
 

CHAPTER 4 RESULTS AND DISCUSSIONS 

In the effort to progress the understanding of ADRs, prototype database for ADRs has 

been developed with the advance of systems pharmacology and knowledge discovery. 

By integrating various datasets into one, database for ADRs also took the opportunity to 

build the database of ADR-drug-protein relationships that no database has ever been 

constructed from these relationships. The created database was checked and discussed 

for its consistency and usefulness which were described below. 

4.1 Database Construction 

In order to construct the database for ADRs, six datasets were collected from five data 

sources. MedDRA, DrugBank, and HGNC were sources for complete reference data of 

ADR terms, drug information, and protein naming, respectively. Other datasets were 

gathered from DrugBank, Canada Vigilance Adverse Reaction Online Database, and 

PubMed that provided association data of drug-target protein, ADR-drug, and ADR-

protein, respectively. PubMed was an extraordinary source to recognize ADR-protein 

relations which were accumulated by literature mining from Modified 

BioAID_ProteinDiscovery workflow in Taverna Workbench. Because the objective of 

this project was to construct the prototype database, only PTs in SOC of hepatobiliary 

disorders were applied for ADR-protein association discoveries. In addition, 

hepatobiliary disorders were the most common adverse indication leading to drug 

candidate failure or withdrawal from the market (Watkins, and Seeff, 2006; Uetrecht, 

2009) and numbers of them were 163 terms that were suitable to test the prototype 

database.  

After collecting six datasets, data preparation was applied. This process had to be 

performed for duplicate data removal, field selection, and text editing. While ADR-

protein associations were additionally manipulated by python programming in 

Appendix A, drug information was investigated for the predictive score for ADR class 

using data mining in Weka. Based on the construction of hypotheses by Swanson 

(1990), all pairs of association data were finally linked together on a share component 

and then merged into one. As December 2010, the summary of datasets and the 

connected associations of ADR-drug-protein that were utilized to assemble the database 

for ADRs were shown in Table 4.1. 
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Table 4.1 The summary of datasets and the connected associations of ADR-drug- 

  protein in database for ADRs construction 

Data Source Provided Information Numbers of Record 

MedDRA Lowest level terms of ADR 68,661 

Preferred terms of ADR 18,919 

System organ classes of ADR 26 

HGNC Information of protein 19,316 

DrugBank Information of drug 4,774 

Drug-target protein association 8,537 

Canada Vigilance 

Adverse Reaction 

Online Database 

ADR-drug association 51,563 

PubMed/Taverna ADR-protein association 16,228 

Associations linkage ADR-drug-protein association 130,446 

 

All datasets in Table 4.1 had been proved for steadiness except ADR-protein 

associations and the linked ADR-drug-protein associations. These two associations 

were additionally required to indicate their consistency. Moreover, predictive scores for 

ADR class of the drug that were originated from data mining were also needed to be 

justified the correctness. These results were deliberated in further detail below. 

4.1.1 ADR-Protein Associations 

The associations of ADR and protein were pulled out from literature mining and would 

be in question about the associations. This controversy would be resolved by focusing 

on well-studied ADR. Two examples, alcoholic fatty liver and hepatic steatosis, were 

employed for this task. 

Alcoholic fatty liver (steatosis) is an excessive accumulation of triglycerides and other 

fats inside liver cells which can develop to even high mortal rate disease, hepatocellular 

carcinoma. There are several molecular mechanisms of alcoholic fatty liver (Bailey, et 

al., 1999; Kono, et al., 2000; Higuchi, et al., 2001; Pritchard, et al., 2007). Even though 

cross-talks existed between various factors, Purohit, et al. (2009) summarized major 

mechanisms of alcoholic fatty liver into three distinct parts: direct ethanol metabolism, 

fat oxidation by peroxisome, and fat synthesis. The main pathways of alcoholic fatty 

liver could also occur in nonalcoholic steatohepatitis because common features of fat 

accumulation and disease progression. The proteins that were found to relate with 

alcoholic fatty liver and hepatic steatosis from literature mining process were 

enumerated in Appendix D and were compared to the reviewed pathway by Purohit, et 

al. (2009). The major depicted pathway was circled for proteins and numbered for 

pointwise mutual information (PMI) found from literature mining process. Figure 4.1 

illustrated proteins and PMI of alcoholic fatty liver and hepatic steatosis in green and 

purple, respectively. Basically, hepatic steatosis, the broader term, were noticed more 

proteins than alcoholic fatty liver. Matching proteins of alcoholic fatty liver were five: 
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ALDH2 (mitochondrial aldehyde dehydrogenase), PGC-1α (peroxisome proliferator 

activator receptor γ co-activator protein α), PPARα (peroxisome proliferator activator 

receptor α), TNF-α (tumor necrosis factor alpha), and AMPK (AMP-activated protein 

kinase). While hepatic steatosis found three matching proteins as same as alcoholic fatty 

liver, it did not obtain ALDH2, and AMPK. In addition, hepatic steatosis had been 

observed seven more corresponding proteins: CYP4A (cytochrome P450 4A), SIRT1 

(sirtuin1), ACC (acyl-CoA carboxylase), SREBP (sterol regulatory element binding 

protein), STAT3 (signal transducer and activator of transcription 3), FAS (fatty acid 

synthase), and CPT-1 (carnitine palmitate transferase-1). Although alcoholic fatty liver 

and hepatic steatosis found different corresponding proteins, they were specific on their 

own paths. Alcoholic fatty liver found the matching proteins spatially dispersed 

throughout the three major parts, while the general term as hepatic steatosis was 

confined to not be found the matching proteins in the way of direct ethanol metabolism. 

Moreover, PMI of ADR-protein associations from both alcoholic fatty liver and hepatic 

steatosis was not up close to zero which indicated about attractive relations between 

ADR and protein. In conclusion, the process of modified BioAID_ProteinDiscovery 

workflow in Taverna could be assumed to uncover admirable relations between ADR 

and protein. 
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Figure 4.1 The matching proteins of alcoholic fatty liver and hepatic steatosis to the  

   authenticated major pathways, modified from Purohit, et al. (2009) 
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4.1.2 Information of Drug 

In order to evaluate the database performance, a probability score of drugs to ADR class 

was calculated from nine quantitative structure-properties using data mining. And in the 

prototype database of this research, only scores of drugs in the ADR class of 

hepatobiliary disorders had completely examined. Four prediction models were built 

from Weka using ten folds cross-validation technique and results were shown in Table 

4.2. Decision tree gave the highest correctly classified instances, kappa statistic, average 

true positive rate, average precision, and average recall while it had the smallest value 

for three error measurements. K-nearest-neighbor formed the second best model by 

eight metrics and the outstanding mean absolute error. So decision tree and K-nearest-

neighbor were two methods for constructing models that were further applied to 

compute the possible score of drugs to hepatobiliary disorders. 

After examining the top two models for predictive score, the results had to be evaluated 

with experimental data (Ivanciuc, 2008). Unfortunately, the model of decision tree that 

was the best did not reflect the actuality. It generated drugs that were really mentioned 

in DrugBank causing hepatobiliary disorders and had predictive score more than fifty 

percent which was less than that of K-nearest-neighbor model. Furthermore, both 

decision tree and K-nearest-neighbor models were assessed their predictive scores with 

acetaminophen, the most common drug that can cause potentially liver damage (Clark, 

et al., 1973; Yan, 2014). Decision tree model only created predictive score of 

acetaminophen to hepatobiliary disorders at 9.1 percent. On the other hand, the rival 

model can generate predictive score at 99.1 percent. K-nearest-neighbor model was 

finally adopted to make a model for forecasting the possible score of drugs to 

hepatobiliary disorders because it created satisfied classification model that did not 

predict the overfit results to experimental data. 

With K-nearest-neighbor model, the highest predictive score to hepatobiliary disorders 

was 99.7 percent and included eight medications: Amodiaquine, Benzyl Benzoate, 

Diethylcarbamazine, Oxamniquine, Proguanil, Halofantrine, Fumagillin, and Bithionol. 

Mostly, they were drugs for treatment of blood parasite. Amodiaquine (Kerb, et al., 

2009; Srivastava, et al., 2010), Proguanil (Grieshaber, et al., 2005; Jacquerioz and Croft, 

2009), and Halofantrine (Watkins and Seeff, 2006; Adaramoye, et al., 2008,) were 

applied to treat malaria infected liver cells and had the reports about hepatic diseases. 

While Diethylcarbamazine (Palumbo, 2008) was used for filariasis, Oxamniquine 

(Utzinger and Keiser, 2004) advanced schistosomiasis. In terms of other medicines, 

Bithionol (Price, et al., 1993) was a withdrawn anthelmintic medication that used to 

treat liver flukes and Fumagillin was reported by Zbidah, et al. (2013) to stimulate 

eryptosis. Benzyl Benzoate (Sparsa, et al., 2006) could also lead to liver disease when it 

was co-administrated with Ivermectin. According to this information, drugs were 

checked that they were actually forecasted a possibility to occur hepatobiliary disorders 

from an appropriate model. 



48 

Table 4.2 Results of four prediction models that were built from Weka using ten folds  

  cross-validation technique 

Summary 

Method 

Decision 

Tree 

K-Nearest-

Neighbor 

Neural 

Network 
SVM 

Correctly classified instances 64.15% 63.21% 57.55% 50% 

Incorrectly classified instances 35.85% 36.79% 42.45% 50% 

Kappa statistic   0.283 0.2642 0.1509 0 

Mean absolute error    0.4002 0.3705 0.4436 0.5 

Root mean squared error 0.544 0.6005 0.6015 0.7071 

Average true positive rate 0.642 0.632 0.575 0.5 

Average false positive rate 0.358 0.368 0.425 0.5 

Average precision 0.643 0.634 0.575 0.5 

Average recall 0.642 0.632 0.575 0.5 

 

4.1.3 ADR-Drug-Protein Associations 

All pairs of association data were connected on a share element to gain ADR-drug-

protein associations and then removed the duplication. These procedures created 

130,446 ADR-drug-protein associations which 70,579 were in ADR group of 

hepatobiliary disorders linked to their relevant biological entities as illustrated the 

network in Figure 4.2. The consistency of ADR-drug-protein associations was 

examined with the identical technique of ADR-protein association in topic 4.1.1. 

Acetaminophen-induced liver necrosis was applied as an example. 

 

 

Figure 4.2 Network of ADR-drug-protein associations of hepatobiliary disorders 
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Acetaminophen (paracetamol or N-acetyl-p-animophenol or APAP) is a commodious-

used counter analgesic and antipyretic drug. Although acetaminophen is believed to be 

safer than other drugs in the same category, it can produce a centrilobular hepatic 

necrosis that can be lethal. Hinson, et al. (2010) summarized the mechanisms involved 

in acetaminophen-induced liver necrosis. They mentioned that the mechanistic of 

acetaminophen-induced hepatic necrosis and the repair system of acetaminophen-

induced hepatic necrosis had an important role in development of acetaminophen 

toxicity. After mapping the generated information of ADR, drug, and proteins to the 

study of Hinson, et al., the database for ADRs showed that it could produce the 

appropriate associations of ADR-drug-protein. All of the mechanistic of 

acetaminophen-induced hepatic necrosis and the repair system of acetaminophen-

induced hepatic necrosis were uncovered proteins from database for ADRs, illustrated 

in Figure 4.3 and Figure 4.4, respectively. In mechanism of acetaminophen-induced 

hepatic necrosis, three proteins were harmonized. They were iNos (inducible nitric 

oxide synthase), TNF-α, and IFNγ (interferon gamma). Additionally, the repair 

mechanism of acetaminophen-induced hepatic necrosis discovered five proteins: TNF-

α, STAT3, HGF (hepatocyte growth factor), VEGF (vascular endothelial growth 

factor), and HMOX (heme oxygenase-1). These findings assumed that database for 

ADRs could generate the pertinent associations between ADR, drug, and protein. 

 

N
iNosTNF-α, IL-1α, IL-1β, IFNγ

Acetaminophen-induced liver necrosis
 

Figure 4.3 The matching proteins of acetaminophen-induced hepatic necrosis to the  

 mechanistic determinants in acetaminophen-induced hepatic necrosis,  

 modified from Hinson, et al. (2010) 



50 

 

4.2 Web Interface 

The constructed database was displayed via web browser which applied PHP for 

interacting with the database. The interfaces were designed and written in HTML to the 

most friendly and understandable to users. The four main pages were home, search, 

browse, and help. The home page gave the general information of the database. The 

search page, as illustrated in Figure 4.5, was designed for supporting user query as 

record number, ADR name, drug name, or protein name. Database for ADRs allowed 

combinatory search and gave the suggestion to prevent question of users from no result. 

After applying keyword, the next page repeated user inquiry and showed possible terms 

that keyword could also be harmonized. This enabled users to select what the closest 

was according to their requirement and assisted in case users questioned an ambiguous 

name, as shown in Figure 4.6. After choosing the particular query, the result page was 

then shown the outcome of user query and interesting related entity. Each result could 

be expanded to look at the table that contained user question with interesting related 

entity and remained substance from ADR-drug-protein relationships. Users could 

perceive more details of each entity by clicking on number or fetched the details of 

ADR, drug, protein, and reference in tab delimited text file from download function. 

Furthermore, the result page of database for ADRs provided the link to DAVID for 

annotating pathway of proteins. This was beneficial to acknowledge users about 

mechanisms involved in their questions. The result page was illustrated in Figure 4.7. 

Users also had the ability to examine by the group of each term in browse page, as 

shown in Figure 4.8, which ADRs were grouped by SOC, drugs were categorized by the 

IL-8

Endothelial cell

HGF

STAT3

GSH restore, HMOX

Acetaminophen-induced liver necrosis
 

Figure 4.4 The matching proteins of acetaminophen-induced hepatic necrosis to the  

 mechanism in repair of acetaminophen-induced hepatic necrosis,  

 modified from Hinson, et al. (2010) 
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first level of ATC classification, and proteins were systematized as their enzyme 

reaction. Finally, the help page served the introduction of the project and user 

guidelines for using the database. 

 

 

 

 

Figure 4.6 Web-based design of page that repeat query from users and show possible  

  word of it in the database 

  

Figure 4.5 Web-based design of search page 



52 

 

 

4.3 Application Demonstration 

Following the web interface designs of the database for ADRs, there mainly are three 

groups of user who benefited from utilizing the database on their own purposes. The 

points of database usage, as previously displayed in Figure 3.8, were examined and 

described in further detail below. 

4.3.1 Drug 

From the point of drug, doctors and patients desired to have the ability for realizing 

what ADR could even possibly cause from their medication. Even though doctors and 

patients might have their knowledge or had the ability to read from medical package 

insert, there were not necessary complete or up-to-date. As example when user browsed 

 

Figure 4.8 Web-based design of browse page 

  

Figure 4.7 Web-based design of result page 
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in hepatobiliary disorders, Table 4.3 listed the top nine medications that had the highest 

degree to ADR in this group. These nine drugs were implied that they were found to 

cause the most hepatobiliary disorders. Simvastatin, a lipid-lowering agent, was 

discovered that it was the top to cause the substantial hepatobiliary disorders. 

Simvastatin could induce fifty hepatobiliary disorders such as hepatic fibrosis and 

hyperbilirubinaemia. Even though Simvastatin was found out to originate more 

hepatobiliary disorders than other medicines, it had low predictive score at 0.9 percent. 

This was corrected according to the precautions in WebMD (Boots UK Limited and 

WebMD UK Limited, 2013) that Simvastatin was informed about rare liver problems. 

The second to eighth top medications that can cause hepatobiliary disorders were 

nutritional supplements and had not been stated for hepatobiliary disorders before. This 

information might beneficial to make the warning for patients who were unwanted 

persons from an excessive supplementation and avoidance of unintended reactions. 

Lastly, Drotrecogin alfa (Lai, 2013), the criticized medicine that was used in severe 

sepsis, was ranked at the ninth drug to cause a lot of hepatobiliary disorders. It activated 

protein C combines with protein S on platelet surfaces and then degraded factor Va and 

factor VIIIa, thereby reducing blood coagulability. These might make Drotrecogin alfa 

to be implicated in, for example, peliosis hepatis which was randomly distributed 

multiple blood-filled cavities throughout the liver. Although some ADRs that related to 

drug had not been previously informed, they would be a new knowledge or an 

infrequent event, such as idiosyncratic reaction, which could be formed drug precaution 

and interested to be further researched. 

Table 4.3 Top nine medications that were found to cause the most hepatobiliary  

  disorders 

Generic Name 
Number of 

Hepatobiliary Disorders 

Predictive 

Score (%) 

Simvastatin 50 0.9 

L-Aspartic Acid 49 99.1 

L-Alanine 48 99.5 

L-Glutamic Acid 48 99.1 

Pyridoxal Phosphate 48 0.9 

Glycine 47 99.1 

L-Cysteine 47 0.9 

Pyruvic acid 47 99.5 

Drotrecogin alfa 40 99.1 

 

4.3.2 Protein 

Many of databases in pharmacology and the knowledge from literatures provided the 

information about drugs and target proteins. Neither the study of drug developers nor 

researchers necessarily completed this information. The linkage between association 
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data that was applied in this research might expand the knowledge about drugs and 

target proteins. As the comparison in Table 4.4 and Table 4.5, database for ADRs 

increased the information about drug and target protein, respectively. In Table 4.4, 

DrugBank declared that fatty acid desaturase 1 was the target protein of Alpha-linolenic 

acid and Icosapent. Surprisingly, database for ADRs found Fluconazole, 

Acetaminophen, Omeprazole, Clozapine, Fluxetine, Methotrexate, Tamoxifen, and 

Oxybutynin to also be drugs that had fatty acid desaturase 1 as their target protein. 

These indicated that database for ADRs had the power to suggest eight more 

medications to have the same target protein than DrugBank. Even though Fludarabine 

was the only one medication that was found in database for ADRs as a drug for 

apoptosis regulator Bcl-2, it also expanded the knowledge of four medications from 

DrugBank. On the other hand, drug promiscuity was recognized by many target proteins 

(Brown and Okuno, 2012; Hu and Bajorath, 2013). The comparison between DrugBank 

and database for ADRs when searching for target proteins was displayed in Table 4.5 

and also exhibited the increment of knowledge. Both Orlistat and Calcitriol were found 

an addition target protein from DrugBank. Lipoprotein lipase was remarked to be a 

target protein of Orlistat, while Cytochrome P450 27B1 was noticed for Calcitriol. 

Overall, this represented the capability of database for ADRs to advise the possible 

drugs and target proteins. 

Table 4.4 The comparison between DrugBank and database for ADRs to provide the  

  information about medications when searching by protein 

Protein DrugBank Database for ADRs 

Fatty acid 

desaturase 1 
Alpha-Linolenic Acid Alpha-Linolenic Acid Icosapent 

Icosapent Fluconazole Acetaminophen 

  Omeprazole Clozapine 

  Fluxetine Methotrexate 

  Tamoxifen Oxybutynin 

Apoptosis 

regulator Bcl-2 
Docetaxel Fludarabine   

Ibuprofen 

 

  

Paclitaxel 

 

  

Rasagiline     
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Table 4.5 The comparison between DrugBank and database for ADRs to provide the  

  information about target proteins when searching by drug 

Drug DrugBank Database for ADRs 

Orlistat Pancreatic triacylglycerol lipase Lipoprotein lipase 

  Gastric triacylglycerol lipase Fatty acid synthase 

  Fatty acid synthase   

  Cytochrome P450 3A4   

  Cytosolic phospholipase A2   

Calcitriol Vitamin D3 receptor (1,25-

dihydroxyvitamin D3 receptor) 

Vitamin D3 receptor (1,25-

dihydroxyvitamin D3 receptor)   

  Cytochrome P450 24A1, mitochondrial Cytochrome P450 27B1 

  Cytochrome P450 3A4   

4.3.3 ADR 

In the database for ADRs, searching ADR allowed researchers to acknowledge drugs 

and relevant proteins of ADR which assisted in mechanism studies. These proteins were 

utilized to map for underlying mechanism using functional annotation tools in Database 

for Annotation, Visualization and Integrated Discovery (DAVID). This procedure was 

beneficial to those who examined unknown mechanisms or needed to increase the 

knowledge of ADRs. To test the efficiency, the comparisons to known system, 

alcoholic fatty liver and hepatic steatosis, were analyzed in further description.  

The related proteins of alcoholic fatty liver and hepatic steatosis from database for 

ADRs, as listed in Appendix E, were annotated for the pathway using functional 

annotation tools in DAVID. Unfortunately, proteins that related to alcoholic fatty liver 

were straggly annotation and did not found general agreement of pathway on each 

protein. On the other hand, given proteins of hepatic steatosis were accompanied to be 

mapped on nine pathways from Biocarta and seventeen pathways from KEGG. The lists 

of mapped pathways from Biocarta and KEGG and annotated proteins were shown in 

Table 4.6 and Table 4.7, respectively. Because of DAVID might overestimate on some 

pathways, the annotated pathways from KEGG and Biocarta had to be reconsidered by 

reading their descriptions even they related to the interested subject (Huang, et al., 

2009). After revising all pathways, KEGG remained six pathways while five pathways 

persisted in Biocarta. The names of related pathway from KEGG were PPAR signaling 

pathway, Adipocytokine signaling pathway, Arachidonic acid metabolism, Fatty acid 

metabolism, Steroid hormone biosynthesis, and Linoleic acid metabolism. The names of 

related pathway from Biocarta were Nuclear receptors in lipid metabolism and toxicity, 

Mechanism of gene regulation by peroxisome proliferators via PPARα, Reversal of 

insulin resistance by leptin, Visceral fat deposits and the metabolic syndrome, and Role 

of PPAR-gamma coactivators in obesity and thermogenesis. All of revised pathways 

from KEGG and Biocarta could involve in hepatic steatosis mechanism from their 

responsibilities in lipid metabolism, storage, or elimination. Some pathways were 

consensus amongst Biocarta and KEGG. First couple was Reversal of insulin resistance 
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by leptin from Biocarta and Adipocytokine signaling pathway from KEGG which were 

consistent with insulin response. Another harmonious pathway was PPAR signaling 

pathway from KEGG that was compatible with Mechanism of gene regulation by 

peroxisome proliferators via PPARα and Role of PPAR-gamma coactivators in obesity 

and thermogenesis from Biocarta. All of reconsidered annotated pathways can be 

relocated to previous described pathways by Purohit, et al. (2009), except Arachidonic 

acid metabolism, Linoleic acid metabolism, and Steroid hormone biosynthesis. These 

three pathways from KEGG were so advantages to be researched which could obtain 

the additional explanations of hepatic steatosis. 

Table 4.6 The lists of mapped pathways of hepatic steatosis from Biocarta 

Pathway Term Gene 

Count 

Gene Symbol 

Nuclear Receptors in Lipid Metabolism 

and Toxicity 

8 CYP3A4, CYP4A11, PPARA, 

NR1I2, CYP2C9, PPARG, 

ABCC3, ABCB1 

Hypoxia and p53 in the Cardiovascular 

system 

5 AKT1, HIF1A, BAX, ABCB1, 

MAPK8 

Toll-Like Receptor Pathway 5 PPARA, MYD88, TLR2, 

MAPK8, TLR4 

Mechanism of Gene Regulation by 

Peroxisome Proliferators via PPARα 

5 LPL, PPARA, TNF, FABP1, 

PPARGC1A 

Reversal of Insulin Resistance by Leptin 3 LEP, ACACA, CPT1A 

Visceral Fat Deposits and the Metabolic 

Syndrome 

3 LPL, TNF, PPARG 

Role of PPAR-gamma Coactivators in 

Obesity and Thermogenesis 

3 LPL, PPARG, PPARGC1A 

Antigen Dependent B Cell Activation 3 HLA-DRB1, FAS, IL10 

Regulation of transcriptional activity by 

PML 

3 TNF, FAS, SIRT1 
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Table 4.7 The lists of mapped pathways of hepatic steatosis from KEGG 

Pathway Term Gene 

Count 

Gene Symbol 

Neuroactive ligand-receptor 

interaction 

15 DRD1, TACR3, DRD2, DRD4, LEP, 

HRH1, HTR1A, CHRM3, CHRM2, 

CHRM1, HRH4, F2, HTR2C, F2R, 

HTR2A 

Pathways in cancer 11 AKT1, HIF1A, PTGS2, BAX, SOS2, 

PPARG, NKX3-1, IGF1, MAPK8, 

FAS, STAT3 

PPAR signaling pathway 11 LPL, CPT1B, CYP4A11, PPARA, 

CPT2, CD36, SCD, PPARG, FABP1, 

CPT1A, ANGPTL4 

Adipocytokine signaling pathway 10 LEP, AKT1, CPT1B, PPARA, CD36, 

TNF, MAPK8, PPARGC1A, STAT3, 

CPT1A 

Toll-like receptor signaling 

pathway 

9 AKT1, TNF, MYD88, IRF7, TLR2, 

IRF3, MAPK8, TLR4, SPP1 

Calcium signaling pathway 9 DRD1, HRH1, TACR3, CHRM3, 
CHRM2, CHRM1, HTR2C, F2R, 

HTR2A 

Retinol metabolism 8 CYP3A4, CYP4A11, DGAT1, 

CYP1A1, CYP2C19, CYP2C18, 

CYP2C9, UGT2B4 

Metabolism of xenobiotics by 

cytochrome P450 

8 CYP3A4, GSTA3, CYP1A1, 

CYP2C19, CYP2C18, CYP2C9, 

GSTK1, UGT2B4 

Arachidonic acid metabolism 8 CYP4A11, PTGS2, CYP2C19, 

CYP2C18, CYP2C9, PTGS1, 

EPHX2, GGT1 

Drug metabolism 7 CYP3A4, GSTA3, CYP2C19, 

CYP2C18, CYP2C9, GSTK1, 

UGT2B4 

Jak-STAT signaling pathway 7 LEP, AKT1, IL6ST, SOS2, IL11RA, 

STAT3, IL10 

Apoptosis 7 TNFRSF10A, AKT1, TNF, 

TNFRSF10B, MYD88, BAX, FAS 

Gap junction 5 DRD1, DRD2, SOS2, HTR2C, 

HTR2A 

Fatty acid metabolism 4 CPT1B, CYP4A11, CPT2, CPT1A 

Steroid hormone biosynthesis 4 CYP3A4, CYP17A1, CYP1A1, 

UGT2B4 

Linoleic acid metabolism 4 CYP3A4, CYP2C19, CYP2C18, 

CYP2C9 

Allograft rejection 4 TNF, HLA-DRB1, FAS, IL10 
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