CONTENTS

V1

PA	GE

ENGLISH ABSTRACT	i
THAI ABSTRACT	iii
ACKNOWLEDGEMENTS	V
CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	Х
ABBREVIATIONS	xii

CHAPTER

1.	INTR	ODUCTION	1
	1.1	Rational / Problem statement	1
	1.2	Literature Reviews	2
	1.2.1	Benzene Uptake and Transformation in Plant	2
		Phytoremediation f Benzene	3
	1.2.3	Benzene Uptake by Wax	4
	1.2.4	Benzene Removal by Pseudomonas Putida	4
	1.3	Research Objectives	5
	1.4	Scope of Experiment	5
2.	THE	DRIES	6
	2.1	Benzene	6
	2.1.1	Physical and Chemical of Benzene	6
	2.1.2	Source of Benzene	7
		Benzene Toxicology	11
		Standard of Benzene	11
		Thailand Situation	12
	2.2	Adsorption and Absorption	15
	2.3	Phytoremediation	18
		Phytoextraction	18
		Phytostabilization	18
	2.3.3	Rhizofiltration	18
	2.3.4	Phytovolatilization	18
	2.3.5	6	19
	2.3.6	Phytodegradation	19
	2.4	Green Liver Concept for Organic Compounds	19
	2.5	Benzene Uptake and Transformation in Plant	20
	2.5.1	Uptake and Distribution of Benzene by Plant	20
	2.5.2	Benzene Degradation by Plant	23
	2.5.3	Plant Application for Benzene Removal	28
	2.6	Possibility of Benzene Adsorption by Plant Leaf Wax	31
	2.6.1	Principle of Plant Leaf Wax	31
	2.6.2	Benzene Adsorption and Accumulation by Plant Cuticle	31
	2.7	Biofilter	32
	2.7.1	Moisture Content	33

	2.7.2	Temperature	34
	2.7.3	Ph	34
	2.7.4	Nutrient	34
	2.7.5	Pressure Drop	34
	2.7.6	Packing Media	34
	2.7.7	Biofilter Terminology	35
	2.8	Pseudomonas putida: Principle and Removal	36
3.	MET	HODOLOGY	41
	3.1	Apparatus	41
	3.2	Materials and Chemical Reagents	41
	3.3	Plant Preparation	41
	3.4	Plant Leaves Material Preparation	41
	3.5	Crude Wax Extraction and Crude Wax Quantity Analysis	42
	3.6	Microorganism Preparation	42
	3.7	Nutrient for Microorganism Culture	42
	3.8	Fumigatory Chamber Preparation	42
	3.9	Benzene Removal in Static System by Plants	43
	3.10	Benzene Removal by Plants Under Dark and Light Conditions	43
	3.11	Benzene Removal by Wax of Plant	43
	3.12	Stomata Observation	44
	3.13	Benzene Removal in a Static System by Plant Leaf Materials	44
	3.14	Benzene Adsorption by a Dynamic System	44
	3.15	Benzene Adsorption Mechanism	47
	3.16	Biofilter with Packing Bead from Plant Leaf Materials	47
	3.16.1	Suitable Loading Rate Evaluation	47
	3.16.2	Evaluation of Suitable Nutrients	49
	3.17	Wax Composition Analysis	49
	3.18	Gas Analysis	50
	3.19	Statistical Analysis	50
4.	RESI	ULTS AND DISCUSSIONS	51
ч.	4.1	Benzene Removal by Living Plant	51
	4.1.1	Benzene Phytoremediation Efficiency	51
	4.1.2	Stomata Number, Wax Quantity, Photosynthesis, and Benzene	52
Rei		fficiency	52
Rei	4.1.3	Benzene Removal under Light and Dark Conditions	53
	4.1.4	Benzene Uptake by Wax of <i>D. sanderiana</i>	54
	4.1.4	Benzene Adsorption by Biomaterials	55
	4.2.1	Benzene Adsorption by Biomaterials in Static System	55
	4.2.1	The Relationship between Benzene Adsorption and Quantity of	55
Wa		The Relationship between Benzene Ausorption and Quantity of	50
** 0	4.2.3	The Relationship between Benzene Adsorption and	59
Co		on of Wax in each Plant Species	57
0	P Source	and the second strain species	

Composition of	Wax	in each	Plant	Species
----------------	-----	---------	-------	---------

PAGE

	4.2.4	Benzene Adsorption by Leaf Material in a Continuous System	61
	4.2.5 Benzene Adsorption Mechanisms		62
	4.3	Biofilter Application	64
	4.3.1	Loading Rate Evaluation of Biofilter Application	64
	4.3.2	Suitable Nutrient Evaluation of Biofilter Application	67
	CON	CLUSSIONS	70
REFFERENCES		72	
APPENDIXES		80	
CURRICULUM VITAE		107	

5.

LIST OF TABLES

TABLE		PAGE
2.1	Physical and chemical properties of benzene	6
2.2	Percentage of benzene emission sources in Thailand	8
2.3	VOCs emission from each consumer product	10
2.4	International available of ambient benzene	12
2.5	Internationally available of work space benzene concentration	12
2.6 2.7	Internationally available of water contamination with benzene Capacity index numbers and descriptions	12 16
2.8	Chemical absorption index of activated charcoal / activated carbon	17
2.9	Total non-volatile benzene metabolites radioactivity from abaxial and adaxial side of plant after exposure to 0.1 mmol/L of gaseous benzene concentration; 1.76 MBq/mmol of radioactivity at 8 h exposure under light conditions (22-23°C)	22
2.10	Distribution of benzene and benzene metabolite intracellular organelles of plant leaf after exposure to 0.1 mmol/L of gaseous benzene concentration; 1.76 MBq/mmol of radioactivity at 7 h exposure under light (22-23°C)	23
2.11	Non-volatile benzene and toluene metabolites, low molecular weight compounds, in plant after exposure to 0.2 mmol/L of gaseous benzene concentration; 1.76 MBq/mmol of radioactivity in benzene and 1.5 MBq/mmol of radioactivity in toluene at 72 h exposure under light conditions (22-26°C)	24
2.12	Transformation of benzene by spinach chloroplasts	25
2.13	Transformation of benzene by spinach leaf enzyme preparation	26
2.14	Mean benzene removal efficiency in each plant ($\mu g/m^2/day$) by dynamic system experiment	29
2.15	Pollutants biofiltration by aerobic and anaerobic bacteria	33
3.1	Continuous system conditions in each selected plant leaf materials	46
3.2	Fed batch biofilter conditions in each selected plant leaf materials	48
3.3	Fed batch biofilter conditions in each selected plant leaf materials	49
4.1	Number of stomata, crude wax, photosynthesis, and percentage of benzene removal at 72 h of various plants	53
4.2	Benzene adsorption efficiency by various dried leaf powders	56
4.3	Benzene adsorption efficiency by each plant leaf materials and their wax weight	57
4.4	Benzene adsorption capacities of 6 plant biomaterials and percentage of benzene desorption in these selected materials	62

LIST OF FIGURES

FIGURE		PAGE	
2.1	Benzene molecule	6	
2.2	Petroleum distillations	7	
2.3	Percentage of benzene emission sources in Canada	8	
2.4	Percentage of human benzene exposure sources in Canada	9	
2.5	Demand-supply of benzene in 2001-2005	13	
2.6	Benzene concentration in ambient air around Thailand, 2008-2011	14	
2.7	Adsorption and absorption process	15	
2.8	Principle of green liver concept	20	
2.9	Gaseous BTEX uptake pathway in plant (stomata and cuticle)	21	
2.10	P450 monooxygenase function for hydroxyl group addition on xenobiotic molecules	27	
2.11	Phenoloxidase function for oxygen active species generation and benzene metabolism by oxygen active species	28	
2.12	Benzene metabolisms in plant cell	28	
2.13	Removal of benzene from test-chamber air by potted <i>Zamioculcas zamiifolia</i> and <i>Aglaonema modestum</i> , challenged with three consecutive doses of 25 ppm benzene	30	
2.14	Benzene levels in air of test chambers containing Spathyphyllum var Petite plants maintained in hydroponic medium	31	
2.15	Basic set up and principle of biotrickling filter	32	
2.16	Pseudomonas putida cell	36	
2.17	Initial transformation of toluene by difference kind of <i>Pseudomonas</i> sp.	37	
2.18	Transformation of toluene by difference kind of <i>Pseudomonas</i> sp. and generation of derivatives of catechol	38	
2.19	Benzene and benzene derivatives ring cleavage and transformation to TCA cycle by <i>Pseudomonas</i> sp.	39	
2.20	Benzene and benzene derivatives transformation in <i>Pseudomonas putida</i> F1	40	
3.1	Benzene adsorption system	44	
3.2	Fed batch biofilter system in this experiment	47	
4.1	Benzene uptake by 8 ornamental plants	52	
4.2	Remaining benzene concentration (ppm) in the system of 1st, 2nd, 3rd, and 4th cycle under 24 h light and 24 h dark conditions	54	
4.3	Stomata observation on the leaf of <i>D. sanderiana</i> under 24 h light conditions (a, c, e, g) and 24 h dark conditions (b, d, f, h) when	54	

conditions (a, c, e, g) and 24 h dark conditions (b, d, f, h) when exposure with 20 ppm of initial benzene concentration
4.4 The ratios (%) of benzene uptake by wax and stomata of *D*. 55 *sanderiana* at 72 h

FIGURE PAG		PAGE
4.5	Relationship between benzene adsorption efficiency and wax quantity	58
4.6	Comparison of benzene adsorption efficiency of plant leaf materials grouped by non-significantly difference in wax quantity by Duncan multiple range test: a) 0.01-0.03 mg/g of absorbent b) 0.04-0.06 mg/g of absorbent c) 0.05-0.07 mg/g of absorbent d) 0.1-0.16 mg/g of absorbent and e) 0.18-0.25 mg/g of absorbent (average and SD in each dot and error bar, respectively)	58
4.7	Percentage of fatty acid composition in wax of each plant leaf materials	59
4.8	Percentage of fatty acid composition in wax of plant leaf materials that contain wax in the range of 0.10-0.16 mg/g of adsorbent	60
4.9	Linear regression of benzene adsorption efficiency and percentage of alpha-linoleic acid (a) and octadecanoic acid (b)	61
4.10	Percentage hexane composition in wax of each plant leaf materials	61
4.11	Benzene removal efficiency (%) in a continuous system of 6 plants biomaterials	62
4.12	Functional groups on the surface of adsorbent before and after benzene adsorption in selected plant leaf material	63
4.13	Benzene removal efficiency in phase 1-4 of each bio filters system: Phase 1, 2, 3, 4 refer to 0.03, 0.1, 0.2, and 0.3 L/min of flow rate, respectively	65
4.14	The relation between benzene loading rate $(g/m^3/h)$ and elimination capacity $(g/m^3/h)$ in phase 1, 2 of each bio filter	66
4.15	Benzene removal efficiency by leaf materials cassava-bead immobilized by <i>P. putida</i> at different nutrients	68
4.16	The relation between benzene loading rate $(g/m^3/h)$ and elimination capacity $(g/m^3/h)$ in phase 1, 2 of benzene removal	69

4.16 The relation between benzene loading rate $(g/m^3/h)$ and 6 elimination capacity $(g/m^3/h)$ in phase 1, 2 of benzene removal efficiency by leave materials cassava-bead immobilized with *P*. *putida* in different of supported nutrients

ABBREVIATIONS

°C	Degree Celsius
μg	Micrograms
ACGIH	American Conference of Industrial Hygienists
AML	Acute Myelogenous Leukemia
BET	Brunauer–Emmett–Teller
BSTFA	N,O-Bis(trimethylsilyl)trifluoroacetamide
BTEX	Benzene Toluene Ethylbenzene Xylene
C	Carbon
Ċ _i	Concentration in inlet of treatment
\mathbf{C}_{0}	Concentration in outlet of treatment
cm ²	Square centimetre
CMR	(C: Carcinogen, M: Mutagenic, R: Reprotoxic)
CYP	Cytochrome
e	Electron
EBRT	Empty Bed Residence Time
Fv/Fm	the ratio between variable fluorescence and maximal
1 1/1 111	fluorescence
eV	Electron vole
FT-IR	Fourier transform infrared spectroscopy
g	Grams
GC-FID	Gas chromatography- flame ionization detector
h	hour
H	Hydrogen
$H_{3}PO_{4}$	phosphoric acid
HPLC	High-performance liquid chromatography
IARC	The International Agency for Research on Cancer
IDLH	Immediately Dangerous to Life or Health
inch ²	Square inch
IUPAC	The International Union of Pure and Applied Chemistry
Kg	Kilograms
Kow	Octanol-Water Partition Coefficient
L	litter
LD_{50}	50% lethal dose
M	Molar
m ³	Cubic meter
MBq	Megabecquerel
MLQ M _c	Mole concentration
mg	Milligrams
MIRCEN	Microbiological resources centre, Bangkok
mL	Millilitre
mM	Millimolar
mmol	Millimoles
MS	mass spectrometry
NADH	Nicotinamide adenine dinucleotide

ABBREVIATIONS (CONT.)

NADPH	Nicotinamide adenine dinucleotide phosphate
NASA	The National Aeronautics and Space Administration
Р	Pressure
PAHs	Poly-aromatic-hydrocarbons
PHA	Poly-hydroxy-alkanoates
ppb	Parts per billion
ppm	Parts per million
Q	Air flow
ROS	Reactive oxygen species
Т	Temperature
TCA	Tricarboxylic acid
TCE	Trichloroethylene
TNT	Trinitrotoluene
V	Volume of the system
V_b	Volume of bed
VOCs	Volatile organic compounds
USEPA	United States Environmental Protection Agency
USNTP	United States National Toxicological Program
UV	Ultraviolet
W	Weight
$ZnCl_2$	Zinc chloride