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Abstract

The problem of estimating parameters in a gamma distribution has been widely studied with respect to both theories
and applications. In special cases, when the parameter space is bounded, the construction of the confidence interval based
on the classical Neyman procedure is unsatisfactory because the information regarding the restriction of the parameter is
disregarded. In order to develop the estimator for this issue, the confidence intervals for the coefficient of variation for the
case of a gamma distribution were proposed. Extending to two populations, the confidence intervals for the difference and
the ratio of coefficients of variation with restricted parameters were presented. Monte Carlo simulations were used to investi-
gate the performance of the proposed estimators. The results showed that the proposed confidence intervals performed better
than the compared estimators in terms of expected length, especially when the coefficients of variation were close to the
boundary. Additionally, two examples using real data were analyzed to illustrate the findings of the paper.
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1. Introduction

Interval estimation is a common approach for estimat-
ing the parameter of interest. Since it is guaranteed by the
confidence level that the unknown parameter is contained in
the confidence interval with common probability, the interval
estimator is more meaningful, and it provides more informa-
tion with respect to the parameter than the point estimator
(Casella & Berger, 2002). In frequentist theory, when lacking
a priori knowledge of the parameter, the confidence interval
is usually derived from the classical Neyman procedure. That
means statistical inference based on that traditional approach
is available for the natural parameter space (Mandelkern,
2002). However, in fact, the bounded parameter is found in
many practical applications, such as engineering process
controls, health science, and physical experiments. In this case,
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the crucial problem of the confidence interval obtained by the
Neyman procedure is that when the confidence interval partly
or completely departs from the permissible range for the
parameter, it invalidates the assertion of the (1 —y)100% con-
fidence interval (Fraser ef al., 2004). Therefore, alternative
approaches have been discussed for obtaining accurate con-
fidence intervals. Recent work related to statistical inference
for bounded parameters is as follows.

In the paper of Wang (2008), the confidence intervals
for the normal mean in cases where the parameter space
is bounded were derived using the rp interval, Bayesian
interval, and likelihood interval. These confidence intervals
were compared with the standard confidence interval and the
minimax interval by simulation. It was found that, although
the coverage probabilities of the standard confidence interval
were lower than those of the rp interval and Bayesian interval,
they were greater than the nominal coverage level and simpler
to use in practice. The standard confidence interval also
provided the short length interval. Furthermore, the standard
confidence intervals with bounded parameters in the normal



28 P. Sangnawakij & S. Niwitpong / Songklanakarin J. Sci. Technol. 39 (1), 27-39, 2017

distribution were studied by Niwitpong (2011) and Sappa-
kitkamjorn and Niwitpong (2013). The results via Monte Carlo
simulation showed that their confidence intervals performed
well in terms of coverage probability and expected length.

In a skewed distribution, Eeden (1995) introduced
minimax estimation for scale invariant square error loss when
the scale parameter is bounded below. Chang (2010) presented
the admissible estimators of the restricted scale parameters in
the gamma distributions. Using the rp interval, Wang (2012)
studied the confidence intervals for the means with bounded
parameter spaces in the exponential families. Moreover,
Niwitpong (2013a, 2013b) proposed standard confidence
intervals for the mean and the coefficient of variation in a
lognormal distribution with restricted parameter space, and
then developed to the standard confidence intervals for the
difference and the ratio of two lognormal means (Niwitpong,
2015). The results showed that the confidence intervals of
Niwitpong (2015) performed well in terms of coverage prob-
ability and expected length.

As the reviewed literature indicates, the restriction
parameter has been studied with both normal and skewed
distributions. Thus, it is also likely that the parameter space
may be bounded in the gamma distribution. Its probability
density function is given in (1). This distribution is applied in
actuarial science and many fields of applied statistics as the
waiting time until o th event occurs. In this study, we focus
on the confidence intervals for functions of coefficients of
variation in two gamma distributions when the parameter
spaces are restricted. The coefficient of variation is a statisti-
cal measurement used to report the dispersion of variables,
and it can be applied to compare several variables expressed
in different units. In the gamma distribution, the coefficient
of variation is the function of only one parameter, the shape
parameter, while its variance depends on both the shape and
scale parameters. This is the reason for considering the
statistical inference of the coefficient of variation. In this
work, the coverage probabilities and expected lengths of the
proposed and the existing confidence intervals are studied
through Monte Carlo simulations. Moreover, we use real-
world examples to illustrate the confidence interval proposed
in this paper.

2. Confidence Intervals for the Coefficient of Variation of
the Gamma Distribution

In this section, we explain the methods for construct-
ing the confidence intervals for the single coefficient of
variation. The criterion of the study is as follows. Let X =
X, X,.... X ) be arandom sample from the gamma distri-
bution with the shape parameter o, and scale parameter 3,
denoted as X~Gamma(e,,B,). The probability density
function of X is given by

1
——x"exp{-x/B} ; 0<x<w
I (a)p’ , ()

0 ;

fisa,B)=

x<0

where o, €®, and B, €2 . 0 ={a:a >0} and Q2 =
{B,: B, > 0} are the natural parameter spaces. The mean and
variance of Xare E(X)=a,p, and Var(X)=q, ﬂlz, respec-
tively. Thus, the coefficient of variation of X is given by
7, =1/4/a, . Since «, is the unknown parameter, it is
required to be estimated.

We first consider the maximum likelihood estimators
for o, and g, . From the density shown in (1), the log-likeli-
hood function of ¢, and f, is given by

lnL(oc],ﬂ])z—Zn:%+(ocl —I)Zn‘lln)(f—nlnF(oc])—nocl Ing,.

=1 P i=1

Taking partial derivatives of the above equation with respect
to o, and B, respectively, the score function is derived as

Z::] InX, —nlna +n/Q2a)-nlnpg
Z::I X, /ﬂlz —na, /P,

Then, we yield the maximum likelihood estimators for ¢, and
B,, respectively,

Ule,, B) =

. 1
I 2(ln/\_’—Z::] InX, /n)

B, =

R [

where X = ZL. X,/ n is the sample mean of X. Also, the

sample coefficient of variation for 7, isgivenby 7, =1/ /.

Next, the confidence intervals for 7, using two
methods, the score and the Wald intervals are investigated.
These approaches are considered later.

2.1 Confidence interval based on the score method

Let o, and B, be the parameter of interest and the
nuisance parameter, respectively. In general, the score or Rao
statistic is denoted as

W, =U"(a,B)I"(a, B,) Ula,.B,)
where BO is the maximum likelihood estimator for f, under
the null hypothesis H :a, = a,, U(a,,p,) is the vector of
the score function, and /(e,, ,) is the matrix of the Fisher
information. Here, it is easy to derive that the score function
under H is

' X +n/(2a,)- nln)?}

. .

The inverse of the Fisher information can be derived as
2X/n

X' Qa,+1)/ (na;)}

U(ao,Bo){

2a02/n

B { 2X/
- n
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Using the property of the score function, we can see that the
pivotal

2a° [ & _
Z.. = °(21an+—” —’“nX] Q)

n i 2a,

converges in distribution to the standard normal distribution.
Since the variance of ¢, is 2a§ / n, we approximate it by
substituting ¢, in its variance. Under H , statistic in (2) is
given as

20 [ & n -
Z = ‘/—‘ DX, +—-nhX |
} n i 2a,

From the probability statement, |-y =P(-Z ,<Z  <Z ),
it can be simply writtenas 1 -y = P(/ | <7, <u_). Therefore,
the (1-y)100% confidence interval for 7, based on the
score method, CI , is given by

2 n 2 n
[Z.sl’u.sl] = ; Zl _Zy/Z 2(2'2 s ; Zl +Zy/'2 2dlz ’

€))
where z = nln)?—z;ln X and Z ,, isthe (y /2)100 th
percentile of the standard normal distribution.

2.2 Confidence interval based on the Wald method

The Wald statistic is an asymptotic statistic derived
from the property of the maximum likelihood estimator. The
general form of the Wald statistic under the null hypothesis
H:a =a, is defined as

W.o=(a, -a) 1" (a,.B)]' (4 -a),
where 1°“ (a,, ﬁ]) is the estimated variance of ¢, obtained

from the first row and the first column of /™' (a,, B). Using
the information of partial derivatives from the previous sub-
section, the inverse matrix is given by

202]2 /n

2X/n
2X/n

I'(¢,B)= _
(@.5) { X’ (2a,+1)/ (né)

with 1% (a,, ﬁ]) =2a / n. Therefore, under H,, we obtain

the Wald statistic

wald = 2dz (al _al)’

1

which has the limiting distribution of standard normal distri-
bution. Therefore, the (1—y)100% confidence interval for
7, based on the Wald method, CI , is given by

2A2 2A2
[1,.u]= 1/\/02, V7, /i,l/\/d, —z P @
n n

In addition, suppose that ¥ =(Y,Y,,....Y ) be a
random sample, where ¥~ Gamma(c,, 3,) . The coefficient
of variation of Y'is 7, =1/./a, with the point estimator
7, =1/4/a, . Also, we have the confidence intervals for 7,
based on the score method, [/ ,,u_,], and the Wald method,
[/ ,,u_,]. Note that these confidence intervals are similar to
(3) and (4), except that they use the information from Y.

Extending the problem of this section, the confidence
intervals for the single coefficient of variation in the gamma
distribution with bounded parameter space are investigated
in the next section.

3. Confidence Intervals for a Bounded Coefficient of
Variation in the Gamma Distribution

The method for constructing the confidence intervals
for bounded parameter space applied in this paper is the
standard approach. It is derived using the intersection of the
general confidence limits and the bounds of parameter space.
For this method, the information concerning the restriction of
the parameter is used, in contrast to the classical Neyman
approach. Following Wang (2008), when a parameter ¢ is
bounded between values ¢ and d, the standard confidence
interval for € is

CI =[max(c,/ ), min(d,u,)], o)

where /_ and u_ are the lower and upper limits of the general
confidence interval for &, respectively. Obviously, we have
four cases as follows:

(@) Ifc>1 and d <u_,then CI =[c,d]

() If c>[ and d >u_,then CI =[c,u,]

(iii) If c </ and d <u_,then CI =[/ ,d]

(iv) If c<I and d >u_,then CI =[[ ,u_].
Note that the confidence interval obtained from the above
cases has the shortest length interval.

The procedure for constructing the confidence
intervals for 7, with parameter restrictions is described later.
Assume that the parameter space of ¢, is known to be
restricted and bounded between values a; and blv, where
0 <a, <b, .Since 7, isa function of &, , when «, is bounded,
7, is also bounded. It can be simply written as

a <a <b
Vo <fa < i
aRlzl/\/bT<rl<l/\/aT=bm.

Using the confidence intervals for 7, presented in the
previous section and the information of the restriction, the
(1-%)100% confidence intervals using the score and the
Wald intervals for r, with bounded parameter space are
given as

CI , =[max(a,,! ), min(b, ,u_ )] 6)
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CI , =[max(a, ./ ), minb, u_ )], )

respectively. We also note that / and u ,and [/ and u
are the general confidence llmlts obtained from (3) and (4)
respectively.

4. Confidence Intervals for the Difference of Coefficients of
Variation in the Gamma Distributions

In this section, we follow the confidence intervals for
the difference of coefficients of variation presented in the
paper of Sangnawakij and Niwitpong (2015). The notations
are given at the start. Suppose that X and Y be two random
samples with X~Gamma(e,,B,) and Y~Gamma(c,,B,).
Also, Xand Y are independent. The difference of coefficients
of variation is defined as w =7, —7,.

They introduced the confidence intervals for ¥ using
the method of variance of estimates recovery (MOVER) with
the score interval, C/, , and Wald interval, C/, . These con-
fidence intervals are given by

[, u,1=

[1,; SJE Ly -2y e, -2y (L) }
®)

, u,l=

[.,& —\/(fl 1)V +@w,-7,) v +\/(uw] 7)) +(7,-1,) }
©)
where v =7, —7, is the sample difference of coefficients of

variation.

In the simulation, it was found that C/, and CI, of
Sangnawakij and Niwitpong (2015) performed well in terms of
coverage probability in almost all cases, and the lengths of
CI . were slightly shorter than those of CI, . Thus, in the
next section, we use these estimators to develop the confi-
dence interval for the difference of coefficients of variation
with bounded parameter spaces.

5. Confidence Intervals for the Difference of Coefficients of
Variation with Bounded Parameters in the Gamma
Distributions

Here, we are interested in the restriction of parameters
in the gamma distributions in order to construct the confi-
dence intervals for the difference of coefficients of variation.
Assume that the shape parameters «, and «, are bounded,
a <a <b and a, <a,<b,where 0 <a <b fori=1,2.
Thus, we have

Ja <fa, <\Jb

aRizl/ﬁ<7i<1/J;:bRi~

Since the difference of coefficients of variation ¥ is a func-
tion of parameters ¢, and «, which are bounded, it is also
bounded as

1/\/;;—1/\/2<71—rz<1/\/;;—1/\/g

App = Ay, _sz <y < le A, = bDR’

where a, =1/

1/4) a; .
Using the standard approach, the (1—%)100% confi-
dence intervals for ¥ with bounded parameters based on

the score interval and the Wald interval are

b.b, =1/ a, =1/4/b,,and b,, =

CISI)R = [max(al)k ([y) I‘Illrl(bl)k u([y )] (10)
cl ,, =[max(a,,,l, )minb, u,)l, (11)
respectively. Note that /, and u, ,and /, and u, are the

general confidence llmlts for v obtamed ‘from (8) and (9),
respectively.

6. Confidence Intervals for the Ratio of Coefficients of
Variation in the Gamma Distributions

Let X and Y be two random samples from the gamma
distributions as mentioned in Section 4. Here, the ratio of
coefficients of variation is 7 = 7, / t, . Recently, Sangnawakij
et al. (2015) introduced the confidence intervals for 7 based
on the MOVER with the score interval, C/ , and the Wald
interval, CI , where

[,.u,]=

[(flfz —\/(flfz)z —Lu, (27, —u, )27, —lﬂ))/(uvz(Zfz —u,)),

]))/(zvz(zfz —1\,2))}
(12)

(78, + 2y 10,28, - 1,028, ~u

[, u,l=

[(n —\/(r,rz) ~1u (27, —u )27 ~1 ))/(u (27,-u,)),

(f,fz +\/(f]f2)2 —1u, (27, -1 )27, —uw,)) /(1,27 —lwz))},
(13)

respectively. In the simulation of Sangnawakij et al. (2015),
it was found that the coverage probabilities of C/_ and CI
satisfied the nominal coverage level and performed well in
terms of expected length in all cases. Therefore, these two
existing estimators are considered to construct the new
confidence intervals in the next section.
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7. Confidence Intervals for the Ratio of Coefficients of
Variation with Bounded Parameters in the Gamma
Distributions

Suppose that parameters «, and «, are bounded as
a <a <b and a, <a, <b,.Using the information regard-
ing the restriction of ¢, and o, in Section 5, the ratio of
coefficients of variation in two gamma distributions is
bounded as

@/ﬁ<rl/rz<£/ﬁ

a,=a,/b,<n<b,/a,=b,.

RR

Hence, it is easy to see that the (1—y)100% standard confi-
dence interval for 77 with bounded parameters based on the
score interval and the Wald interval are

CI ,, =[max(a,,,! ),min(b,,, u )] (14)
(15)
respectively, where / and u_, and /  and u  are the

general confidence limits for 7 obtained from (12) and (13),
respectively.

CI . =[max(a

WRR

), min(b,,,u, )],

RR’ lrw > rw

8. Simulation Studies

In this study, the performance of the proposed confi-
dence intervals is investigated using Monte Carlo simulation.
The simulations are done using the R statistical program
(Venables et al., 2015) with M = 10,000 replications in each
case. The estimated coverage probability (CP) and the esti-
mated expected length (EL), respectively, are given by

_C(LSESU) and ELzzz/:l(Uh_Lh)
L —M ,

M

CP

where ¢(L < & <U) is the number of simulation runs when
parameter ¢ lies within the confidence interval. Here, we choose
a confidence interval which has a coverage probability greater
than or close to the nominal coverage level, and short length
interval.

For one population, the data are generated from a
gamma distribution with =2 and « is adjusted to get the
required coefficient of variation 7. For the restriction at
0.05 <7 <0.51,weset 7=10.05, 0.10, 0.20, 0.28, 0.30, 0.33,
0.35, 0.40, 0.45, 0.47, 0.49, and 0.50. The sample sizes are
chosen to be n =10, 30, 50, 100, and 200. Then, the perfor-
mance of 95% confidence intervals for 7is computed.

For two populations, the data are generated from two
independent gamma distributions with (a,, 8,) where 3, are
fixed at 2, and «, are adjusted to yield the required coeffi-
cients of variation, which is computed by o, =1/ z’f , forn=
1, 2. For the restriction at 0.05 <7, < 0.51 and 0.05 < 7, < 0.51,
the coefficients of variation are set at (z,,7,) = (0.05,0.05),
(0.10,0.49), (0.15,0.45), (0.28,0.28), (0.45,0.15), (0.49,0.10), and
(0.50,0.05). Next, the coverage probabilities and expected
lengths of the 95% confidence intervals for the difference of
coefficients of variation ¥ and the ratio of coefficients of
variation 7] are evaluated. The performance of all proposed
confidence intervals is also compared with that of the exist-
ing confidence intervals. The simulation results are described
in the next section.

9. Results and Discussion

We first consider the performance of the confidence
intervals for ¢ with bounded parameter space. The results
are shown in Table 1. For 10 < n <50, CI , provides cover-
age probabilities less than the nominal coverage level at
0.95. However, when the sample size increases, the coverage
probabilities of CI, increase, and are greater than 0.95.

Table 1. The coverage probabilities and expected lengths of the 95% confidence
intervals for the coefficient of variation, when 0.05 <7 < 0.51

Coverage probability Expected length
n T
cr,cr, cI,Ci, CI, CI, Ci, CI .
10 0.05 0.8141 0.9717 0.0471 00979  0.0134  0.0816
0.10 0.8033 0.9695 00942 01957 00767  0.1947
0.20 0.8024 0.9696 0.1883 03912  0.1871 0.3327
0.28 0.8153 0.9684 02658 05522 02640 03135
0.30 0.8105 0.9680 02840 05900 02798 03028
0.33 0.8091 0.9684 03123 06488 03012 02842
0.35 0.8131 0.9704 03310 06876 03126  0.2715
0.40 0.8120 0.9643 03799 07893  0.3301 0.2372
045 0.8258 0.9638 04322 08979 03349  0.2000
047 0.8269 0.9626 04516 09382 03334  0.1862
049 0.8234 0.9672 04702 09768 03318  0.1729
0.50 0.8265 0.9606 04802 09976 03299  0.1657
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Table 1. Continued

Coverage probability Expected length
n T
cr,cr, cI,Ci, CI, CI, Ci, CI .
30 0.05 0.8955 0.9604 0.0255  0.0296 00098  0.0192
0.10 0.8948 0.9566 00512 00594  0.0511 0.0593
0.20 0.8983 0.9553 0.1026  0.1190  0.1026  0.1190
0.28 0.9024 0.9558 0.1441 0.1670  0.1441 0.1668
0.30 0.9042 0.9556 0.1547 01793  0.1546  0.1779
0.33 0.9093 0.9540 0.1704  0.1976  0.1700  0.1897
0.35 0.9042 0.9559 0.1806 02094  0.1791 0.1923
0.40 0.9091 0.9556 0.2071 0.2401 0.1919  0.1781
045 0.9140 0.9551 02340 02715 01828  0.1441
047 0.9158 0.9534 0.2451 02834 01735  0.1290
049 0.9163 09511 02555  0.2961 0.1628  0.1126
0.50 0.9198 0.9498 0.2611 03024 01566  0.1044
50 0.05 0.9153 0.9581 0.0197  0.0214 00080  0.0130
0.10 0.9196 0.9534 0.0395 00429 00395  0.0429
0.20 0.9190 0.9521 0.0792  0.0861 0.0792  0.0861
0.28 0.9253 0.9539 0.1110  0.1206  0.1110  0.1206
0.30 0.9276 0.9524 0.1193  0.1296 01193  0.1296
0.33 0.9209 0.9508 0.1312 01428  0.1311 0.1424
0.35 0.9289 0.9535 0.1394 01516 01392  0.1498
045 0.9302 0.9494 0.1803  0.1958  0.1464  0.1251
047 0.9371 0.9540 0.1883 02050  0.1366  0.1092
049 0.9386 0.9560 0.1972 02139 01227  0.0927
0.50 0.9400 0.9474 0.2011 02190 01162  0.0828
100 0.05 0.9335 0.9496 0.0139 00145  0.0061 0.0084
0.10 0.9345 09512 0.0278  0.0280  0.0278  0.0289
0.20 0.9352 0.9510 0.0557  0.0580  0.0557  0.0580
0.28 0.9444 0.9501 00783  0.0815 00783  0.0815
0.30 0.9463 09514 0.0840  0.0874  0.0840  0.0874
0.33 0.9455 0.9504 0.0925 00963  0.0925  0.0963
0.35 0.9436 0.9466 00982 01022 00982  0.1022
0.40 0.9488 0.9462 0.1127 01172 0.1121 0.1149
045 0.9475 0.9468 0.1270  0.1322 01112  0.1026
047 0.9507 0.9441 0.1330 01382 0.1007  0.0882
049 0.9533 0.9470 0.1390  0.1447  0.0861 0.0700
0.50 0.9525 0.9413 0.1419 01475 00780  0.0618
200 0.05 0.9414 0.9539 0.0098  0.0100  0.0044  0.0055
0.10 0.9418 0.9523 00196  0.0200 00196  0.0200
0.20 0.9463 0.9507 0.0394  0.0402 00394  0.0402
0.28 0.9502 0.9509 0.0553 00564 00553  0.0564
0.30 0.9480 0.9508 0.0593 00605 00593  0.0605
0.33 0.9508 0.9487 0.0653  0.0066 00653  0.0666
0.35 0.9519 0.9467 00695  0.0708 00695  0.0708
0.40 0.9501 0.9428 00796  0.0810 00796  0.0810
045 0.9543 0.9400 0.0898  0.0914 00846  0.0825
047 09514 0.9430 0.0939  0.0957 00768  0.0710
049 0.9525 0.9410 0.0981 0.0998  0.0622  0.0553
0.50 0.9531 0.9460 0.1002 01018  0.0535  0.0461
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Meanwhile, the coverage probabilities of C/ , satisfy the
nominal coverage level. Since the coverage probabilities of
CI and CI ,, CI and CI ,, respectively, provide the same
results, the performance of those confidence intervals is
appraised in terms of the expected length. It was found that
the expected lengths of C/ , and CI , are shorter than those
of CI and CI in almost all cases. In addition, the expected

33

lengths of CI , are slightly smaller than those of CI , for
large 7 . From Table 2, it can be seen that the ratios of
expected length between CI and CI , and C/ and CI ,,
respectively, are greater than one, when ¢ is close to the
boundary of (0.05,0.50). That means the confidence intervals
obtained from the method involving a bounded interval more
accurately cover the true parameter than confidence intervals

Table2. The ratio of expected length of the 95% confidence intervals for the coefficient

of variation, when 0.05 <7 < 0.51

E(CI) E(CI) E(CI))

E(CI,) E(CI,) E(CI,)

E(CI) E(Cl) E(CI,)
E(CI,) E(CI,) E(CI,)

T

n=10 n=100
0.05 3.5192 1.1999 0.1641 0.05 22716 1.7271 0.7305
0.10 1.2289 1.0054 0.3938 0.10 1.0000 1.0000 0.9608
0.20 1.0063 1.1761 0.5626 0.20 1.0000 1.0000 0.9608
0.28 1.0068 1.7614 0.8422 0.28 1.0000 1.0000 0.9608
0.30 1.0149 1.9486 0.9242 0.30 1.0000 1.0000 0.9608
0.33 1.0369 2.2831 1.0598 0.33 1.0000 1.0000 0.9608
0.35 1.0590 2.5331 1.1514 0.35 1.0000 1.0000 0.9609
0.40 1.1510 3.3275 1.3917 0.40 1.0057 1.0198 0.9754
0.45 1.2906 4.4897 1.6746 0.45 1.1427 1.2884 1.0833
047 1.3546 5.0384 1.7904 047 1.3208 1.5669 1.1420
0.49 1.4170 5.6486 1.9188 0.49 1.6144 2.0671 1.2300
0.50 1.4558 6.0191 1.9902 0.50 1.8197 2.3867 1.2620
n =30 n =200
0.05 2.6180 1.5398 0.5073 0.05 2.2089 1.8181 0.8071
0.10 1.0008 1.0001 0.8618 0.10 1.0000 1.0000 0.9806
0.20 1.0000 1.0000 0.8625 0.20 1.0000 1.0000 0.9806
0.28 1.0000 1.0016 0.8639 0.28 1.0000 1.0000 0.9810
0.30 1.0003 1.0079 0.8691 0.30 1.0000 1.0000 0.9800
0.33 1.0023 1.0415 0.8962 0.33 1.0000 1.0000 0.9806
0.35 1.0085 1.0888 0.9312 0.35 1.0000 1.0000 0.9806
0.40 1.0789 1.3482 1.0777 0.40 1.0001 1.0000 0.9826
0.45 1.2797 1.8841 1.2688 0.45 1.0619 1.1079 1.0249
047 1.4126 2.1969 1.3449 047 1.2220 1.3486 1.0829
0.49 1.5697 2.6297 1.4458 0.49 1.5777 1.8047 1.1242
0.50 1.6677 2.8966 1.4995 0.50 1.8719 2.2082 1.1607
n =50
0.05 24494 1.6403 0.6161
0.10 1.0000 1.0000 0.9200
0.20 1.0000 1.0000 0.9200
0.28 1.0000 1.0000 0.9200
0.30 1.0000 1.0000 0.9208
0.33 1.0002 1.0028 0.9209
0.35 1.0014 1.0120 0.9290
0.45 1.2314 1.5651 1.1701
047 1.3785 1.8773 1.2508
0.49 1.6064 2.3074 1.3241
0.50 1.7312 2.6449 1.4028
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derived by the classical procedure.

The results of the confidence intervals for ¥ with
bounded parameter spaces are presented in Table 3. For
10<n,m <30, CI , yields coverage probabilities less than
0.95. However, when the sample size increases, it has cover-
age probabilities greater than or close to 0.95. The coverage
probabilities of CI  satisfy the nominal coverage in
general, expect for sample sizes equal to 200. The results are
similar to those of Sangnawakij and Niwitpong (2015).
Furthermore, the expected lengths of C/_ and CI , are

sDR

shorter than those of CI, and CI, . As can be seen from

Table 4, the ratios of expected length of CI, and CI  , and
CI, and CI , ,respectively, are greater than one, especially,
when 7 and 7, are close to the boundary of (0.50,0.05).
Also, the expected lengths of C/ , are also longer than those
of CI ..

Finally, the performance of the confidence intervals
for 7 with bounded parameter spaces is considered. The
results from Table 5 show that C/, and CI , provide
coverage probabilities greater than or close to 0.95. In general,
the coverage probabilities of CI . are higher than those of

CI .. . The results are also similar to those of Sangnawakij

s

Table 3. The coverage probabilities and expected lengths of the 95% confidence intervals for
the difference of coefficients of variation, when 0.05 < 7,7, <0.51

Coverage probability Expected length
(n,m) (z,,7,)
C[dx ? CI.;DR C[dw ? CIWDR C[dx C[dw CI.;DR CIWDR
(10,10) (0.05,0.50) 0.8358 0.9732 04841  1.0267 03280  0.1895
(0.10,0.49) 0.8603 0.9858 04848  1.0691  0.3692 0.3044
(0.15,0.45) 0.8875 0.9933 04601  1.0602 04034 04591
(0.28,0.28) 0.9963 0.9973 03911 09679 03910  0.7958
(0.45,0.15) 0.8986 0.9897 04623  1.0646  0.4047 0.4561
(0.49,0.10) 0.8647 0.9866 04832  1.0655 03697 0.3047
(0.50,0.05) 0.8398 0.9703 04852  1.0290 03276 0.1888
(30,30) (0.05,0.50) 0.9195 0.9454 02623 03050 0.1560  0.1053
(0.10,0.49) 0.9266 0.9514 02612 03065 02030 0.1674
(0.15,0.45) 0.9336 0.9570 02471 02940 02360  0.2433
(0.28,0.28) 0.9683 0.9700 02062 02541  0.2062 0.2541
(0.45,0.15) 0.9361 0.9611 02469 02937  0.2362 0.2437
(0.49,0.10) 0.9283 0.9557 02610 03061 02034  0.1679
(0.50,0.05) 0.9254 0.9472 02626 03054  0.1557 0.1048
(50,50) (0.05,0.50) 0.9453 0.9490 02012 02201  0.1159 0.0842
(0.10,0.49) 0.9471 0.9499 02014 02198 0.1630  0.1431
(0.15,0.45) 0.9481 0.9514 0.1904 02099  0.1876 0.1970
(0.28,0.28) 0.9628 0.9643 0.1582 01784  0.1582 0.1784
(0.45,0.15) 0.9476 0.9520 0.1901 02097 0.1874  0.1974
(0.49,0.10) 0.9473 0.9488 02014 02198 0.1630  0.1426
(0.50,0.05) 0.9457 0.9468 02026 02201 0.1150  0.0840
(100,100)  (0.05,0.50) 0.9552 0.9420 0.1424  0.1484  0.0786 0.0619
(0.10,0.49) 0.9535 0.9432 0.1417  0.1478  0.1239 0.1166
(0.15,0.45) 0.9556 0.9479 0.1341  0.1404  0.1340  0.1399
(0.28,0.28) 0.9549 0.9555 01111 0.1178  0.1111 0.1178
(0.45,0.15) 0.9528 0.9513 0.1341  0.1405 0.1340  0.1400
(0.49,0.10) 0.9555 0.9480 0.1415 01482 01244  0.1162
(0.50,0.05) 0.9572 0.9404 0.1425 01486 0078  0.0614
(200,200)  (0.05,0.50) 0.9500 0.9400 0.1005 0.1024 0.0540  0.0466
(0.10,0.49) 0.9523 0.9410 0.1000  0.1019  0.0946 0.0935
(0.15,0.45) 0.9512 0.9410 0.0946  0.0968  0.0946 0.0968
(0.28,0.28) 0.9496 0.9499 0.0783  0.0806  0.0783 0.0806
(0.45,0.15) 0.9494 0.9412 0.0946  0.0966  0.0946 0.0966
(0.49,0.10) 0.9510 0.9400 0.1001  0.1020  0.0945 0.0934
(0.50,0.05) 0.9550 0.9380 0.1006  0.1024  0.0538 0.0462
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Table4. The ratio of expected length of the 95% confidence intervals
for the difference of coefficients of variation, when

E(CI) E(CI,)  E(CL,)
(}’l, m) (TI i Tz ) ds dw sDR
E (CI.SI)R ) E (CIWIJR ) E (CIWI)R )

(10,100 (0.05,0.50) 14761 54174 1.7307
(0.10,0.49) 13131 35116 12126

(0.15,0.45) 1.1405 2.3096 0.8788

(0.28,0.28) 1.0002 12164 04913

(0.45,0.15) 1.1422 2.3340 0.8874

(0.49,0.10) 13070 34972 12133

(0.50,0.05) 14813 5.4499 1.7350

(3030)  (0.05,0.50) 1.6813 2.8960 14810
(0.10,0.49) 12872 1.8312 12127

(0.15,0.45) 1.0471 12082 0.9699

(0.28,0.28) 1.0000 1.0000 0.8117

(0.45,0.15) 1.0451 12052 0.9694

(0.49,0.10) 12830 1.8239 12118

(0.50,0.05) 1.6363 2.9146 14862

(50,50)  (0.05,0.50) 1.7360 2.6140 13765
(0.10,0.49) 12356 1.5360 1.1391

(0.15,0.45) 10149 1.0656 0.9523

(0.28,0.28) 1.0000 1.0000 0.8865

(0.45,0.15) 1.0143 10619 0.9491

(0.49,0.10) 1.2354 1.5414 1.1431

(0.50,0.05) 17617 2.6188 13683

(100,100)  (0.05,0.50) 1.8122 23974 12695
(0.10,0.49) 11430 12676 1.0629

(0.15,0.45) 1.0008 1.0036 0.9576

(0.28,0.28) 1.0000 1.0000 0.9429

(0.45,0.15) 1.0011 1.0037 0.9570

(0.49,0.10) 1.1379 12754 1.0704

(0.50,0.05) 1.8188 24202 12762

(200200)  (0.05,0.50) 1.8629 2.1974 11582
(0.10,0.49) 1.0573 1.0898 10119

(0.15,0.45) 1.0000 1.0000 0.9772

(0.28,0.28) 1.0000 1.0000 09713

(0.45,0.15) 1.0000 1.0000 0.9789

(0.49,0.10) 1.0592 1.0921 1.0119

(0.50,0.05) 1.8712 22165 1.1637

et al. (2015). From Table 6, the ratios of expected length
between C/ and C/, ,and CI  and CI , , respectively,
are greater than one, especially when 7, and 7, are close to
the boundary of parameter spaces. Moreover, the expected

lengths of CI , are slightly smaller than those of CI ,, .
10. Real Data Examples
Example 1. The data of monthly rainfall (mm) are used

to compute the confidence intervals for 7. From the report
of the Hydrology Irrigation Center for the central region of

Thailand (2015), 60 observations in September (between
1955-2014), which is the month with the lowest rainfall, are
selected. The statistics are reported as follows.

Before computing the confidence intervals, the Ander-
son-Darling test is used to test the distribution of these data.
It was found that the data of rainfall in September fit the
gamma distribution with the test statistic of 0.45 and the p-

value of 0.25. The average rainfall is x = 238.02, ZZ Inx,

=324.40, and the maximum likelihood estimator for 7 is 7 =
0.36. Suppose that the bounded interval 0.30 < 7 < 0.50 is
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Table 5. The coverage probabilities and expected lengths of the 95% confidence intervals for
the ratio of coefficients of variation, when 0.05 < 7,7, <0.51

Coverage probability Expected length

(nm)  (1.7)
c.,c, c .cl, CI CI Ci,, &/
(10,10)  (0.05,0.50) 0.9960 09969 02720 02803 02094  0.2168
(0.10,0.49) 0.9967 0.9971 0.5557 05725 05268  0.5423
(0.15,0.45) 0.9963 09969 09151 09427 09081 0.9351
(0.28,0.28) 0.9965 09968 27670 28507 27660  2.8496
(0.45,0.15) 0.9959 0.9968 84905 87474 74015 7.5410
(0.49,0.10) 0.9971 09974  13.8598 142791 81611 82310
(0.50,0.05) 0.9965 09972 282733 29.1287  6.5183 6.6051
(30,30)  (0.05,0.50) 0.9640 09663  0.0834 00842  0.0518  0.0525
(0.10,0.49) 0.9632 09652 01703  0.1721 0.1699  0.1717
(0.15,0.45) 0.9682 09699 02794 02824 02794 02824
(0.28,0.28) 0.9683 09700 08496 08585  0.8496  0.8585
(0.45,0.15) 0.9688 09707 25769  2.6041 25769  2.6041
(0.49,0.10) 0.9692 09709 42272 42718 41886  4.2310
(0.50,0.05) 0.9642 09659  8.6765 87680 32560  3.2846
(50,50)  (0.05,0.50) 0.9593 09603  0.0598  0.0602  0.0351 0.0354
(0.10,0.49) 0.9578 09589  0.1221 0.1229  0.1221 0.1229
(0.15,0.45) 0.9605 09617 02004 02017 02004 02017
(0.28,0.28) 0.9628 09643 06118 06158  0.6118  0.6158
(0.45,0.15) 0.9611 0.9626 1.8581 1.8700 1.8581 1.8700
(0.49,0.10) 0.9568 09572 3.0540  3.0736  3.0528  3.0724
(0.50,0.05) 0.9578 09588 62299 62700 25382  2.5528
(100,100)  (0.05,0.50) 0.9538 09543  0.0402 00404 0.0225  0.0226
(0.10,0.49) 0.9495 09504 00822 00825  0.0822  0.0825
(0.15,0.45) 0.9502 09508  0.1347  0.1351 0.1347  0.1351
(0.28,0.28) 0.9549 09555 04108 04121 04108 04121
(0.45,0.15) 0.9521 0.9528 1.2497 1.2538 1.2497 1.2538
(0.49,0.10) 0.9543 09548  2.0488 20554  2.0488  2.0554
(0.50,0.05) 0.9551 09563  4.1894  4.2031 1.8230 1.8285
(200,200)  (0.05,0.50) 0.9456 0.9461 00278  0.0279 00152  0.0152
(0.10,0.49) 0.9470 09472 0.0568  0.0569  0.0568  0.0569
(0.15,0.45) 0.9479 09483  0.0932 00934 0.0932  0.0934
(0.28,0.28) 0.9496 09499 02837 02842 02837 02842
(0.45,0.15) 0.9442 09448 08638 08652  0.8638  0.8652
(0.49,0.10) 0.9444 0.9448 14172 1.4196 1.4172 1.4196
(0.50,0.05) 0.9476 0.9481 2.8923  2.8971 1.3145 1.3166

considered. The 95% confidence intervals are calculated and
presented in Table 7. Like the simulation in the previous
section, CI , has a shorter length than C/ , . The length of
CI is greater than that of C/, and CI ,. Meanwhile, the
length of CI  is not different from that of C/ _, but greater
than that of CI .

Example 2. We use the data provided by Proschan
(1963) to compute the confidence intervals for ¥ and 7.
These data present the time (hours) of successive failures of
the air conditioning systems of two jet airplanes, number 7912
and 7909. Using the Anderson-Darling test, the data fit the

gamma distribution. For the first plane, 30 samples are
observed with the sample mean X =59.60 and the sample
coefficient of variation 7, = 1.21. For 29 samples from the
second plane, the sample mean and sample coefficient of
variation are y =83.52and 7, = 0.81, respectively.

Suppose that the coefficients of variation are bounded,
0.80 < 7,7, <1.30. The 95% confidence intervals and the
lengths for ¥ are presented in Table 7. It can be seen that the
lengthsof CI , and CI , are shorter than those of C/, and
CI, . That means the proposed confidence intervals are
better than the existing intervals. In addition, these data are
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Table 6. The ratio of expected length of the 95% confidence intervals for
the ratio of coefficients of variation, when 0.05 < 7,7, <0.51

E(CI) E(CI ) E(CL,,)
(n,m) (z,.7,) E(CI,,) E(CI,)  E(CI,)
(10,10) (0.05,0.50) 1.2990 1.2926 0.9659

(0.10,0.49) 1.0548 1.0557 09714

(0.15,0.45) 1.0076 1.0081 09711

(0.28,0.28) 1.0003 1.0004 09707

(0.45,0.15) 1.1471 1.1600 09815

(0.49,0.10) 1.6983 1.7348 09915

(0.50,0.05) 43375 44100 0.9869

(30,30) (0.05,0.50) 1.6081 1.6060 0.9882
(0.10,0.49) 1.0023 1.0024 0.989

(0.15,0.45) 1.0000 1.0000 0.989

(0.28,0.28) 1.0000 1.0000 0.989

(0.45,0.15) 1.0000 1.0000 0.989

(0.49,0.10) 1.0092 1.0096 0.9900

(0.50,0.05) 2.6648 2.6694 09913

(50,50) (0.05,0.50) 1.7018 1.7006 0.9929
(0.10,0.49) 1.0001 1.0001 0.9936

(0.15,0.45) 1.0000 1.0000 0.9936

(0.28,0.28) 1.0000 1.0000 0.9936

(0.45,0.15) 1.0000 1.0000 0.9936

(0.49,0.10) 1.0004 1.0004 0.9936

(0.50,0.05) 24544 24561 0.9943

(100,100)  (0.05,0.50) 1.7851 1.7846 0.9965
(0.10,0.49) 1.0000 1.0000 0.9968

(0.15,0.45) 1.0000 1.0000 0.9968

(0.28,0.28) 1.0000 1.0000 0.9968

(0.45,0.15) 1.0000 1.0000 0.9968

(0.49,0.10) 1.0000 1.0000 0.9968

(0.50,0.05) 22982 22986 0.9969

(200200)  (0.05,0.50) 1.8319 1.8317 0.9983
(0.10,0.49) 1.0000 1.0000 0.9984

(0.15,0.45) 1.0000 1.0000 0.9984

(0.28,0.28) 1.0000 1.0000 0.9984

(0.45,0.15) 1.0000 1.0000 0.9984

used to conduct the 95% confidence intervals for 7. We also
note that these results support the simulation studies in the
previous section.

11. Conclusions

The aim of this paper was twofold. The first aim was
to propose new confidence intervals for the coefficient of
variation with bounded parameter space in the gamma distri-
bution. These estimators were extended from the confidence
intervals based on the score and Wald intervals. The second
aim was to propose new confidence intervals for the differ-
ence and the ratio of coefficients of variation with bounded

parameter spaces in two gamma distributions. The results
obtained from the simulations indicated that the proposed
confidence intervals had the same coverage probabilities as
their existing confidence intervals. However, all proposed
confidence intervals performed better than the compared esti-
mators in terms of expected length, especially when the co-
efficients of variation were close to the boundary. That means
the proposed confidence intervals more accurately estimate
the true parameter.

Therefore, it should be noted that when the coefficient
of variation is known to be bounded, the confidence interval
utilized the information about the restriction of the parameter
is used. Since our estimators outperform and are also easy to
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Table 7. The results of the 95% confidence intervals and the lengths
of interval for the data examples

Results The existing The proposed
confidence interval confidence interval
Clsfor 7 CI, CI CI, CI
Interval [029,042] [0.31,045] [0.30,042] [0.31,045]
Length 0.13 0.14 0.12 0.14
CIS for l)l/ C[lfx dw C[.SI)R wDR
Interval [-0.01,0.77] [-0.02,0.93] [-0.01,045] [-0.02,0.45]
Length 0.78 0.95 0.46 047
Clsfor n CI, Cl cl, (/4
Interval [0992.25] [0.982.25] [099,1.63] [0.98,1.63]
Length 1.26 1.27 0.64 0.65

compute using the explicit formulas, those estimators can be
used as the confidence intervals for functions of coefficients
of variation with bounded parameter spaces in the gamma
distributions.
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