

งานวิจัยนี้มีวัตถุประสงค์ เพื่อศึกษาประสิทธิภาพการกำจัดโครเมียมในน้ำเสียสังเคราะห์จาก ไนโตรตัลเชิญได้โครเมตที่มีความเข้มข้น 20 มก/ล pH 4 และความนำไฟฟ้า 1,300-1,400 ไมโครซีเมนต์ โดยกระบวนการไฟฟ้า-เคมี ร่วมกับการแยกตะกอนลอย (Chromium Removal by Electro-Chemical and Electro Flotation Process, ECF) ศึกษาปัจจัยทางด้านกระแสไฟฟ้า 1, 3, 5 และ 7 แอมป์เรียร์ ระหว่างห่างระหว่างขั้ว 1, 1.5 และ 2 ซม คิดเป็นพื้นที่ผิว 722, 541.5 และ 361 ตร.ซม ตามลำดับ อัตราการไหลของน้ำเสียสังเคราะห์ 21.11, 31.67 และ 63.33 มล/นาที เป็นระยะเวลาทำปฏิกิริยา 45, 30 และ 45 นาที ตามลำดับ วิเคราะห์ปริมาณโครเมียมที่เหลืออยู่ เทียบกับมาตรฐานคุณภาพน้ำทึ่ง ของกรมโรงงานอุตสาหกรรม กำหนดโครเมียมสามบวก (Cr^{3+}) ไม่นักกว่า 0.75 มก/ล และ หาสัดส่วนตะกอนลอยต่อตะกอนหนัก และอัตราการเกิดกําชีโภโครเจน

ผลการศึกษา พบว่า ประสิทธิภาพการกำจัดโครเมียมที่จุดเก็บตัวอย่างน้ำค้างล่างของดังปัจจิตริยามีความเข้มข้น โครเมียมเหลืออยู่ระหว่าง ND-0.656 มก/ล จุดเก็บน้ำค้างบน ND-0.235 มก/ล ทั้งหมดผ่านเกณฑ์มาตรฐานคุณภาพน้ำทึ่ง สัดส่วนตะกอนลอยต่อตะกอนหนัก มีค่าอยู่ระหว่าง 0.24-1.59 และอัตราการเกิดกําชีโภโครเจนมีค่าอยู่ระหว่าง 16.9-74.9 มล/นาที ที่กระแสไฟฟ้า 5 แอมป์เรียร์ ระหว่างห่างขั้ว 1 ซม (722 ตร.ซม) อัตราการไหลของน้ำเสียเข้าดังปฏิกิริยา 21.11 มล/นาที (เวลาทำปฏิกิริยา 45 นาที) มีประสิทธิภาพการกำจัดโครเมียมสูงสุด โดยจุดเก็บตัวอย่างน้ำค้างล่าง ไม่สามารถตรวจพบตามวิธีการวิเคราะห์ได้ (ND) และจุดเก็บตัวอย่าง ด้านบนมีค่า 0.007 มก/ล คิดเป็นค่าพัลส์งานไฟฟ้า 2,961.17 กิโลวัตต์-ชั่วโมง ในการกำจัดโครเมียม 1 กิโลกรัม พัลส์งานไฟฟ้าต่ำสุดที่กำจัดโครเมียมในน้ำเสียให้ผ่านเกณฑ์มาตรฐานเท่ากับ 80.20 กิโลวัตต์-ชั่วโมง/กิโลกรัม โครเมียม ที่กระแสไฟฟ้า 1 แอมป์เรียร์ ระหว่างห่างขั้ว 1 ซม (722 ตร.ซม) อัตราการไหลของน้ำเสีย 63.33 มล/นาที

The purpose of this research is to study the efficiency of chromium in the synthetic wastewater from Potassium Dicromate. The concentration of 20 mg/l at pH 4 and conductivity 1,300-1,400 μ s were studied. The removal of chromium by using electro-chemical and electro-flotation process, ECF. This electric currents were studied at 1, 3, 5 and 7 A and the distance between anode and cathode at 1, 1.5 and 2 cm. respectively (surface area 722, 541.5 and 361 sq.cm). The flow rates were studied 21.11, 31.67 and 63.33 ml/min respectively (at contact time 45, 30 and 15 min). The remain concentration in the effluent was above 0.75 mg/l to compare which was the standard for effluent standard set by the department of Industry works (DIW). This experiment was to study the ratio bulking sludge /sludge and the rate of hydrogen gas.

The experiment results were found that the maximum efficiency at sample point the lower of reactor remain chromium value in the range ND-0.656 mg/l, at the upper reactor, ND-0.235 mg/l. The results of ratio bulking sludge/sludge 0.24-1.59 and rate of hydrogen gas 16.9-74.9 ml/min. The experiment results in the ECF Process at 5 A with distance between cathode and anode at 1 cm (722 sq.cm), 21.11 ml/min (45 min). At the sample point of lower reactor was found chromium in value ND and upper in value 0.007 mg/l, which the energy for chromium removal was 1 kg to used 2,961.17 kw-hr. The most suitable energy 80.20 kw-hr/kg for chromium in the effluent standard was at 1 A which between cathode and anode at 1 cm (722 sq.cm), the flow rate 63.77 ml/min (15 min).