (2013a,  2013b)  proposed  standard  confidence
intervals for the mean and the coefficient of variation in a
lognormal distribution with restricted parameter space, and
then developed to the standard confidence intervals for the
difference and the ratio of two lognormal means (Niwitpong,
2015). The results showed that the confidence intervals of
Niwitpong (2015) performed well in terms of coverage prob-
ability and expected length.

As  the  reviewed  literature  indicates,  the  restriction
parameter  has  been  studied  with  both  normal  and  skewed
distributions. Thus, it is also likely that the parameter space
may be bounded in the gamma distribution. Its probability
density function is given in (1). This distribution is applied in
actuarial science and many fields of applied statistics as the
waiting time until  th event occurs. In this study, we focus
on the confidence intervals for functions of coefficients of
variation in two gamma distributions when the parameter
spaces are restricted. The coefficient of variation is a statisti-
cal measurement used to report the dispersion of variables,
and it can be applied to compare several variables expressed
in different units. In the gamma distribution, the coefficient
of variation is the function of only one parameter, the shape
parameter, while its variance depends on both the shape and
scale  parameters.  This  is  the  reason  for  considering  the
statistical inference of the coefficient of variation. In this
work, the coverage probabilities and expected lengths of the
proposed and the existing confidence intervals are studied
through Monte Carlo simulations. Moreover, we use real-
world examples to illustrate the confidence interval proposed
in this paper.

2. Confidence Intervals for the Coefficient of Variation of
the Gamma Distribution

In this section, we explain the methods for construct-
ing  the  confidence  intervals  for  the  single  coefficient  of
variation. The criterion of the study is as follows. Let X =

1 2( )nX X , X , , X   be a random sample from the gamma distri-
bution with the shape parameter 1  and scale parameter 1 ,
denoted  as 1 1~ Gamma( )X ,  . The  probability  density
function of X is given by
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where 1 1   and 1 1  . 1 1 1{ : 0}     and 1 

1 1{ : 0}    are the natural parameter spaces. The mean and
variance of X are 1 1( )E X    and 2

1 1( )Var X   , respec-
tively. Thus, the coefficient of variation of X is given by

1 11 /  .  Since 1  is  the  unknown  parameter,  it  is
required to be estimated.

We first consider the maximum likelihood estimators
for 1  and 1 . From the density shown in (1), the log-likeli-
hood function of 1  and 1  is given by
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Taking partial derivatives of the above equation with respect
to 1  and 1 , respectively, the score function is derived as
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Then, we yield the maximum likelihood estimators for 1  and
1 , respectively,,
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  is the sample mean of X. Also, the

sample coefficient of variation for 1  is given by 1 11 ˆˆ /  .

Next,  the  confidence  intervals  for  1   using  two
methods, the score and the Wald intervals are investigated.
These approaches are considered later.

2.1 Confidence interval based on the score method

Let 1  and 1  be the parameter of interest and the
nuisance parameter, respectively. In general, the score or Rao
statistic is denoted as

1
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where 0̂  is the maximum likelihood estimator for 1  under
the null hypothesis 0 1 0:H   , 0 0( )ˆU ,   is the vector of
the score function, and 0 0( )ˆI ,   is the matrix of the Fisher
information. Here, it is easy to derive that the score function
under 0H  is
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The inverse of the Fisher information can be derived as
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Using the property of the score function, we can see that the
pivotal
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converges in distribution to the standard normal distribution.
Since the variance of 1̂  is 2

02 / n , we approximate it by
substituting 1̂  in its variance. Under 0H , statistic in (2) is
given as
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From the probability statement, 2 21 ( )/ score /P Z Z Z      ,
it can be simply written as 1 1 11 ( )s sP l u     . Therefore,
the (1 )100%  confidence interval for 1  based on the
score method, sCI , is given by
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percentile of the standard normal distribution.

2.2 Confidence interval based on the Wald method

The Wald statistic is an asymptotic statistic derived
from the property of the maximum likelihood estimator. The
general form of the Wald statistic under the null hypothesis

0 1 0:H    is defined as
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1 1( )ˆˆI ,     is the estimated variance of 1̂  obtained
from the first row and the first column of 1

1( )ˆˆI ,  . Using
the information of partial derivatives from the previous sub-
section, the inverse matrix is given by
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the Wald statistic
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which has the limiting distribution of standard normal distri-
bution. Therefore, the (1 )100%  confidence interval for

1  based on the Wald method, wCI , is given by
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In  addition,  suppose  that 1 2( )mY Y ,Y , ,Y   be  a
random sample, where 2 2~ Gamma( )Y ,  . The coefficient
of variation of Y is 2 21 /   with the point estimator

2 21 ˆˆ /  . Also, we have the confidence intervals for 2
based on the score method, 2 2[ ]s sl ,u , and the Wald method,

2 2[ ]w wl ,u . Note that these confidence intervals are similar to
(3) and (4), except that they use the information from Y.

Extending the problem of this section, the confidence
intervals for the single coefficient of variation in the gamma
distribution with bounded parameter space are investigated
in the next section.

3. Confidence Intervals for a Bounded Coefficient of
Variation in the Gamma Distribution

The method for constructing the confidence intervals
for  bounded  parameter  space  applied  in  this  paper  is  the
standard approach. It is derived using the intersection of the
general confidence limits and the bounds of parameter space.
For this method, the information concerning the restriction of
the parameter is used, in contrast to the classical Neyman
approach. Following Wang (2008), when a parameter  is
bounded between values c and d, the  standard confidence
interval for  is

[max( ) min( )],CI c,l , d ,u  (5)
where l  and u  are the lower and upper limits of the general
confidence interval for , respectively. Obviously, we have
four cases as follows:

(i) If c l  and d u , then [ ]CI c,d
(ii) If c l  and d u , then [ ]CI c,u
(iii) If c l  and d u , then [ ]CI l ,d
(iv) If c l  and d u , then [ ]CI l ,u  .

Note that the confidence interval obtained from the above
cases has the shortest length interval.

The  procedure  for  constructing  the  confidence
intervals for 1  with parameter restrictions is described later..
Assume  that  the  parameter  space  of 1  is  known  to  be
restricted and bounded between values '

1a  and '

1b , where
' '

1 10 a b  . Since 1  is a function of 1 , when 1  is bounded,
1  is also bounded. It can be simply written as

' '

1 1 1a b 

1 1 1

' 'a b 

1 1 1 1 11 1' '

R Ra / b / a b .   

Using the confidence intervals for 1  presented in the
previous section and the information of the restriction, the
(1 )100%  confidence  intervals  using  the  score  and  the
Wald  intervals  for 1  with  bounded  parameter  space  are
given as

1 1 1 1[max( ) min( )]sR R s R sCI a ,l , b ,u (6)
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1 1 1 1[max( ) min( )],wR R w R wCI a ,l , b ,u (7)
respectively. We also note that 1sl  and 1su , and 1wl  and 1wu
are the general confidence limits obtained from (3) and (4),
respectively.

4. Confidence Intervals for the Difference of Coefficients of
Variation in the Gamma Distributions

In this section, we follow the confidence intervals for
the difference of coefficients of variation presented in the
paper of Sangnawakij and Niwitpong (2015). The notations
are given at the start. Suppose that X and Y  be two random
samples with 1 1~ Gamma( , )X    and 2 2~ Gamma( , )Y   .
Also, X and Y  are independent. The difference of coefficients
of variation is defined as 1 2    .

They introduced the confidence intervals for   using
the method of variance of estimates recovery (MOVER) with
the score interval, dsCI , and Wald interval, dwCI . These con-
fidence intervals are given by

[ ]ds dsl ,u 
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where 1 2
ˆ ˆ ˆ     is the sample difference of coefficients of

variation.
In the simulation, it was found that dsCI  and dwCI  of

Sangnawakij and Niwitpong (2015) performed well in terms of
coverage probability in almost all cases, and the lengths of

dsCI  were slightly shorter than those of dwCI . Thus, in the
next section, we use these estimators to develop the confi-
dence interval for the difference of coefficients of variation
with bounded parameter spaces.

5. Confidence Intervals for the Difference of Coefficients of
Variation  with  Bounded  Parameters  in  the Gamma
Distributions

Here, we are interested in the restriction of parameters
in the gamma distributions in order to construct the confi-
dence intervals for the difference of coefficients of variation.
Assume that the shape parameters 1  and 2  are bounded,

1 1 1

' 'a b   and 
2 2 2

' 'a b  , where ' '0 i ia b   for i = 1, 2.
Thus, we have
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1 1' '
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Since the difference of coefficients of variation   is a func-
tion of parameters 1  and 2  which are bounded, it is also
bounded as
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where 
1 11 '

Ra / b , 
1 11 '

Rb / a , 
2 21 '

Ra / b , and 2Rb 

21 '/ a .
Using the standard approach, the (1 )100%  confi-

dence intervals for   with bounded parameters based on
the score interval and the Wald interval are

[max( ) min( )]sDR DR ds DR dsCI a ,l , b ,u (10)

[max( ) min( )],wDR DR dw DR dwCI a ,l , b ,u (11)
respectively. Note that dsl  and dsu , and dwl  and dwu  are the
general confidence limits for   obtained from (8) and (9),
respectively.

6. Confidence  Intervals  for  the  Ratio  of  Coefficients  of
Variation in the Gamma Distributions

Let X and Y be two random samples from the gamma
distributions as mentioned in Section 4. Here, the ratio of
coefficients of variation is 1 2/   . Recently, Sangnawakij
et al. (2015) introduced the confidence intervals for  based
on the MOVER with the score interval, rsCI , and the Wald
interval, rwCI , where

[ ]rs rsl ,u 

   2
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respectively. In the simulation of Sangnawakij et al. (2015),
it was found that the coverage probabilities of rsCI  and rwCI
satisfied the nominal coverage level and performed well in
terms of expected length in all cases. Therefore, these two
existing  estimators  are  considered  to  construct  the  new
confidence intervals in the next section.
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7. Confidence  Intervals  for  the  Ratio  of  Coefficients  of
Variation  with  Bounded  Parameters  in  the  Gamma
Distributions

Suppose that parameters 1  and 2  are bounded as
1 1 1

' 'a b   and 
2 2 2

' 'a b  . Using the information regard-
ing the restriction of 1  and 2  in Section 5, the ratio of
coefficients  of  variation  in  two  gamma  distributions  is
bounded as

2 1 1 2 2 1

' ' ' 'a / b / b / a  

1 2 1 2RR R R R R RRa a / b b / a b .   

Hence, it is easy to see that the (1 )100%  standard confi-
dence interval for   with bounded parameters based on the
score interval and the Wald interval are

[max( ) min( )]sRR RR rs RR rsCI a ,l , b ,u (14)

[max( ) min( )],wRR RR rw RR rwCI a ,l , b ,u (15)
respectively,  where  rsl   and  rsu ,  and  rwl   and  rwu  are  the
general confidence limits for   obtained from (12) and (13),
respectively.

8. Simulation Studies

In this study, the performance of the proposed confi-
dence intervals is investigated using Monte Carlo simulation.
The simulations are done using the R statistical program
(Venables et al., 2015) with M = 10,000 replications in each
case. The estimated coverage probability (CP) and the esti-
mated expected length (EL), respectively, are given by

 
CP

c L U

M

 
  and  

 
1EL

M

h hh
U L

,
M







where ( )c L U   is the number of simulation runs when
parameter   lies within the confidence interval. Here, we choose
a confidence interval which has a coverage probability greater
than or close to the nominal coverage level, and short length
interval.

For one population, the data are generated from a
gamma distribution with 2   and  is adjusted to get the
required  coefficient  of  variation .  For  the  restriction  at
0 05 0 51. .  , we set  = 0.05, 0.10, 0.20, 0.28, 0.30, 0.33,
0.35, 0.40, 0.45, 0.47, 0.49, and 0.50. The sample sizes are
chosen to be n = 10, 30, 50, 100, and 200. Then, the perfor-
mance of 95% confidence intervals for  is computed.

For two populations, the data are generated from two
independent gamma distributions with ( )i i,   where i  are
fixed at 2, and i  are adjusted to yield the required coeffi-
cients of variation, which is computed by 21i i/  , for n =
1, 2. For the restriction at 10 05 0 51. .   and 20 05 0 51. .  ,
the coefficients of variation are set at 1 2( ),   (0.05,0.05),
(0.10,0.49), (0.15,0.45), (0.28,0.28), (0.45,0.15), (0.49,0.10), and
(0.50,0.05). Next, the coverage probabilities and expected
lengths of the 95% confidence intervals for the difference of
coefficients of variation   and the ratio of coefficients of
variation   are evaluated. The performance of all proposed
confidence intervals is also compared with that of the exist-
ing confidence intervals. The simulation results are described
in the next section.

9. Results and Discussion

We first consider the performance of the confidence
intervals for   with bounded parameter space. The results
are shown in Table 1. For 10 50n  , sRCI  provides cover--
age probabilities less than the nominal coverage level at
0.95. However, when the sample size increases, the coverage
probabilities of sRCI  increase, and are greater than 0.95.

Table 1. The coverage probabilities and expected lengths of the 95% confidence
intervals for the coefficient of variation, when 0 05 0 51. . 

   Coverage probability     Expected length
n 

sCI , sRCI wCI , wRCI sCI wCI sRCI wRCI

10 0.05 0.8141 0.9717 0.0471 0.0979 0.0134 0.0816
0.10 0.8033 0.9695 0.0942 0.1957 0.0767 0.1947
0.20 0.8024 0.9696 0.1883 0.3912 0.1871 0.3327
0.28 0.8153 0.9684 0.2658 0.5522 0.2640 0.3135
0.30 0.8105 0.9680 0.2840 0.5900 0.2798 0.3028
0.33 0.8091 0.9684 0.3123 0.6488 0.3012 0.2842
0.35 0.8131 0.9704 0.3310 0.6876 0.3126 0.2715
0.40 0.8120 0.9643 0.3799 0.7893 0.3301 0.2372
0.45 0.8258 0.9638 0.4322 0.8979 0.3349 0.2000
0.47 0.8269 0.9626 0.4516 0.9382 0.3334 0.1862
0.49 0.8234 0.9672 0.4702 0.9768 0.3318 0.1729
0.50 0.8265 0.9606 0.4802 0.9976 0.3299 0.1657
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Table 1. Continued

   Coverage probability     Expected length
n 

sCI , sRCI wCI , wRCI sCI wCI sRCI wRCI

30 0.05 0.8955 0.9604 0.0255 0.0296 0.0098 0.0192
0.10 0.8948 0.9566 0.0512 0.0594 0.0511 0.0593
0.20 0.8983 0.9553 0.1026 0.1190 0.1026 0.1190
0.28 0.9024 0.9558 0.1441 0.1670 0.1441 0.1668
0.30 0.9042 0.9556 0.1547 0.1793 0.1546 0.1779
0.33 0.9093 0.9540 0.1704 0.1976 0.1700 0.1897
0.35 0.9042 0.9559 0.1806 0.2094 0.1791 0.1923
0.40 0.9091 0.9556 0.2071 0.2401 0.1919 0.1781
0.45 0.9140 0.9551 0.2340 0.2715 0.1828 0.1441
0.47 0.9158 0.9534 0.2451 0.2834 0.1735 0.1290
0.49 0.9163 0.9511 0.2555 0.2961 0.1628 0.1126
0.50 0.9198 0.9498 0.2611 0.3024 0.1566 0.1044

50 0.05 0.9153 0.9581 0.0197 0.0214 0.0080 0.0130
0.10 0.9196 0.9534 0.0395 0.0429 0.0395 0.0429
0.20 0.9190 0.9521 0.0792 0.0861 0.0792 0.0861
0.28 0.9253 0.9539 0.1110 0.1206 0.1110 0.1206
0.30 0.9276 0.9524 0.1193 0.1296 0.1193 0.1296
0.33 0.9209 0.9508 0.1312 0.1428 0.1311 0.1424
0.35 0.9289 0.9535 0.1394 0.1516 0.1392 0.1498
0.45 0.9302 0.9494 0.1803 0.1958 0.1464 0.1251
0.47 0.9371 0.9540 0.1883 0.2050 0.1366 0.1092
0.49 0.9386 0.9560 0.1972 0.2139 0.1227 0.0927
0.50 0.9400 0.9474 0.2011 0.2190 0.1162 0.0828

100 0.05 0.9335 0.9496 0.0139 0.0145 0.0061 0.0084
0.10 0.9345 0.9512 0.0278 0.0289 0.0278 0.0289
0.20 0.9352 0.9510 0.0557 0.0580 0.0557 0.0580
0.28 0.9444 0.9501 0.0783 0.0815 0.0783 0.0815
0.30 0.9463 0.9514 0.0840 0.0874 0.0840 0.0874
0.33 0.9455 0.9504 0.0925 0.0963 0.0925 0.0963
0.35 0.9436 0.9466 0.0982 0.1022 0.0982 0.1022
0.40 0.9488 0.9462 0.1127 0.1172 0.1121 0.1149
0.45 0.9475 0.9468 0.1270 0.1322 0.1112 0.1026
0.47 0.9507 0.9441 0.1330 0.1382 0.1007 0.0882
0.49 0.9533 0.9470 0.1390 0.1447 0.0861 0.0700
0.50 0.9525 0.9413 0.1419 0.1475 0.0780 0.0618

200 0.05 0.9414 0.9539 0.0098 0.0100 0.0044 0.0055
0.10 0.9418 0.9523 0.0196 0.0200 0.0196 0.0200
0.20 0.9463 0.9507 0.0394 0.0402 0.0394 0.0402
0.28 0.9502 0.9509 0.0553 0.0564 0.0553 0.0564
0.30 0.9480 0.9508 0.0593 0.0605 0.0593 0.0605
0.33 0.9508 0.9487 0.0653 0.0666 0.0653 0.0666
0.35 0.9519 0.9467 0.0695 0.0708 0.0695 0.0708
0.40 0.9501 0.9428 0.0796 0.0810 0.0796 0.0810
0.45 0.9543 0.9400 0.0898 0.0914 0.0846 0.0825
0.47 0.9514 0.9430 0.0939 0.0957 0.0768 0.0710
0.49 0.9525 0.9410 0.0981 0.0998 0.0622 0.0553
0.50 0.9531 0.9460 0.1002 0.1018 0.0535 0.0461
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Meanwhile,  the  coverage  probabilities  of wRCI  satisfy  the
nominal coverage level. Since the coverage probabilities of

sCI  and sRCI , wCI  and wRCI , respectively, provide the same
results, the performance of those confidence intervals is
appraised in terms of the expected length. It was found that
the expected lengths of sRCI  and wRCI  are shorter than those
of sCI  and wCI  in almost all cases. In addition, the expected

lengths of sRCI  are slightly smaller than those of wRCI  for
large  . From Table 2, it can be seen that the ratios of
expected length between sCI  and sRCI , and wCI  and wRCI ,
respectively, are greater than one, when   is close to the
boundary of (0.05,0.50). That means the confidence intervals
obtained from the method involving a bounded interval more
accurately cover the true parameter than confidence intervals

Table 2. The ratio of expected length of the 95% confidence intervals for the coefficient
of variation, when 0 05 0 51. . 


( )

( )
s

sR

E CI

E CI

( )

( )
w

wR

E CI

E CI

( )

( )
sR

wR

E CI

E CI 
( )

( )
s

sR

E CI

E CI

( )

( )
w

wR

E CI

E CI

( )

( )
sR

wR

E CI

E CI

n = 10 n = 100

0.05 3.5192 1.1999 0.1641 0.05 2.2716 1.7271 0.7305
0.10 1.2289 1.0054 0.3938 0.10 1.0000 1.0000 0.9608
0.20 1.0063 1.1761 0.5626 0.20 1.0000 1.0000 0.9608
0.28 1.0068 1.7614 0.8422 0.28 1.0000 1.0000 0.9608
0.30 1.0149 1.9486 0.9242 0.30 1.0000 1.0000 0.9608
0.33 1.0369 2.2831 1.0598 0.33 1.0000 1.0000 0.9608
0.35 1.0590 2.5331 1.1514 0.35 1.0000 1.0000 0.9609
0.40 1.1510 3.3275 1.3917 0.40 1.0057 1.0198 0.9754
0.45 1.2906 4.4897 1.6746 0.45 1.1427 1.2884 1.0833
0.47 1.3546 5.0384 1.7904 0.47 1.3208 1.5669 1.1420
0.49 1.4170 5.6486 1.9188 0.49 1.6144 2.0671 1.2300
0.50 1.4558 6.0191 1.9902 0.50 1.8197 2.3867 1.2620

n  = 30 n  = 200

0.05 2.6180 1.5398 0.5073 0.05 2.2089 1.8181 0.8071
0.10 1.0008 1.0001 0.8618 0.10 1.0000 1.0000 0.9806
0.20 1.0000 1.0000 0.8625 0.20 1.0000 1.0000 0.9806
0.28 1.0000 1.0016 0.8639 0.28 1.0000 1.0000 0.9810
0.30 1.0003 1.0079 0.8691 0.30 1.0000 1.0000 0.9800
0.33 1.0023 1.0415 0.8962 0.33 1.0000 1.0000 0.9806
0.35 1.0085 1.0888 0.9312 0.35 1.0000 1.0000 0.9806
0.40 1.0789 1.3482 1.0777 0.40 1.0001 1.0000 0.9826
0.45 1.2797 1.8841 1.2688 0.45 1.0619 1.1079 1.0249
0.47 1.4126 2.1969 1.3449 0.47 1.2220 1.3486 1.0829
0.49 1.5697 2.6297 1.4458 0.49 1.5777 1.8047 1.1242
0.50 1.6677 2.8966 1.4995 0.50 1.8719 2.2082 1.1607

n  = 50

0.05 2.4494 1.6403 0.6161
0.10 1.0000 1.0000 0.9200
0.20 1.0000 1.0000 0.9200
0.28 1.0000 1.0000 0.9200
0.30 1.0000 1.0000 0.9208
0.33 1.0002 1.0028 0.9209
0.35 1.0014 1.0120 0.9290
0.45 1.2314 1.5651 1.1701
0.47 1.3785 1.8773 1.2508
0.49 1.6064 2.3074 1.3241
0.50 1.7312 2.6449 1.4028
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derived by the classical procedure.
The results of the confidence intervals for   with

bounded parameter spaces are presented in Table 3. For
10 30n,m  , sDRCI  yields coverage probabilities less than
0.95. However, when the sample size increases, it has cover-
age probabilities greater than or close to 0.95. The coverage
probabilities  of  wDRCI   satisfy  the  nominal  coverage  in
general, expect for sample sizes equal to 200. The results are
similar  to  those  of  Sangnawakij  and  Niwitpong  (2015).
Furthermore, the expected lengths of sDRCI  and wDRCI  are
shorter than those of dsCI  and dwCI . As can be seen from

Table 4, the ratios of expected length of dsCI  and sDRCI , and
dwCI  and wDRCI , respectively, are greater than one, especially,,

when  1  and 2  are close to the boundary of (0.50,0.05).
Also, the expected lengths of sDRCI  are also longer than those
of wDRCI .

Finally, the performance of the confidence intervals
for    with bounded parameter spaces is considered. The
results  from  Table  5  show  that sRRCI  and wRRCI  provide
coverage probabilities greater than or close to 0.95. In general,
the coverage probabilities of wRRCI  are higher than those of

sRRCI . The results are also similar to those of Sangnawakij

Table 3. The coverage probabilities and expected lengths of the 95% confidence intervals for
the difference of coefficients of variation, when 1 20 05 0 51. , .  

  Coverage probability Expected length
( )n,m 1 2( ), 

dsCI , sDRCI dwCI , wDRCI dsCI dwCI sDRCI wDRCI

(10,10) (0.05,0.50) 0.8358 0.9732 0.4841 1.0267 0.3280 0.1895
(0.10,0.49) 0.8603 0.9858 0.4848 1.0691 0.3692 0.3044
(0.15,0.45) 0.8875 0.9933 0.4601 1.0602 0.4034 0.4591
(0.28,0.28) 0.9963 0.9973 0.3911 0.9679 0.3910 0.7958
(0.45,0.15) 0.8986 0.9897 0.4623 1.0646 0.4047 0.4561
(0.49,0.10) 0.8647 0.9866 0.4832 1.0655 0.3697 0.3047
(0.50,0.05) 0.8398 0.9703 0.4852 1.0290 0.3276 0.1888

(30,30) (0.05,0.50) 0.9195 0.9454 0.2623 0.3050 0.1560 0.1053
(0.10,0.49) 0.9266 0.9514 0.2612 0.3065 0.2030 0.1674
(0.15,0.45) 0.9336 0.9570 0.2471 0.2940 0.2360 0.2433
(0.28,0.28) 0.9683 0.9700 0.2062 0.2541 0.2062 0.2541
(0.45,0.15) 0.9361 0.9611 0.2469 0.2937 0.2362 0.2437
(0.49,0.10) 0.9283 0.9557 0.2610 0.3061 0.2034 0.1679
(0.50,0.05) 0.9254 0.9472 0.2626 0.3054 0.1557 0.1048

(50,50) (0.05,0.50) 0.9453 0.9490 0.2012 0.2201 0.1159 0.0842
(0.10,0.49) 0.9471 0.9499 0.2014 0.2198 0.1630 0.1431
(0.15,0.45) 0.9481 0.9514 0.1904 0.2099 0.1876 0.1970
(0.28,0.28) 0.9628 0.9643 0.1582 0.1784 0.1582 0.1784
(0.45,0.15) 0.9476 0.9520 0.1901 0.2097 0.1874 0.1974
(0.49,0.10) 0.9473 0.9488 0.2014 0.2198 0.1630 0.1426
(0.50,0.05) 0.9457 0.9468 0.2026 0.2201 0.1150 0.0840

(100,100) (0.05,0.50) 0.9552 0.9420 0.1424 0.1484 0.0786 0.0619
(0.10,0.49) 0.9535 0.9432 0.1417 0.1478 0.1239 0.1166
(0.15,0.45) 0.9556 0.9479 0.1341 0.1404 0.1340 0.1399
(0.28,0.28) 0.9549 0.9555 0.1111 0.1178 0.1111 0.1178
(0.45,0.15) 0.9528 0.9513 0.1341 0.1405 0.1340 0.1400
(0.49,0.10) 0.9555 0.9480 0.1415 0.1482 0.1244 0.1162
(0.50,0.05) 0.9572 0.9404 0.1425 0.1486 0.0784 0.0614

(200,200) (0.05,0.50) 0.9500 0.9400 0.1005 0.1024 0.0540 0.0466
(0.10,0.49) 0.9523 0.9410 0.1000 0.1019 0.0946 0.0935
(0.15,0.45) 0.9512 0.9410 0.0946 0.0968 0.0946 0.0968
(0.28,0.28) 0.9496 0.9499 0.0783 0.0806 0.0783 0.0806
(0.45,0.15) 0.9494 0.9412 0.0946 0.0966 0.0946 0.0966
(0.49,0.10) 0.9510 0.9400 0.1001 0.1020 0.0945 0.0934
(0.50,0.05) 0.9550 0.9380 0.1006 0.1024 0.0538 0.0462
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et  al.  (2015).  From  Table  6,  the  ratios  of  expected  length
between rsCI  and sRRCI , and rwCI  and wRRCI , respectively,,
are greater than one, especially when 1  and 2  are close to
the boundary of parameter spaces. Moreover, the expected
lengths of sRRCI  are slightly smaller than those of wRRCI .

10. Real Data Examples

Example 1. The data of monthly rainfall (mm) are used
to compute the confidence intervals for . From the report
of the Hydrology Irrigation Center for the central region of

Table 4. The ratio of expected length of the 95% confidence intervals
for the difference of coefficients of variation, when

( )n,m 1 2( ), 
( )

( )
ds

sDR

E CI

E CI

( )

( )
dw

wDR

E CI

E CI

( )

( )
sDR

wDR

E CI

E CI

(10,10) (0.05,0.50) 1.4761 5.4174 1.7307
(0.10,0.49) 1.3131 3.5116 1.2126
(0.15,0.45) 1.1405 2.3096 0.8788
(0.28,0.28) 1.0002 1.2164 0.4913
(0.45,0.15) 1.1422 2.3340 0.8874
(0.49,0.10) 1.3070 3.4972 1.2133
(0.50,0.05) 1.4813 5.4499 1.7350

(30,30) (0.05,0.50) 1.6813 2.8960 1.4810
(0.10,0.49) 1.2872 1.8312 1.2127
(0.15,0.45) 1.0471 1.2082 0.9699
(0.28,0.28) 1.0000 1.0000 0.8117
(0.45,0.15) 1.0451 1.2052 0.9694
(0.49,0.10) 1.2830 1.8239 1.2118
(0.50,0.05) 1.6863 2.9146 1.4862

(50,50) (0.05,0.50) 1.7360 2.6140 1.3765
(0.10,0.49) 1.2356 1.5360 1.1391
(0.15,0.45) 1.0149 1.0656 0.9523
(0.28,0.28) 1.0000 1.0000 0.8865
(0.45,0.15) 1.0143 1.0619 0.9491
(0.49,0.10) 1.2354 1.5414 1.1431
(0.50,0.05) 1.7617 2.6188 1.3683

(100,100) (0.05,0.50) 1.8122 2.3974 1.2695
(0.10,0.49) 1.1430 1.2676 1.0629
(0.15,0.45) 1.0008 1.0036 0.9576
(0.28,0.28) 1.0000 1.0000 0.9429
(0.45,0.15) 1.0011 1.0037 0.9570
(0.49,0.10) 1.1379 1.2754 1.0704
(0.50,0.05) 1.8188 2.4202 1.2762

(200,200) (0.05,0.50) 1.8629 2.1974 1.1582
(0.10,0.49) 1.0573 1.0898 1.0119
(0.15,0.45) 1.0000 1.0000 0.9772
(0.28,0.28) 1.0000 1.0000 0.9713
(0.45,0.15) 1.0000 1.0000 0.9789
(0.49,0.10) 1.0592 1.0921 1.0119
(0.50,0.05) 1.8712 2.2165 1.1637

Thailand  (2015),  60  observations  in  September  (between
1955-2014), which is the month with the lowest rainfall, are
selected. The statistics are reported as follows.

Before computing the confidence intervals, the Ander-
son-Darling test is used to test the distribution of these data.
It  was  found  that  the  data  of  rainfall  in  September  fit  the
gamma distribution with the test statistic of 0.45 and the p-
value of 0.25. The average rainfall is x   238.02, 

60

1
ln ii

x


= 324.40, and the maximum likelihood estimator for  is ̂ 
0.36. Suppose that the bounded interval 0 30 0 50. .   is
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considered. The 95% confidence intervals are calculated and
presented  in  Table  7.  Like  the  simulation  in  the  previous
section, sRCI  has a shorter length than wRCI . The length of

sCI  is greater than that of sRCI  and wRCI . Meanwhile, the
length of wCI  is not different from that of wRCI , but greater
than that of sRCI .

Example 2.  We  use  the  data  provided  by  Proschan
(1963)  to  compute  the  confidence  intervals  for   and  .
These data present the time (hours) of successive failures of
the air conditioning systems of two jet airplanes, number 7912
and 7909. Using the Anderson-Darling test, the data fit the

gamma  distribution.  For  the  first  plane,  30  samples  are
observed with the sample mean x  59.60 and the sample
coefficient of variation 1̂  1.21. For 29 samples from the
second  plane,  the  sample  mean  and  sample  coefficient  of
variation are y  83.52 and 2̂  0.81, respectively..

Suppose that the coefficients of variation are bounded,
1 20 80 1 30. , .   . The 95% confidence intervals and the

lengths for   are presented in Table 7. It can be seen that the
lengths of sDRCI  and wDRCI  are shorter than those of dsCI  and

dwCI . That  means  the  proposed  confidence  intervals  are
better than the existing intervals. In addition, these data are

Table 5. The coverage probabilities and expected lengths of the 95% confidence intervals for
the ratio of coefficients of variation, when 1 20 05 0 51. , .  

  Coverage probability Expected length
( )n,m 1 2( ), 

rsCI , sRRCI rwCI , wRRCI rsCI rwCI sRRCI wRRCI

(10,10) (0.05,0.50) 0.9960 0.9969 0.2720 0.2803 0.2094 0.2168
(0.10,0.49) 0.9967 0.9971 0.5557 0.5725 0.5268 0.5423
(0.15,0.45) 0.9963 0.9969 0.9151 0.9427 0.9081 0.9351
(0.28,0.28) 0.9965 0.9968 2.7670 2.8507 2.7660 2.8496
(0.45,0.15) 0.9959 0.9968 8.4905 8.7474 7.4015 7.5410
(0.49,0.10) 0.9971 0.9974 13.8598 14.2791 8.1611 8.2310
(0.50,0.05) 0.9965 0.9972 28.2733 29.1287 6.5183 6.6051

(30,30) (0.05,0.50) 0.9640 0.9663 0.0834 0.0842 0.0518 0.0525
(0.10,0.49) 0.9632 0.9652 0.1703 0.1721 0.1699 0.1717
(0.15,0.45) 0.9682 0.9699 0.2794 0.2824 0.2794 0.2824
(0.28,0.28) 0.9683 0.9700 0.8496 0.8585 0.8496 0.8585
(0.45,0.15) 0.9688 0.9707 2.5769 2.6041 2.5769 2.6041
(0.49,0.10) 0.9692 0.9709 4.2272 4.2718 4.1886 4.2310
(0.50,0.05) 0.9642 0.9659 8.6765 8.7680 3.2560 3.2846

(50,50) (0.05,0.50) 0.9593 0.9603 0.0598 0.0602 0.0351 0.0354
(0.10,0.49) 0.9578 0.9589 0.1221 0.1229 0.1221 0.1229
(0.15,0.45) 0.9605 0.9617 0.2004 0.2017 0.2004 0.2017
(0.28,0.28) 0.9628 0.9643 0.6118 0.6158 0.6118 0.6158
(0.45,0.15) 0.9611 0.9626 1.8581 1.8700 1.8581 1.8700
(0.49,0.10) 0.9568 0.9572 3.0540 3.0736 3.0528 3.0724
(0.50,0.05) 0.9578 0.9588 6.2299 6.2700 2.5382 2.5528

(100,100) (0.05,0.50) 0.9538 0.9543 0.0402 0.0404 0.0225 0.0226
(0.10,0.49) 0.9495 0.9504 0.0822 0.0825 0.0822 0.0825
(0.15,0.45) 0.9502 0.9508 0.1347 0.1351 0.1347 0.1351
(0.28,0.28) 0.9549 0.9555 0.4108 0.4121 0.4108 0.4121
(0.45,0.15) 0.9521 0.9528 1.2497 1.2538 1.2497 1.2538
(0.49,0.10) 0.9543 0.9548 2.0488 2.0554 2.0488 2.0554
(0.50,0.05) 0.9551 0.9563 4.1894 4.2031 1.8230 1.8285

(200,200) (0.05,0.50) 0.9456 0.9461 0.0278 0.0279 0.0152 0.0152
(0.10,0.49) 0.9470 0.9472 0.0568 0.0569 0.0568 0.0569
(0.15,0.45) 0.9479 0.9483 0.0932 0.0934 0.0932 0.0934
(0.28,0.28) 0.9496 0.9499 0.2837 0.2842 0.2837 0.2842
(0.45,0.15) 0.9442 0.9448 0.8638 0.8652 0.8638 0.8652
(0.49,0.10) 0.9444 0.9448 1.4172 1.4196 1.4172 1.4196
(0.50,0.05) 0.9476 0.9481 2.8923 2.8971 1.3145 1.3166
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Table 6. The ratio of expected length of the 95% confidence intervals for
the ratio of coefficients of variation, when 1 20 05 0 51. , .  

( )n,m 1 2( ), 
( )

( )
rs

sRR

E CI

E CI

( )

( )
rw

wRR

E CI

E CI

( )

( )
sRR

wRR

E CI

E CI

(10,10) (0.05,0.50) 1.2990 1.2926 0.9659
(0.10,0.49) 1.0548 1.0557 0.9714
(0.15,0.45) 1.0076 1.0081 0.9711
(0.28,0.28) 1.0003 1.0004 0.9707
(0.45,0.15) 1.1471 1.1600 0.9815
(0.49,0.10) 1.6983 1.7348 0.9915
(0.50,0.05) 4.3375 4.4100 0.9869

(30,30) (0.05,0.50) 1.6081 1.6060 0.9882
(0.10,0.49) 1.0023 1.0024 0.9896
(0.15,0.45) 1.0000 1.0000 0.9896
(0.28,0.28) 1.0000 1.0000 0.9896
(0.45,0.15) 1.0000 1.0000 0.9896
(0.49,0.10) 1.0092 1.0096 0.9900
(0.50,0.05) 2.6648 2.6694 0.9913

(50,50) (0.05,0.50) 1.7018 1.7006 0.9929
(0.10,0.49) 1.0001 1.0001 0.9936
(0.15,0.45) 1.0000 1.0000 0.9936
(0.28,0.28) 1.0000 1.0000 0.9936
(0.45,0.15) 1.0000 1.0000 0.9936
(0.49,0.10) 1.0004 1.0004 0.9936
(0.50,0.05) 2.4544 2.4561 0.9943

(100,100) (0.05,0.50) 1.7851 1.7846 0.9965
(0.10,0.49) 1.0000 1.0000 0.9968
(0.15,0.45) 1.0000 1.0000 0.9968
(0.28,0.28) 1.0000 1.0000 0.9968
(0.45,0.15) 1.0000 1.0000 0.9968
(0.49,0.10) 1.0000 1.0000 0.9968
(0.50,0.05) 2.2982 2.2986 0.9969

(200,200) (0.05,0.50) 1.8319 1.8317 0.9983
(0.10,0.49) 1.0000 1.0000 0.9984
(0.15,0.45) 1.0000 1.0000 0.9984
(0.28,0.28) 1.0000 1.0000 0.9984
(0.45,0.15) 1.0000 1.0000 0.9984

used to conduct the 95% confidence intervals for . We also
note that these results support the simulation studies in the
previous section.

11. Conclusions

The aim of this paper was twofold. The first aim was
to propose new confidence intervals for the coefficient of
variation with bounded parameter space in the gamma distri-
bution. These estimators were extended from the confidence
intervals based on the score and Wald intervals. The second
aim was to propose new confidence intervals for the differ-
ence and the ratio of coefficients of variation with bounded

parameter spaces in two gamma distributions. The results
obtained from the simulations indicated that the proposed
confidence intervals had the same coverage probabilities as
their  existing  confidence  intervals.  However,  all  proposed
confidence intervals performed better than the compared esti-
mators in terms of expected length, especially when the co-
efficients of variation were close to the boundary. That means
the proposed confidence intervals more accurately estimate
the true parameter.

Therefore, it should be noted that when the coefficient
of variation is known to be bounded, the confidence interval
utilized the information about the restriction of the parameter
is used. Since our estimators outperform and are also easy to
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compute using the explicit formulas, those estimators can be
used as the confidence intervals for functions of coefficients
of variation with bounded parameter spaces in the gamma
distributions.
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