บทที่ 3 ระเบียบวิธีวิจัย

การวิจัยเรื่องการพยากรณ์ความต้องการและการวางแผนวัสคุมาประยุกต์ใช้ระบบการ จัดการสินค้าคงคลังสำหรับสินค้าเครื่องดื่ม โดยทำการศึกษาจากโรงแรมตัวอย่างที่ให้บริการลูกค้า ในส่วนของเครื่องดื่ม โดยสินค้าที่เป็นเครื่องดื่มนั้นเป็นประเภทสินค้าซื้อมาขายไป มีหลากหลาย รูปแบบ ซึ่งในบทนี้จะกล่าวถึงข้อมูลทั่วไปของโรงแรมที่เป็นกรณีศึกษา ข้อมูลเบื้องต้นของโรงแรม ตัวอย่าง โครงสร้างองค์กร ขั้นตอนปฏิบัติงานขององค์กร

3.1 ข้อมูลเบื้องต้นเกี่ยวกับโรงแรมตัวอย่าง

โรงแรมตัวอย่างเป็นโรงแรมขนาดใหญ่มีถูกก้าเป็นชาวต่างชาติ นอกจากจะใช้บริการ ห้องพักแล้ว ถูกก้ายังใช้บริการในส่วนของห้องอาหารด้วยซึ่งมีทั้งอาหารและเครื่องดื่มไว้คอย บริการ มีทั้งห้องอาหารไทย ห้องอาหารอิตาลี ห้อง Coffee Shop, บาร์ (Bar) หรือ ลอบบี้เลานจ์ (Lobby Lounge) ห้องจัดเลี้ยง ซึ่งต้องมีเครื่องดื่มไว้ก่อยบริการถูกก้าเป็นจำนวนมากเพื่อตอบสนอง กวามต้องการที่หลากหลายของถูกก้า โดยมีโครงสร้างองค์กรดังแสดงในภาพที่ 3.1

ภาพที่ 3.1 แผนผังโครงสร้างองค์กร

3.2 สินค้าเครื่องดื่มของโรงแรมตัวอย่าง

จากที่ได้กล่าวมาแล้วข้างต้นว่ารูปแบบสินค้าที่เป็นเครื่องดื่มของโรงแรมตัวอย่างจะมี ความหลากหลาย เพราะความต้องการของลูกค้านั้นซึ่งส่วนใหญ่เป็นชาวต่างชาติ นักธุรกิจ นักท่องเที่ยว จึงมีความต้องการสินค้าเครื่องดื่มเอาไว้ผ่อนคลายหรือพบปะสังสรรค์ ที่เป็น มาตรฐานสากล มีรสนิยม ดังนั้นโรงแรมตัวอย่างต้องหาสินค้าที่มีความหลากหลายเพื่อให้ตรงกับ ความต้องการของลูกค้าในทุกกลุ่มเป้าหมาย โดยสามารถแบ่งประเภทของสินค้าได้ดังต่อไปนี้

3.2.1 กลุ่มสินค้าเครื่องดื่มที่ไม่มีแอลกอฮอล์ (Non Alcoholic) คือเครื่องดื่มที่บริสุทธ์ไม่มี แอลกอฮอล์เจือปนอยู่ เหมาะสำหรับการดื่มเพื่อดับกระหาย หรือในทุก ๆ มื้ออาหารดื่มได้ทั้งร้อน หรือเย็น มีประโยชน์ต่อร่างกาย ได้แก่ น้ำเปล่า น้ำแร่ธรรมชาติมีทั้งมีฟองและไม่มีฟอง น้ำผลไม้ น้ำ โซดา น้ำอัดลม ดังแสดงในภาพที่ 3.2

3.2.2 กลุ่มสินค้าเบียร์ (Beer) เป็นเครื่องดื่มที่มีแอลกอฮอล์เป็นส่วนผสม โดยที่แอลกอฮอล์นั้น ได้มาจากการหมักบ่ม ไม่ใช้การกลั่น มีหลายยี่ห้อมีทั้งที่เป็นของในประเทศ ได้แก่ เบียร์สิงห์ เบียร์ ช้าง และต่างประเทศ ได้แก่ เบียร์ไฮเนเก้น เบียร์โคโลนา เบียร์อาซาฮี ดังแสดงในภาพที่ 3.3

3.2.3 กลุ่มสินค้าลิเคียวร์ (Liqueur) เป็นเครื่องดื่มที่มีแอลกอฮอล์เป็นส่วนผสมที่สำคัญ คือ น้ำ ที่ใด้จากการหมักหรือกลั่นให้เกิดสารบางประเภท เมื่อดื่มแล้วสารนั้นจะออกฤทธิ์กับระบบ ประสาทส่วนกลาง ส่วนใหญ่แล้วไม่เป็นประโยชน์ต่อร่างกาย ได้แก่ วิสกี้ (Whisky) ยืนส์ (Gin) รัม (Rum) วอดก้า (Vodka) เตกีล่า (Tequila) คอนยัก (Cognac) บรั่นดี (Brandy) ดังแสดงในภาพที่ 3.4

3.2.4 กลุ่มสินค้าไวน์ (Wine) เป็นเครื่องดื่มที่มีแอลกอฮอล์ผสมอยู่ เกิดจากการหมักจากผลไม้ เช่น องุ่น โดยแบ่งออกเป็น 2 ประเภทใหญ่ๆ คือ ไวน์ขาว (White Wine) ทำมาจากองุ่นขาวหรือ ไวน์แดง (Red Wine) ทำมาจากองุ่นดำ ส่วนไวน์ที่ได้จากการผสมกันระหว่างไวน์ทั้ง 2 ชนิดเรียกว่า ไวน์สีชมพู (Rose Wine) ส่วนไวน์ที่มีการอัดก๊าซลงไป จะเรียกว่า สปาร์กลิงไวน์ (Sparkling Wine) หรือ แชมเปญ (Champagne) ดังแสดงในภาพที่ 3.5

ภาพที่ 3.2 กลุ่มสินค้าเครื่องดื่มที่ไม่มีแอลกอฮอล์ (Non Alcoholic)

ภาพที่ 3.3 กลุ่มสินค้าเบียร์ (Beer)

ภาพที่ 3.4 กลุ่มสินค้าลิเคียวร์ (Liqueur)

ภาพที่ 3.5 กลุ่มสินค้าไวน์ (Wine)

3.3 ขั้นตอนการปฏิบัติงานในกระบวนการจัดซื้อของโรงแรมตัวอย่าง

ขั้นตอนการทำงานหลักของโรงแรมตัวอย่างตั้งแต่ขายสินค้าให้ลูกค้าจนถึงสั่งสินค้า (Order) และ ได้รับสินค้าจากร้านค้า (Supplier) มีดังต่อไปนี้

3.4.1 เมื่อลูกก้ามาใช้บริการห้องพักหรือห้องอาหารในแต่ละวันและได้ซื้อเครื่องดื่มประเภท ต่างๆ ทางห้องอาหารก็จะทำการบันทึกยอดขายว่าขายสินก้าอะไรได้บ้างแล้วสรุปยอดขายประจำวัน เช่น ขายไวน์ได้กี่ขวด แล้วเหลือไวน์ในห้องอาหารเท่าไหร่ พอหรือไม่ ถ้าไม่พอหัวหน้าบาร์ (Bartender) จะทำการลงบันทึกเบิกสินก้าจากกลังสินก้า (Store) ส่วนกลางโดยทำการบันทึกเข้า ระบบว่าจะเบิกสินก้าจำนวนเท่าไร หรือถ้าลูกก้าต้องการที่จะจัดเป็นงานเลี้ยงหัวหน้าห้องอาหาร (Outlet Manager) ต้องทราบความต้องการของลูกก้าว่าจะต้องการเครื่องดื่มแบบใด แล้วทำการเช็ก ยอดสินก้ากับทาง Store เพื่อจัดเตรียมสินก้า ถ้าสินก้ามีจำนวนไม่พอจะได้ทำการสั่งซื้อต่อไปโดย ทำเรื่องไปที่ฝ่ายจัดซื้อ

3.4.2 ฝ่ายคลังสินค้า (Store) เมื่อได้รับใบเบิกสินค้าจากห้องอาหารแล้วก็จะทำการจัดเตรียม สินค้าไว้ เมื่อถึงเวลาทางบาร์ของแต่ละห้องอาหารก็จะมารับสินค้า แล้วจึงทำการบันทึกตัดยอด สินค้าในระบบและตรวจเช็คสินค้าว่ามีสินค้าเพียงพอหรือไม่ โดยเช็คยอดสินค้าที่มีอยู่ถ้าสินค้าไม่ พอก็จะทำการสั่งซื้อโดยเขียนเป็นใบขอซื้อ (Purchase Request) (PR.) ส่งไปให้ทางผู้จัดการฝ่าย ต้นทุน (Cost Controller) และผู้อำนวยการฝ่ายอาหารและเครื่องดื่ม (F&B Director) ทำการอนุมัติ สั่งซื้อ โดยเฉลี่ยแล้วจะทำการสั่ง (PR) สัปดาห์ละ 1 – 2 ครั้ง เมื่อได้อนุมัติสั่งซื้อแล้วก็จะนำไปส่ง ให้ทางแผนกจัดซื้อเพื่อทำการสั่งซื้อ

3.4.3 ฝ่ายจัดซื้อ (Purchasing) เมื่อได้รับใบขอซื้อจากทางสโตร์แล้ว (PR) ก็จะทำการเช็คราคา และสินค้ากับร้านค้า (Supplier) เมื่อเช็คราคาถูกต้องแล้วจึงทำการออกเป็นใบสั่งซื้อ (Purchase Order) (PO.) ส่งไปยังร้านค้า เมื่อร้านค้าได้รับ (PO.) แล้วทางร้านค้าใช้เวลาประมาณ 1-2 วันในการ จัดเตรียมสินค้าและขนส่งมายังโรงแรม และรับสินค้าโดยฝ่ายรับสินค้า (Receiving) 3.4.4 ฝ่ายรับสินค้า (Receiving) เมื่อได้รับสินค้าจากร้านค้าที่มาส่งแล้วจะทำการตรวจเช็ก จำนวน คุณภาพ ปริมาณ และราคาว่าตรงกับในใบขอซื้อ (PO.) หรือไม่ แล้วจึงทำการบันทึกยอด สินค้าที่เข้ามาในระบบเพื่อที่จะเป็นยอดเพิ่มขึ้นในสินค้าคงคลังและส่งยอดไปทางบัญชีเพื่อที่จะนำ จ่ายให้กับทางร้านค้าต่อไป

3.4.5 ฝ่ายคลังสินค้า (Store) เมื่อทางแผนกรับสินค้า (Receiving) ใด้ตรวจรับสินค้าแล้วส่ง สินค้ามายังฝ่ายคลังสินค้า เมื่อได้รับสินค้าแล้วทางคลังก็จะทำการจัดเรียงสินค้าและรอการเบิก สินค้าจากทางห้องอาหารต่อไป

3.4 ขั้นตอนและกระบวนการดำเนินงาน

3.4.1 การปรับปรุงการควบคุมวัสดุคงคลัง

การควบคุมวัสดุคงคลังเพื่อที่จะทำให้ค่าใช้จ่ายที่เกิดขึ้นจากการคำเนินการให้มีวัสดุคง คลังต่ำที่สุด ในกรณีของของโรงแรมตัวอย่างนั้นมีสินค้ามากมายหลายชนิด ในการที่จะให้ความ สนใจควบคุมวัสดุคงคลังทั้งหมดเป็นไปได้ยาก และทำให้เสียค่าใช้จ่ายและเสียเวลามาก ดังนั้นทาง ผู้วิจัยจึงเลือกระบบการควบคุมวัสดุคงคลังโดยใช้เทคนิค ABC Analysis ซึ่งจะช่วยในการควบคุม วัสดุคงคลังให้มีความสะดวกมากขึ้น

การจัดกลุ่มสินค้าสำเร็จรูปโดยใช้เทคนิคการแยกกลุ่มตามความสำคัญในขั้นตอนนี้จะ ทำการรวบรวมปริมาณการใช้สินค้าเฉพาะสินค้าคลังจัดเก็บวัดถุดิบของผลิตภัณฑ์ที่เป็นเครื่องดื่ม เนื่องจากมีมูลค่าสินค้าคงคลังสูง โดยมีจำนวนสินค้าคงคลัง จำนวน 226 รายการและมีมูลค่า 21,431,987.40 บาทต่อปี และนำข้อมูลสินค้าคงคลังเครื่องดื่มในระยะเวลา 12 เดือน (มกราคม พ.ศ. 2553 – ธันวาคม พ.ศ. 2554) เพื่อนำมาใช้ในการจำแนกความสำคัญของสินค้าสำเร็จรูป โดยใช้ เทคนิคการแยกกลุ่มตามความสำคัญ (ABC Analysis Technique) สามารถที่จะแบ่งส่วนของการ ควบคุมวัสดุคงคลังวัตถุดิบได้เป็น 3 ส่วนใหญ่ๆ ได้แก่ กลุ่ม A B และ C เพื่อแยกวัตถุดิบกลุ่มที่มี ความสำคัญสูง (กลุ่มA) มาคำเนินการวิจัยต่อไปสำหรับระบบการจัดเก็บข้อมูลพัสดุคงคลังทั้งหมด ในกรณีศึกษาในปัจจุบันนี้ ข้อมูลถูกเก็บไว้ใน Server ในงานวิจัยนี้ผู้วิจัยได้ทำการดึงฐานข้อมูลของ สินค้าสำเร็จรูปจาก Server มายังคอมพิวเตอร์ส่วนบุคคล (Personal Computer) เพื่อทำการวิเคราะห์ และจัดกลุ่มวัตถุดิบ ส่วนสำหรับการจัดกลุ่มวัตถุดิบ โดยใช้เทคนิค ABC ในงานวิจัยนี้ใช้การแยก กลุ่มโดยพิจารฉาจกปริมาฉการใช้สินค้าใน 1 ปี

จากข้อมูลความต้องการวัตถุดิบต่อปี (อยู่ในภาคผนวก ก) สามารถนำมาจัดกลุ่มโดยใช้ เทคนิค ABC ดังที่แสดง จะพบว่าวัสดุคงคลังกลุ่มA มีปริมาณวัสดุคงคลังประมาณร้อยละ 65.41 ของมูลค่าการขายทั้งหมด วัสดุคงคลังกลุ่ม B มีปริมาณวัสดุคงคลังประมาณร้อยละ 24.91 ของ มูลค่าการขายทั้งหมด และวัสดุคงคลังกลุ่ม C มีปริมาณวัสดุคงคลังประมาณร้อยละ 9.66 ของมูลค่า การขายทั้งหมด

> สรุปผลการควบคุมสินค้าคงคลังโดยวิธี ABC Class คังนี้ A Class มีจำนวน 34 รายการ คิดเป็นเปอร์เซ็นเท่ากับ 65.41% B Class มีจำนวน 75 รายการ คิดเป็นเปอร์เซ็นเท่ากับ 24.91% C Class มีจำนวน 117 รายการ คิดเป็นเปอร์เซ็นเท่ากับ 9.66%

โดยในงานวิจัยครั้งนี้ผู้วิจัยได้นำสินก้ำคงคลังกลุ่ม A Class มาทำการวิจัยกลุ่มเดียว เนื่องจากวัสดุคงคลังกลุ่ม A Class มีมูลค่าสินก้ำคงคลังแตกต่างกันเป็นจำนวนมากกว่ากลุ่ม B Class และC Class และเพื่อตอบสนองวัตถุประสงค์ที่จะลดมูลค่าสินก้ำคงคลัง ซึ่งถ้าลดสินก้ากลุ่ม A ได้ ก็จะทำให้สินก้าคงคลังโดยรวมลดลงตามไปด้วย โดยนำสินก้ากลุ่ม A มาหาค่าความต้องการในแต่ ละเดือนซึ่งจะใช้วิธีการพยากรณ์ในแบบต่างๆ โดยใช้โปรแกรมการพยากรณ์ (MINITAB)

3.4.2 งั้นตอนการพยากรณ์ความต้องการโดยใช้โปรแกรมพยากรณ์ (MINITAB)

การใช้โปรแกรมสำหรับการพยากรณ์ความต้องการ สำหรับสภาวการณ์ในปัจจุบันที่มี การแข่งขันกันสูง การวิเคราะห์ปริมาณความต้องการจึงมีบทบาทสำคัญในการคำเนินงาน เพื่อเป็น การลดต้นทุนในการวางแผนและพยากรณ์ความต้องการของลูกค้าที่เหมาะสม สำหรับงานวิจัยนี้จึง ได้นำโปรแกรมการพยากรณ์ความต้องการชื่อ MINITAB 14 (Release 14) มาใช้ในการพยากรณ์ ความต้องการ เพื่อเพิ่มประสิทธิภาพในการทำงานให้สูงขึ้น และป้องกันความผิดพลาดจากการ กำนวณ โดยเนื้อหาจะกล่าวถึงการใช้โปรแกรมการพยากรณ์ ซึ่งจะกล่าวโดยละเอียดคังต่อไปนี้

 เปิดโปรแกรม MINITAB 14 โดยดับเบิลคลิกที่ไอคอนของโปรแกรมหรือคลิกขวา ที่ตัวโปรแกรม MINITAB 14 เลือก Open ดังภาพที่ 3.6

ภาพที่ 3.6 แสดงวิธีการเข้าโปรแกรม Minitab 14

 รายละเอียดแบบฟอร์มการนำข้อมูลมาออกแบบการทดลองโดยใช้โปรแกรม MINITAB 14 โดยแบ่งเป็น 2 ส่วนดังนี้ 1) การสร้างข้อมูลใหม่

จะพบกับ 2 สองส่วนหลักบนหน้าจอ MINITAB ใด้แก่ Session แสดงผลของการ วิเคราะห์ในรูปแบบของตัวอักษรและสามารถป้อนคำสั่งเข้าไปแทนการใช้เมนูของ Minitab ได้ และ Data จะมีเวิร์คชีทที่มีลักษณะคล้ายตารางคำนวณ (Spreadsheet) เพื่อใส่ข้อมูลในการคำนวณ โดยสามารถเปิดหลายเวิร์ชีทพร้อมกันได้ ดังแสดงในภาพที่ 3.7

AMITAN Untitled	9 Jacob (77 Jacob 44 42	0.2 1													1
	10 in 102 20 00 985	0.0													
e Edit Digta Calc Sta	at Graph Editor Tools Window E														
Sautun														- 10	I.
06/03/	2012 21:07:32														
elcome to Hinita	b, press F1 for help.	1													
	/														
		Sessi	on												
	\backslash														
		N													
-						_	_	_	_	_	_	_	_	-	í
C1 C2	C3 C4 C5	CS	C7 C8	C9 C1	0 C11	C12	C13	614	C16	C16	C17	C18	C19	620	-
	1	373523													
	/														
	Data														
	\														
	N														
and the second second	d 11 110	L		· · · · ·							-			-	н
Brekert 🗗 🗖 🖉	3														8
nt Worksheet: Worksheet														21-07	

ภาพที่ 3.7 แสดงการสร้างข้อมูลใหม่

2) การเปิดข้อมูลเก่าเพื่อนำมาแก้ไข

 เลือกเมนู File คลิก Open Worksheet ที่มีการบันทึกข้อมูลอยู่ก่อนหน้านี้แล้ว เพื่อ นำมาแก้ไขหรือนำมาพยากรณ์ใหม่ ดังแสดงในภาพที่ 3.8

ภาพที่ 3.8 แสดงการเปิด File ที่มีการบันทึกอยู่

- 2. กดเลือก Open Worksheet แล้วเลือก File ที่เราจะเรียกดูหรือจะทำการแก้ไข
- 3. เมื่อเลือก File แล้วให้เลื่อนเมาส์ไปคลิกที่ Open ตามที่แสดงในภาพที่ 3.9

Open Project					? 🖻
Look in:	🗀 Bev 2		-	🗢 🖻 📑	∎-
	Name 🔺		Si	ze Type	Date 🗹
	Mont Clair C	ooking	120	B MINITAB PROJ	ECT 10/20
My Recent	Mont Clair \	Vhite	117 1	B MINITAB PROJ	ECT 10/20
Documents	Mrinda Syr		137 1	B MINITAB PROJ	ECT 10/20
	Panna		298 1	B MINITAB PROJ	ECT 05/20
	Panna2		128	B MINITAB PROJ	ECT 10/20
Desktop	Paolo Scavi	no	931	B MINITAB PROJ	ECT 10/20
	Penford		145 1		ECT 10/20
	Pepsi Svr	4	152 1	B MINITAB PROJ	ECT 10/20
	Pro Zopin1		1271	B MINITAB PRO1	ECT 10/19
My Documents	Reservado		151	B MINITAB PROJ	ECT 10/19
	Reservado	Char	1421	B MINITAB PRO1	ECT 10/20
	Rosemount		135.4		ECT 10/20
	MTR Dum Pacadi		1001		ECT 10/10
My computer	<				>
S	File name:	Pro Zonin1		-	Open
My Network	Files of type:	Minitab Project (*	(MPJ)	-	Cancel
Flaces					Help
		Description	Iptions P	review	

ภาพที่ 3.9 แสดงการเลือก File

- การสร้างรูปแบบการทดลอง ประกอบด้วยการป้อนข้อมูล
- 1. เรียกโปรแกรม Minitab ขึ้นมาใหม่ โดยเป็นข้อมูลที่ยังไม่มีการบันทึก
- เลื่อนเมาส์ไปที่คอลัมน์คลิกตั้งชื่อและใส่ข้อมูลต่างๆ ลงในเซลล์ สำหรับการใส่

ข้อมูลสามารถใช้ได้ทั้งภาษาไทย ภาษาอังกฤษ และตัวเลข ดังภาพที่ 3.10

+	C1-T	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C ^
	เดือน	ยอดใช้											
1	Jan 11	298											
2	Feb 11	268											
3	Mar 11	220											
4	Apr 11	229											
5	May 11	195		<u> </u>									
6	Jun 11	222											
7	July 11	276											
8	Aug 11	302											
9	Sep 11	224											
10	Oct 11	283											
11	Nov 11	249											
10	Dec 11	975											~

ภาพที่ 3.10 แสดงการป้อนข้อมูลในเซลล์

3.4.2.1 ส่วนของการพยากรณ์ เป็นส่วนของการเลือกกฎ และวิธีการพยากรณ์แบบต่างๆ

เทกนิกการพยากรณ์ (Forecasting Techniques)

- 1) Moving Average
- 2) Single Exponential Smoothing
- 3) Double Exponential Smoothing
- 4) Winters' Method

 ทคลองการเลือกใช้วิธีแบบหาค่าเฉลี่ยเคลื่อนที่ Moving Average เทคนิคนี้เป็นการ นำข้อมูลในอดีตมาถ่วงน้ำหนักเท่าๆ กัน เพื่อพยากรณ์ในอนาคต โดยใช้ในกรณีข้อมูลเป็นแบบคงที่

1) เลือกกำสั่ง Start แล้วตามด้วย Time Series เลือก Moving Average ดังแสดงใน

ภาพที่ 3.11

	Edit Date	SHC 3	Lat Graph Editor Inols Basic Statistics		judow Hels	,								_			-	
ili w	orksheet 2		(Legression	•													6	
•	C1-T		ANOVA	1	CB	CS	67	Ca	Ca	C10	611	C12	C13	614	C16	C16	617	GI
	Jan 10		Control Charts														r	
2	Feb 10		Quality Tools															
	Mar 10		Rebability/Survival															
4	Apr 10		Bultivariate															
6	May 10		Tarian Serlers	•	Int Dres Se	eins Plot												
6	Jun 10		Lables		Los Trent d	ariah-mar.												
7	July 10		bioriplanametrics	•	Decore	nisition												
	Aug 10		EDA				_											
	Sep 10		Bower and Sample Size	٠	- 100000	Average												
10	Oct 10		41		Lan Double	Even Secondaria	agaan.		A									
11	Nov 10		42		Left Winters	/ Mathead				_								
12	Dec 10		39		CII MARKAN				\ <u> </u>									
13	Jan 11		36		Cofferen	nces			N									
14	Feb 11		30		Left Codera													
15	Mar 11		32		Here Autocon	melation												
16	Apr 11		32		Han Cortials	Autocorrelat	ion											
17	May 11		26		Press C	Correlation												
10	Jun 11		26		ART ARIMA													
19	July 11		21	-														

ภาพที่ 3.11 แสดงส่วนของวิธีการพยากรณ์ (Moving Average)

 เมื่อเลือกวิธีที่จะใช้ในการทดลองจะปรากฏหน้าต่างขึ้นมา เลือกหัวข้อที่ต้องการ จะนำมาพยากรณ์ลงในช่อง Variable: ในที่นี้เลือก ยอดขาย ตามลูกศรหมายเลข 1 และนำเมาส์ไป กลิกที่ Select ตามลูกศรหมายเลข 2 หรือ ดับเบิลกลิกที่หัวข้อที่ต้องการ ดังภาพที่ 3.12

Moving Average	
C2 ยอดบาย	Variable: MA length: 3
	Center the moving averages Generate forecasts Number of forecasts: 3
	Starting from origin:
P	OptionsStorage
Select	Graphs Results
Help	2 OK Cancel

ภาพที่ 3.12 แสดงหน้าต่างการเลือกใช้กฎในการทดลอง (Moving Average)

 มื่อหัวข้อที่เลือกมาอยู่ในช่อง Variable: แล้ว จากนั้น กำหนดค่าของจำนวน ข้อมูลที่เก็บไว้สำหรับพยากรณ์ หรือตามช่วงเวลาที่ด้องการเฉลี่ย ในช่อง MA length: ในที่นี้กำหนด
 เดือน ตามลูกศรหมายเลข 1

4) คลิกเลือกที่ Generate Forecasts และใส่ข้อมูลเพื่อกำหนคระยะเวลาที่ต้องการให้ พยากรณ์ที่ช่อง Number of forecasts: ในที่นี้กำหนค 3 เคือน ตามลูกศรหมายเลข 2

5) เมื่อกำหนดค่าเรียบร้อยแล้วให้คลิกที่ปุ่ม Storage ตามลูกศรหมายเลข 3 ดังภาพ ที่ 3.13

ภาพที่ 3.13 แสดงการกำหนดข้อมูล (Moving Average)

6) เมื่อคลิกที่ Storage แล้วจะปรากฎหน้าต่าง Moving Average – Storage จากนั้น คลิกเลือกไปที่ Forecasts ตามลูกศรหมายเลขที่ 1 เมื่อกำหนดค่าเรียบร้อยแล้วให้คลิกปุ่ม OK ตาม ลูกศรหมายเลขที่ 2 ดังภาพที่ 3.14

Moving Average - Storage	×
Storage	
Moving averages	
🔲 Fits (one-period-ahead forecasts)	
Residuals	
🔽 Forecasts 🗸 📜	
🗖 Upper 95% prediction limits	
🔲 Lower 95% prediction limits	
Help OK ² Cancel	

ภาพที่ 3.14 แสดงการกำหนดเงื่อนใบ (Moving Average)

7) เมื่อกำหนดค่าเรียบร้อยแล้วให้คลิกปุ่ม OK ตามลูกศรหมายเลข 1 ดังภาพที่ 3.15

Moving Average		
	Variable: 'ยอดบาย'	MA length: 3
	Center the moving avera	ges
	🔽 Generate forecasts	
	Number of forecasts:	3
	Starting from origin:	
	Time	Options / Storage
Select		Graphs
Help		OK Cancel

ภาพที่ 3.15 แสดงการกำหนดค่า (Moving Average)

 หน้าจอจะแสดงผลของการพยากรณ์ เป็นการแสดงค่าตัววัดผลต่างๆ ของวิธีการ พยากรณ์ที่เลือกใช้ แบ่งเป็น 2 ส่วนดังนี้

1. ผลลัพธ์ที่แสดงบน Session Window ดังภาพที่ 3.16

E Session	ı				
Forecas	:tc				^
Toreca	,				
Period	Forecast	Lower	Upper		
25	202.667	104.622	300.711		
26	202.667	104.622	300.711		
27	202.667	104.622	300.711		
Moving	Average D	at for the	ീഷ്		
MUVING	Average Fi		C 0		
					_
					~
<					> .:

ภาพที่ 3.16 แสดงผลลัพธ์บน Session Window (Moving Average)

2. ผลลัพธ์ที่แสดงในลักษณะของกราฟ ดังภาพที่ 3.17

ภาพที่ 3.17 แสดงผลลัพธ์ในรูปแบบของกราฟ (Moving Average)

 กคลองการเลือกใช้วิธีพยากรณ์ปรับเรียบแบบเอ็กโปเนนเชียลครั้งเคียว Single Exponential Smoothing เป็นเทคนิคที่เหมาะสมกับข้อมูลที่ก่อนข้างไม่เปลียนแปลง โดยให้น้ำหนัก ความสำคัญของข้อมูลในอดีต และข้อมูลที่ทำการพยากรณ์

 เลือกคำสั่ง Start แล้วตามด้วย Time Series เลือก Single Exponential Smoothing ดังแสดงในภาพที่ 3.18

M	NITAB - U	Intitled												
-		X Ra (Boo	103 1	1 N & O ? II									
2		2 2 4	a 10 00	m m 13	85									
-7	11.4.6	121 1	0	and the state										
-		dil la												
3	ession		Basic Statist Begression ANOVA	ics	,									
ue	lcome to	06/1 > Hini	DOE Control Cha Quality Tool Reliability/5	ets la urvival	, , , ,									
			Time Series		Let Time Series Plot									
<			Iables Nonparamet EDA Power and 1	trics Sample Size	Tregd Analysis Decomposition Moving Average	Л								
190 V	Vorksheet				Single Exp Smoothing									
٠	C1-T	C2	Ca	C4	Double Exp Smoothing	CB	CS	C10	C11	C12	C13	C14	C15	CI
	ine 10	Dawait			I-I Offerences	-				-		-		
-	Eab 10				11 Lio									
2	Max 10	-												
3	And 10		1		line Dartial & Encorrelation									
6	May 10	2			Cross Correlation	-								
6	Jun 10	21			ARI ADIMA	-								
7	July 10	23			HA HOP HILL	-								
	and the second second													

ภาพที่ 3.18 แสดงส่วนของวิธีการพยากรณ์ (Single Exponential Smoothing)

 เมื่อเลือกวิธีที่จะใช้ในการทดลองจะปรากฏหน้าต่างขึ้นมา เลือกหัวข้อที่ต้องการ จะนำมาพยากรณ์ลงในช่อง Variable: ในที่นี้เลือก ยอดขาย ตามลูกศรหมายเลข 1 และนำเมาส์ไป กลิกที่ Select ตามลูกศรหมายเลข 2 หรือ ดับเบิลกลิกที่หัวข้อที่ต้องการ ดังภาพที่ 3.19

Single Exponential Smoothing			
C2 809018 Varia Veig 1 F Op C Us C Us St	ble: ht to Use in Smoothing trimal ARIMA se: 0.2 second forecasts unber of forecasts: arting from origin:		
Select 2 Help	Time Op	tions Stora aphs Resu OK Can	ge Its

ภาพที่ 3.19 แสดงหน้าต่างการเลือกใช้กฎในการทดลอง (Single Exponential Smoothing)

 เมื่อหัวข้อที่เลือกมาอยู่ในช่อง Variable: แล้ว จากนั้นคลิกเลือกปุ่ม Optimal ARIMA ตามลูกศรหมายเลข 1 คลิกเลือกที่ Generate Forecasts และใส่ข้อมูลเพื่อกำหนดระยะเวลา ที่ต้องการให้พยากรณ์ที่ช่อง Number of forecasts: ในที่นี้กำหนด 3 เดือน ตามลูกศรหมายเลข 2

 มื่อกำหนดค่าเรียบร้อยแล้วให้คลิกที่ปุ่ม Storage ตามลูกศรหมายเลข 3 ดังภาพที่ 3.20

Single Exponential Smoot	hing		
	Variable: '998019' Weight to Use in Smoothint © Optimal ARIMA O Use: 0.2 Generate forecasts Number of forecasts: 3 Starting from origin:	<u>2</u>	
	Time Options	Storage 3	
Select	Graphs	Results	
Help	ОК	Cancel	

ภาพที่ 3.20 แสดงการกำหนดข้อมูล (Single Exponential Smoothing)

5) เมื่อคลิกที่ Storage แล้วจะปรากฎหน้าต่าง Single Exponential Smoothing -Storage จากนั้นคลิกเลือกไปที่ Forecasts ตามลูกศรหมายเลขที่ 1 เมื่อกำหนดค่าเรียบร้อยแล้วให้ คลิกปุ่ม OK ตามลูกศรหมายเลขที่ 2 ดังภาพที่ 3.21

Single Exponential Smoothing - Storage
Storage Smoothed data Fits (one-period-ahead forecasts) Residuals Forecasts Upper 95% prediction limits Lower 95% prediction limits
Help OK Cancel

ภาพที่ 3.21 แสดงการกำหนดเงื่อนใบ (Single Exponential Smoothing)

6) เมื่อกำหนดค่าเรียบร้อยแล้วให้กลิกปุ่ม OK ตามลูกศรหมายเลข 1 ดังภาพที่ 3.22

Variable: '990	
	งบาย'
Weight to Use i © Optimal ARII © Use: [0.2]	n Smoothing MA
Generate for	ecasts
Number of fo Starting from	orecasts: 3
Tin	ne Options Storage
Select	Graphs Results
Help	OK Cancel

ภาพที่ 3.22 แสดงการกำหนดค่า (Single Exponential Smoothing)

 หน้าจอจะแสดงผลของการพยากรณ์ เป็นการแสดงค่าตัววัดผลต่าง ๆ ของวิธีการ พยากรณ์ที่เลือกใช้ แบ่งเป็น 2 ส่วนดังนี้

1. ผลลัพธ์ที่แสดงบน Session Window ดังภาพที่ 3.23

L Session	1			
Forecas	ts			
Period	Forecast	Lower	Upper	
25	244.909	153.738	336.080	
26	244.909	153.738	336.080	
27	244.909	153.738	336.080	
Single E	Exponential	Smoothin	g Plot for ยอดใช้	
				>

ภาพที่ 3.23 แสดงผลลัพธ์บน Session Window (Single Exponential Smoothing)

2. ผลลัพธ์ที่แสดงในลักษณะของกราฟ ดังภาพที่ 3.24

ภาพที่ 3.24 แสดงผลลัพธ์ในรูปแบบของกราฟ (Single Exponential Smoothing)

 ทดลองการเลือกใช้วิธีพยากรณ์ปรับเรียบแบบเอ็กโปเนนเชียลซ้ำสองครั้ง (Double Exponential Smoothing) เหมาะสมกับข้อมูลที่มีลักษณะเป็นแนวโน้มแบบเส้นตรง โดยใช้แนวกิด เช่นเดียวกับ Linear Moving Average

1) เลือกคำสั่ง Start แล้วตามด้วย Time Series เลือก Double Exponential Smoothing ดังแสดงในภาพที่ 3.25

≥ MI	NITAB - U	ntitled															
0		X Ro C	100	TT I	INR ORD												
-12	0		D B	FT ET 28													
1	210	1-1 -1	0														
-		and Long		and and the	and the second second												
De	East Diges	2.0K 31.0K	Syaph bi	hos Toos	Wurdow Deb											_	_
<u> </u>	ession	_	Bark scroot														
Si	ngle Exp	onen	Elegression ANOVA		19731												
			DOE														
83	1079 - 1342		Control Cha	rts 🔸													
Da	ta st noth 23		Quality Tool	۰ ،													
			Rejability/S	aveval +													
1	anthing	Pane	M.Rivariate	•													
311	ovening	cons	Time Series	1 () (Ime Series Plot												
A1	pha 1.0	84488	Iables Norsparamet	rica	Decorposition												
Ac	curacy H	teasu	Eower and 1	iample Size 🕨	Moving Average												
*	1																
101	Vorksheet	1 ***			PC Waters' Method	-											
٠	C1-T	C2	C3	C4	tal fottoreses	C8	C9	C10	C11	C12	C13	C14	C15	C15	C17	C18	C
	เดือน	บลดขาบ	FORE1	FORE2	Page 1 an			1									
1	Jan 10	47		31.6852	and from	-		1									
2	Feb 10	44		91.6952	Autocorrelation												
3	Mar 10	36		31.6852	Bartial Autocorrelation												
4	Apr 10	20			Cross Correlation	_											
5	May 10	24			ARI ARIMA	-											
6	Jun 10	26			- AND COLUMN	1											

ภาพที่ 3.25 แสดงส่วนของวิธีการพยากรณ์ (Double Exponential Smoothing)

 เมื่อเลือกวิธีที่จะใช้ในการทดลองจะปรากฏหน้าต่างขึ้นมา เลือกหัวข้อที่ต้องการ จะนำมาพยากรณ์ลงในช่อง Variable: ในที่นี้เลือก ยอดขาย ตามลูกศรหมายเลข 1 และนำเมาส์ไป กลิกที่ Select ตามลูกศรหมายเลข 2 หรือ ดับเบิลกลิกที่หัวข้อที่ต้องการ ดังภาพที่ 3.26

Double Exponential	Smoothing	
<mark>C2 ยอดบาย</mark> C4 FORE2	Variable: 1 sights to Use in Smoothing Optimal ARIMA C Use: 0.2 for level 0.2 for trend Generate forecasts Number of forecasts: Starting from origin:	
	Time Options	Storage
Select	C Graphs	Results
Help	ОК	Cancel

ภาพที่ 3.26 แสดงหน้าต่างการเลือกใช้กฎในการทดลอง (Double Exponential Smoothing)

 3) เมื่อหัวข้อที่เลือกมาอยู่ในช่อง Variable: แล้ว จากนั้นคลิกเลือกปุ่ม Optimal ARIMA ตามลูกศรหมายเลข 1 คลิกเลือกที่ Generate Forecasts และใส่ข้อมูลเพื่อกำหนดระยะเวลา ที่ต้องการให้พยากรณ์ที่ช่อง Number of forecasts: ในที่นี้กำหนด 3 เดือน ตามลูกศรหมายเลข 2
 4) เมื่อกำหนดค่าเรียบร้อยแล้วให้คลิกที่ปุ่ม Storage ตามลูกศรหมายเลข 3 ดังภาพ

ที่ 3.27

Double Exponential Smoo	thing	\mathbf{X}
	Variable: 'BBBW1B' Weights to Use in Smoothing © Optimal ARIMA Use: 0.2 for trend © Generate forecasts Number of forecasts: 3 Starting from origin:	
	Time Options Storage	」 /
Select	Graphs Results	3
Help	OK Cancel	J

ภาพที่ 3.27 แสดงการกำหนดข้อมูล (Double Exponential Smoothing)

5) เมื่อคลิกที่ Storage แล้วจะปรากฎหน้าต่าง Single Exponential Smoothing -Storage จากนั้นคลิกเลือกไปที่ Forecasts ตามลูกศรหมายเลขที่ 1 เมื่อกำหนดค่าเรียบร้อยแล้วให้ คลิกปุ่ม OK ตามลูกศรหมายเลขที่ 2 ดังภาพที่ 3.28

Double Exponential Smoothing - Storage	$\mathbf{\times}$
Storage	
Level estimates	
Trend estimates Fits (one-period-ahead forecasts)	
Residuals Farecasts 1	
Upper 95% prediction limits	
Lower 95% prediction limits	
Help OK 2 Cancel	

ภาพที่ 3.28 แสดงการกำหนดเงื่อนไข (Double Exponential Smoothing)

6) เมื่อกำหนดค่าเรียบร้อยแล้วให้กลิกปุ่ม OK ตามลูกศรหมายเลข 1 ดังภาพที่ 3.29

Double Exponential Smoo	thing 🛛 🔀
	Variable: เขอดบาย'
	Weights to Use in Smoothing
	Optimal ARIMA
	O Use: 0.2 for level
	0.2 for trend
	Cenerate forecasts
	Number of forecasts: 3 1
	Starting from origin:
	Time Options Storage
Select	Graphs Results
Help	OK Cancel

ภาพที่ 3.29 แสดงการกำหนดค่า (Double Exponential Smoothing)

 หน้าจอจะแสดงผลของการพยากรณ์ เป็นการแสดงค่าตัววัดผลต่างๆ ของวิธีการ พยากรณ์ที่เลือกใช้ แบ่งเป็น 2 ส่วนดังนี้

1. ผลลัพธ์ที่แสดงบน Session Window ดังภาพที่ 3.30

I Session				
Forecas	ts			
Period	Forecast	Lower	Upper	
25	216.806	122.698	310.914	
26	212.500	115.859	309.140	
27	208.193	108.809	307.578	
Double	Exponentia	l Smoothii	ng Plot for ยอดใช้	
				>.

ภาพที่ 3.30 แสดงผลลัพธ์บน Session Window (Double Exponential Smoothing)

2. ผลลัพธ์ที่แสดงในลักษณะของกราฟ ดังภาพที่ 3.31

ภาพที่ 3.31 แสดงผลลัพธ์ในรูปแบบของกราฟ (Double Exponential Smoothing)

4. ทคลองการเลือกใช้วิธีพยากรณ์วินเตอร์ (Winters' Method) ใช้กับข้อมูลที่เป็น แนวโน้ม และฤดูกาล โดยจะมีข้อมูลที่ใช้กับฤดูการลดเพิ่มขึ้นสำหรับปรับให้เรียบ

 เลือกคำสั่ง Start แล้วตามด้วย Time Series เลือก Winters' Method ดังแสดงใน ภาพที่ 3.32

10.10	INITTAR II	and de las al											
- 10	INITAD - U	minned											
		1 X 412 m	100										
+0		🖻 🗒 📬	日日	🔛 🔢 🧏	5								
$-\mathbb{Z}$	-2 040 66	121 1	0										
Ele	Edit Data	⊆alc Stat	Graph Eg	tor <u>T</u> ools	Window Help								
EC 9	ession		Basic Statist Regression	ics)									
			ANOVA	,	•								
81	pha (leu	el)	DOE		•								
Ga	mma (tre	ena)	Control Char	ts 🕨	•								
			Quality Tools										
Ac	curacy M	leasur	Reliability/Su	rvival •									
1	DE 19 5	DEA	Multivariate	,									
MR	D 4.5	568	Time Series		Info Time Series Plot	1							
MS E 0	D 38.9 recasts	491	Iables Nonparamet	rics	Trend Analysis								
			Downer and S	ample Size I	E Moving Average								
200	100		Former gring 2	ample bize .	Single Exp Smoothing								
	201				Double Exp Smoothing								
					Winters' Method								
+	C1-T	C2	C3	C4	R-B Differences	C8	C9	C10	C11	C12	C13	C14	C1
	เดือน	ยอดขาย	FORE1	FORE2	Ran Lag								
1	Jan 10	47		31.6852	B.A. Fad	22							
2	Feb 10	44		31.6852	Autocorrelation								
3	Mar 10	36		31.6862	Eartial Autocorrelation								
4	Apr 10	28			Cross Correlation								
5	May 10	24			ARI ABIMA								
6	Jun 10	25											

ภาพที่ 3.32 แสดงส่วนของวิธีการพยากรณ์ (Winters' Method)

 เมื่อเลือกวิธีที่จะใช้ในการทดลองจะปรากฏหน้าต่างขึ้นมา เลือกหัวข้อที่ต้องการ จะนำมาพยากรณ์ลงในช่อง Variable: ในที่นี้เลือก ยอดขาย ตามลูกศรหมายเลข 1 และนำเมาส์ไป คลิกที่ Select ตามลูกศรหมายเลข 2 หรือ ดับเบิลคลิกที่หัวข้อที่ต้องการ ดังภาพที่ 3.33

Winters' Method			
62 ยอดบาย	Variable:	Seasonal le	ngth:
(1	lethod Type	Weights to Use	in Smoothing
	 Multiplicative 	Level: 0	.2
````	○ Additive	Trend: 0	.2
		Seasonal: 0	.2
	✓ Generate forecasts Number of forecasts: Starting from origin:	5	
	Time	Options	Storage
Select	4	Graphs	Results
Help	2	ОК	Cancel

ภาพที่ 3.33 แสดงหน้าต่างการเลือกใช้กฎในการทดลอง (Winters' Method)

เมื่อหัวข้อที่เลือกมาอยู่ในช่อง Variable: แล้ว จากนั้นกำหนดค่า Seasonal length
 4 ตามถูกศรหมายเลข 1 จากนั้นใส่ค่าในช่อง Level, Trend, Seasonal, โดยพิจารณาค่าที่ทำให้ค่า
 เบี่ยงเบนต่ำสุด ตามถูกศรหมายเลข 2 คลิกเลือกที่ Generate Forecasts และใส่ข้อมูลเพื่อกำหนด
 ระยะเวลาที่ต้องการให้พยากรณ์ที่ช่อง Number of forecasts: ในที่นี้กำหนด 12 เดือน ตามถูกศร
 หมายเลข 3

เมื่อกำหนดค่าเรียบร้อยแล้วให้คลิกที่ปุ่ม Storage ตามลูกศรหมายเลข 4 ดังภาพ

ท 3.34

Winters' Method			
	Variable: เยอดบาย	Seasonal length:	4
	Method Type ← Multiplicative ← Additive ✓ Generate forecasts	Weights to Use in Sm Level: 0.2 Trend: 0.2 Seasonal: 0.2	
	Number of forecasts: Starting from origin: Time	Options	Storage 4
Select		Graphs	Results
Help		ок	Cancel

ภาพที่ 3.34 แสดงการกำหนดข้อมูล (Winters' Method)

5) เมื่อกลิกที่ Storage แล้วจะปรากฎหน้าต่าง Winters' Method - Storage จากนั้น กลิกเลือกไปที่ Forecasts ตามลูกศรหมายเลขที่ 1 เมื่อกำหนดก่าเรียบร้อยแล้วให้กลิกปุ่ม OK ตาม ลูกศรหมายเลขที่ 2 ดังภาพที่ 3.35

Winters' Method - Storage
Storage Smoothed data Level estimates Trend estimates Seasonal estimates Fits (one-period-ahead forecasts) Residuals Forecasts Upper 95% pediction limits Lower 95% prediction limits
Help OK 2 Cancel

ภาพที่ 3.35 แสดงการกำหนดเงื่อนไข (Winters' Method)

6) เมื่อกำหนดค่าเรียบร้อยแล้วให้คลิกปุ่ม OK ตามลูกศรหมายเลข 1 ดังภาพที่ 3.36

Winters' Method	
Variable: 'ยอดบาย'	Seasonal length: 4
Method Type	Weights to Use in Smoothing
Multiplicative	Level: 0.2
⊂ Additive	Trend: 0.2
	Seasonal: 0.2
Generate forecasts Number of forecasts: Starting from origin:	12
Time	Options Storage
Select Help	Graphs Results OK 1 Cancel
	V

ภาพที่ 3.36 แสดงการกำหนดก่า (Winters' Method)

 หน้าจอจะแสดงผลของการพยากรณ์ เป็นการแสดงค่าตัววัดผลต่าง ๆ ของวิธีการ พยากรณ์ที่เลือกใช้ แบ่งเป็น 2 ส่วนดังนี้

1. ผลลัพธ์ที่แสดงบน Session Window ดังภาพที่ 3.37

E Session	J			
Forecas	ts			~
Period	Forecast	Lower	Upper	
25	229.061	115.932	342.190	
26	234.911	120.010	349.813	
27	214.749	97.872	331.627	
Winters	' Method Pl	ot for ยอด	ใช้	
1				
				~
<				>

ภาพที่ 3.37 แสดงผลลัพธ์บน Session Window (Winters' Method)

2. ผลลัพธ์ที่แสดงในลักษณะของกราฟ ดังภาพที่ 3.38



ภาพที่ 3.38 แสดงผลลัพธ์ในรูปแบบของกราฟ (Winters' Method)

3.4.2.2 การวัดค่าความคลาดเคลื่อนของการพยากรณ์

 ก่าเฉลี่ยกวามกลาดเกลื่อนสมบรูณ์ (Mean absolute deviation (MAD) วิธีนี้จะ กำนวณนำผลรวมของก่าสมบรูณ์กวามกลาดเกลื่อนจากการพยากรณ์ แล้วหารด้วยจำนวนช่วงเวลา ของข้อมูล (n)

2. ค่าเฉลี่ยความคลาดเคลื่อนกำลังสอง [Mean square error (MSE) เป็นการนำค่า แตกต่างระหว่างคำที่เกิดขึ้นจริง และค่าที่พยากรณ์กำลังสองดังนี้

 ค่าเฉลี่ยเปอร์เซ็นต์ความคาดเคลื่อน [Mean absolute percent error (MAPE) ปัญหา ของการหาค่าทั้ง MAD และ MSE คือ หากค่าของข้อมูลมีค่ามากจะทำให้ค่าของ MAD และ MSE มี ค่ามากไปด้วย เพื่อแก้ปัญหาดังกล่าว จึงมีการใช้ค่า MAPE แทน ซึ่งหาได้จาก

MAPE = 
$$\left[\sum (\underline{n} \cdot \underline{n} \cdot \underline$$

จากข้อมูลจำนวนการใช้สินค้าในกลุ่ม A Class 34 รายการ มาทำการหาค่าพยากรณ์ ผู้วิจัยได้นำข้อมูลย้อนหลังตั้งแต่ปี พ.ศ. 2553-2554 มาทำการศึกษาข้อมูลเพื่อที่จะดูว่าข้อมูลจำนวน การใช้สินค้าในระหว่างปีดังกล่าวนั้นมีลักษณะของข้อมูลเป็นอย่างไรสามารถดูได้จากกราฟ ต่อไปนี้



ภาพที่ 3.39 กราฟแสดงลักษณะข้อมูลยอดใช้สินค้ารายการที่ 1-9



**ภาพที่ 3.40** กราฟแสดงลักษณะข้อมูลยอดใช้สินค้ารายการที่ 10-18



**ภาพที่ 3.41** กราฟแสดงลักษณะข้อมูลยอดใช้สินค้ารายการที่ 19-26



**ภาพที่ 3.42** กราฟแสดงลักษณะข้อมูลยอดใช้สินค้ารายการที่ 27-34

จากข้อมูลสินค้ากลุ่ม A Class ทั้ง 34 รายการในกราฟดังกล่าวนั้นสามารถสรุปได้ว่า ข้อมูลยอดใช้สินค้าย้อนหลังมีลักษณะที่เป็นไปตามวัฏจักร (Cycles) ซึ่งเกิดขึ้นซ้ำในแต่ละช่วงปี โดยไม่เป็นลักษณะของข้อมูลที่เป็นแนวโน้ม หรือตามฤดูกาล

3.4.2 ปริมาณการสั่งซื้อที่ประหยัด (Economic Order Quantity, EOQ)

ใช้วิธีการควบคุมสินค้าคงคลังด้วยวิธี Economic Order Quantity (EOQ) โดยจะแสดง ผลการคำนวณโดยยกตัวอย่างสินค้าที่งายคือันดับแรก ได้แก่ รหัส 253700 มียอดความต้องการที่ได้ จากการพยากรณ์ทั้งปีตามตารางที่ 3.1

เคือน	ความต้องการ (หน่วย)	เดือน	ความต้องการ (หน่วย)
มกราคม	245	กรกฎาคม	245
กุมภาพันธ์	245	สิงหาคม	245
มีนาคม	245	กันยายน	245
เมษายน	245	ตุลาคม	245
พฤษภาคม	245	พฤศจิกายน	245
มิถุนายน	245	ธันวาคม	245
		รวม	2,940

ตารางที่ 3.1 ค่าพยากรณ์ความต้องการสินค้ารหัส 253700 ในแต่ละเดือน

จากตัวอย่างที่ 1 สินก้ามีความต้องการ 245 หน่วยต่อเดือนราคา 300 บาทต่อหน่วย ด้นทุนในการสั่งซื้อเท่ากับ 600 บาทต่อครั้ง ด้นทุนในการเก็บรักษาเท่ากับ 18% ต่อปี หรือ 1.5% ต่อ เดือน จะอธิบายด้นทุนในการสั่งซื้อ และ ด้นทุนในการเก็บรักษาดังนี้

A = ต้นทุนในการสั่งซื้อสินก้าต่อหน่วยต่อปี โดยข้อมูลมาจากฝ่ายบัญชีซึ่งประมาณ
 จากเงินเดือนพนักงาน ค่าเอกสารคำเนินการจัดซื้อสินก้า ค่าใช้จ่ายในการติดต่อและติดตามการ
 สั่งซื้อสินก้า ค่าใช้จ่ายการรับสินก้าและนำสินก้าไปเก็บในคลังสินก้า ซึ่งกำหนดไว้โดยประมาณที่
 600 บาทต่อรอบการสั่งซื้อในแต่ละครั้งและต่อสินก้าหนึ่งรายการ

H = ด้นทุนในการเก็บรักษาต่อหน่วยต่อปี โดยข้อมูลมาจากฝ่ายบัญชีซึ่งประมาณจาก ดอกเบี้ยเงินกู้ ค่าบำรุงรักษา ค่าดำเนินการจัดเก็บ (เช่นค่าไฟฟ้า ค่าจ้างพนักงานรายเดือน) ค่าประกัน และภาษี ค่าเสียหายเนื่องจากการที่สินก้ำหมดอายุ เป็นต้น ซึ่งกำหนดไว้ที่ 18% ของรากาต้นทุนสิน ก่าต่อหน่วย ยกตัวอย่างสินก้า มีต้นทุนต่อหน่วยซึ่งเท่ากับ 300 บาท H = 300 x 18% = 54 บาทต่อ หน่วยต่อปี นำไปหาร 12 เดือนจะได้ 54 / 12 = 4.5 บาทต่อเดือน

ซึ่งสามารถคำนวณ Economic Order Quantity โดยกำหนดให้

Q	=	จำนวนหน่วยต่อการสั่งซื้อแต่ละครั้ง
EOQ หรือ Q*	=	ปริมาณการสั่งซื้อที่ประหยัด
D	=	ปริมาณความต้องการของสินค้าคงคลังต่อเคือน
А	=	ต้นทุนในการสั่งซื้อสินค้าแต่ละครั้ง
Н	=	ต้นทุนเก็บรักษาสินค้าต่อหน่วยต่อเคือน

# ปริมาณการสั่งซื้อที่ประหยัด

EOQ หรือ Q* = 
$$\sqrt{2DA/H}$$
 (3-5)  
=  $\sqrt{2x245x600/4.50}$   
= 255.60 = 256 หน่วยต่อครั้ง

2) ระยะห่างในการสั่งซื้อในแต่ละครั้ง

	Т	=	Q* / D x จำนวนเดือนที่ทำงานใน 1 ปี	(3-6)
		=	(256 / 2,940) x 12 เดือน	
		=	1.04 = 1 เดือนต่อกรั้ง	
3)	ต้นทุนรวม ณ	ปริมาณก	ารสั่งซื้อที่ประหยัด (Total Cost : TC (Q*))	
	TC	=	(D / Q x A) + (Q / 2 x H)	(3-7)

TC (Q*) = 
$$\sqrt{2DAH}$$
 (3-8)  
=  $\sqrt{2*245*600*4.5}$   
=  $\sqrt{1,323,000}$   
= 1,150.21 บาทต่อเดือน

3.4.3 งุคสั่งซื้อ และระบบสินค้าคงคลังสำรอง (Reorder Point and Safety Stock)

จุดสั่งซื้อ Reorder Point (ROP) คือจุดที่บอกถึงปริมาณสินค้าคงคลังที่อยู่ในระบบ ที่ทำ ให้เราต้องมีการสั่งซื้อสินค้าส่วนสินค้าคงคลังสำรอง Safety Stock (ss) เป็นสินค้าที่มีไว้เพื่อป้องกัน ความ ไม่แน่นอน ที่อาจจะเกิดขึ้น ทั้ง Reorder Point และ Safety Stock นั้นมีความสำพันธ์อยู่ 3 ตัว คือ อัตราความต้องการใช้สินค้าคงคลัง และเวลารอคอย (Lead Time) และมีค่าความสำคัญในระดับ ต่างๆ (Factor) โดยจะแสดงผลการคำนวณโดยยกตัวอย่างเดิมของสินค้า รหัส 253700 มีอัตราความ ต้องการสินค้าคงคลัง เท่ากับ 245 ขวดต่อเดือน และมีเวลารอคอยสินค้าคงคลัง เท่ากับ 5 วัน = 0.17 (5/30 วัน) และค่าระดับความสำคัญจากตาราง factor (j) เท่ากับ 0.3 ซึ่งมีค่าอยู่ที่ความสำคัญสามารถ คำนวณ Reorder Point (ROP) และ Safety Stock (ss) โดยกำหนดให้

ROP	=	จุดสั่งซื้อ (Reorder Point)
SS	=	ปริมาณสินค้ำสำรอง (Safety Stock)
$\overline{d}$	=	อัตรากวามต้องการสินค้ากงกลัง
$\overline{LT}$	=	ช่วงเวลานำ
j	=	ค่าที่เปิดจากตาราง factor สำหรับสินค้าที่สำคัญในระดับต่างๆ

ROP
 =
 
$$(\overline{d} \times \overline{LT}) + j \times (\overline{d} \times \overline{LT})$$
 (3-9)

 =
 (245 x 0.17) + 0.3 x(245 x 0.17)
 (3-9)

 =
 40.83 + 12.50 = 54.15
 (3-9)

 =
 54 vวด
 (3-9)

 ปริมาณสินล้าดงคลังสูงสุดที่ต้องการกำหนด(S) สามารถแทนค่าได้จากสูตร S = s+Q*

_

เมื่อ S = (54.15 + 256) = 309.75 หน่วย

ปริมาณสินค้าคงคลังสูงสุดที่ต้องการกำหนด (S) = 310 หน่วย