
CHAPTER 2 LITERATURE REVIEWS 

2.1 Clinical Pharmacology 

Pharmacology is the science of drugs and their effects on biological systems. Drug, the 

recreational substance in a medicine, can be defined as a chemical that can cause a 

change in a biological system (Shile and Stöppler, 2008). Modern pharmacology owes 

part of its developments to William Withering, who published a book entitled An 

Account of the Foxglove and Some of Its Medical Uses in 1785. He noticed the power of 

using digitalis as medicine for congestive heart failure which constructed a way of 

rationally approaching a therapeutic problem. Several botanical drugs were therefore 

extracted, purified, and concentrated into fractionated components to be used as drugs 

(Burger, 1995; Hollinger, 2002). Subsequently, clinical pharmacology which often 

differed from basic pharmacology has been developed. Clinical pharmacology can be 

specifically characterized as the study of drugs and the exertion of their effects in 

human body (Atkinson, et al., 2006). This knowledge involves the complex interaction 

between the patient and the drug. Over recent years clinical pharmacology has 

undergone great expansion resulting that allows the understanding of molecular action 

and the capacity to exploit the enormous therapeutics potential.  

2.1.1 Principles of Clinical Pharmacology 

Drugs are chemical compounds that naturally apply their structure to modify or 

influence the way the body works in biological activities. Drugs can also mimic, 

facilitate, or antagonize a normally occurring phenomenon. An understanding of 

pharmacological concepts is important for drug evaluation and individualized therapy 

management. The discipline that drives the pharmaceutical industry is described in 

further detail below. 

2.1.1.1 Pharmacokinetics 

If drug has a therapeutic effect, it first has to be administered and absorbed in some way 

to reach its site of action. Later administered and absorbed, distribution to different 

parts of the body follows. The passage necessarily gets through the liver that almost 

metabolizes some drugs into totally inactivated, and then generally excretes via the 

kidney. The properties of the movement of drugs into, within, and out of the body are 

known as pharmacokinetic (PK) characteristics. The components of PK are ADME; 

administration or absorption, distribution, metabolism, and elimination or excretion 

(Thorp, 2008). 

Administration or Absorption of drugs 

In order to get the response, drugs have to be administered in some route. There are two 

major routes of drug administration: enteral and parenteral. Enteral route means to be 

permeable within the gastrointestinal tract that starts from oral and ends at rectal. By 
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contrast, parenteral route includes all other means of enteral route, for example, 

intravenous injection, inhalation, and skin. 

Drugs distribution 

When drugs are absorbed from site of administration, then blood circulation transports 

the free drugs to the tissues within plasma. The body can be considered to be assembled 

of aqueous and lipid compartments. The distribution of drugs into different 

compartments depends on aqueous solubility, blood flow, plasma protein binding, lipid 

solubility, acid dissociation, tissue sequestration, metabolism and excretion, and volume 

of distribution. 

Drugs metabolism 

Most drugs are chemically modified or metabolized in the body which determine the 

duration of drugs in action, elimination, and toxicity. Drug metabolism may provide an 

active compound to inactive, or activate an inactive precursor, or produce a toxic by-

product. However most tissues in the body have the enzymes for metabolizing a variety 

of substances, the majority of drug metabolism takes place in the liver. There are two 

general types of metabolic reactions, Phase I and Phase II, based on chemical nature of 

drug. Phase I is biotransformation that cytochrome P450 monooxygenases (CYP) 

catalyze drugs and endogenous compounds by oxidation in the liver to a more water-

soluble metabolites. Phase II is the reactions that conjugate drugs or metabolites of 

Phase I into more hydrophilic, less toxic substances by adding polar product to 

endogenous species. The most important conjugation reaction is glucuronidation, a 

major portion of drug metabolites in urine excretion. Other conjugations occur with 

sulfate, acetyl, methyl, and glycine groups. Additional effects on drug metabolism are 

enzyme induction and inhibition, species, sex, age, and individual variation (Atkinson, 

et al., 2006; Thorp, 2008). Some drugs experience both Phase I and Phase II reactions 

while others are possibly metabolized by either type of reaction only as shown in Figure 

2.1. 

 

 

 

Figure 2.1 Possible routes for metabolism of drugs (Thorp, 2008) 
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Elimination/Excretion of drugs 

Even though drugs intend to be therapeutic use, they also have the potential as unknown 

substances that should be rapidly eliminated from the body. The main route of excretion 

of drugs and drug metabolites is via the kidneys, particularly nephron. Additionally, 

biliary, pulmonary, sweat, salivary, and mammary glands are also elimination routes in 

order of decreasing importance (Hollinger, 2002; Thorp, 2008). 

2.1.1.2 Pharmacodynamics (PD) 

Using of medications, drugs are usually distributed through the target site that profit on 

therapeutic effect to cause the treatment. However, the discipline that quantifies the 

relationship between drug concentration at the site of drug action and the drug’s 

pharmacological effect is essential. Body functions are mediated by the way of control 

systems that required chemotransmitters or local hormones, receptors, enzymes, carrier 

molecules and other specialized macromolecules such as DNA. Drugs act by binding to 

some specialized component of the cell to alter their function. Understanding of drugs 

that can have and produce the effects is known as pharmacodynamics (PD). Hence, PK, 

what the body does to drugs, and PD, what drugs do to the body, comprise two major 

subdivisions of clinical pharmacology (Bennett and Brown, 2003; Atkinson, et al., 

2006; Thorp, 2008) 

2.1.1.3 Pharmacogenetics (PGt) and Pharmacogenomics (PGx) 

During the clinical use of a drug, a prescribing physician has no intends to the 

individual response because of the broad assumption that all patients are homogeneous 

group, little or no interindividual variation. The finding that severe anemia caused by an 

inherited deficiency of glucose-6-phosphate dehydrogenase (G6PD) in 1950s is the first 

example that genetics can determine apparently unpredictable drug toxicity (Meyer, 

2000; Giacomini, et al., 2007). It sets out that genetic factors (genotype) of an 

individual significantly govern the safety and efficacy outcomes in drug responses 

(phenotype). The scientific field that studies the role of genetics and the possible 

relationship to medication therapy is referred to as pharmacogenetics (PGt) or 

pharmacogenomics (PGx). Even they are used interchangeably, they are still unlike 

(Lee, et al., 2010). Based on FDA definitions, PGx is the general study of all of the 

many different genes that can determine new drug behavior while PGt is defined as the 

study of variations in DNA sequence, individual gene variants, as related to drug 

metabolism and response (Roden, et al., 2006; Al-Ghoul and Valdes, 2008). PGt 

influences PD in pharmacological targets of drugs and drug metabolizing enzymes by 

presenting genetic polymorphisms that affect drug response. PGt influences PK in most 

drug metabolizing enzymes that are expressed in genetically variant forms. As a 

consequence, PGt grounds the functional basis of PK and PD. Methodologies of PGx 

and PGt can personally lead to their ultimate goal that optimize drug treatments in both 

terms of efficacy and safety (Lesko and Woodcock, 2004; Al-Ghoul and Valdes, 2008). 
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2.1.1.4 Systems Pharmacology 

During the latter half of the 20th century, biology is strongly influenced by approaches 

that focus on the generation of information. The advent of high-throughput (HT) 

experimental technologies is forcing biologist to view cells as systems, rather than 

fixing their attention on individual cellular components. Analysis biology in systems is 

the discipline that academics and also pharmaceutical industries are rapidly accepting. 

Systems pharmacology research changes the way believes in drug actions. As shown in 

Figure 2.2, the classic view of drug actions, therapeutic effects and side effects are 

modulated though different pathways, has been changed to systems pharmacology view. 

It considers the nature of the links that connect components and expresses the functional 

states of the networks which leading to both therapeutic and adverse reactions (Berger 

and Iyengar, 2009; Csermely, et al., 2013). 

 

 

Network analysis in clinical pharmacology not only aims to describe and to understand 

the operation of complex biological in systems, but also helps to identify new drug 

targets, leads to optimize drug efficacy or other potentially interesting properties of the 

drugs, and minimizes unpleasant effect of the drugs (Butcher, et al., 2004; Ekins, et al., 

2005; Tatonetti, et al., 2009; Pujol, et al., 2010). For all of advantages, systems 

pharmacology, if absolutely successful, should receive the privilege to play a central 

part in the development of novel polypharmacology strategies. 

2.1.2 Drugs Development 

The rational of drug discovery has relied upon increasing numbers of known natural 

chemical mediators. In the past decade, PGt and systems pharmacology have led to a 

new pathway from previous mysterious mechanism. Drug development, therefore, is a 

complex process that is divided into preclinical research and development (R&D) and 

 

(A) (B) 

Figure 2.2 Changing view of drug actions (Berger and Iyengar, 2009) 

(A) The classic view of drug action. (B) The systems pharmacology view of drug 

action 
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clinical development phase (Roses, 2004). For having a potential target, usually protein, 

drug candidate is identified and optimized, then put through in vitro screens and animal 

testing in preclinical phase as illustrated in Figure 2.3. 

 

After preclinical, Phase I clinical development begins with a limited number of studies 

in healthy volunteers or patients to test for safety and dosage in human. Phase II studies 

in a selected group of patients. They are conducted to obtain therapeutic efficacy and 

drug toxic responses. Phase III trials confirm therapeutic efficacy and document safety 

of drug in a larger patient population before accreditation. Clinical phase of drug 

development is exhibited in Figure 2.4. 

 

 
Figure 2.3 Preclinical phase of pharmaceutical pipeline, modified from Roses (2004) 

 

Figure 2.4 Clinical phase of pharmaceutical pipeline, modified from Roses (2004) 
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These pharmaceutical pipelines usually require several years and huge cost of 

development, approximately 1 billion US dollars, to advance a new successful drug 

(Roses, 2004; Atkinson, et al., 2006). Nevertheless, tiny investments are successful 

(Csermely, et al., 2013). One new molecular entity (NME) launched to the market 

requires approximately 24 development candidates to enter into the development 

pipeline. Attrition of Phase II studies is the key challenge, where only 25% of drug-

candidates survive. The success rate of NMEs for 14 large pharmaceutical companies is 

demonstrated in Figure 2.5. Because of the failures during development or especially 

after launching, the approach to minimize these downfalls is still required. 

 

2.2 Adverse Drug Reactions (ADRs) 

Safety issues are necessarily emerged throughout the history of drug. From preclinical 

screening through clinical trials and, significantly, after the marketed for a myriad of 

populations, drug safety is investigated. Even though ADRs are relatively rare once a 

drug is marketed, they can lead to drug withdrawals. Furthermore, ADRs increase 

unnecessary hospital stay and are numbered to be the fourth leading cause of death in 

the United States, not far behind cancer and heart disease (Giacomini, et al., 2007; Wu, 

et al., 2010). ADRs are acknowledged to shorten not only the treatment failure, but also 

advance quality of life or medication confidences. It would be worthwhile to 

pharmaceutical industry if ADRs can be prevented. 

2.2.1 Definitions 

Mostly, the context of adverse drug reactions is defined ambiguous. The fundamental 

definition is “An injury resulting from medical intervention related to a drug” which 

unclear for the word “injury” and “medical”. The standard statement of meaning, 

WHO’s definition which has been used more than 30 years, is “A response to a drug 

that is noxious and unintended and occurs at doses normally used in man for the 

prophylaxis, diagnosis or therapy of disease, or for modification of physiological 

 

Figure 2.5 The success rate of new molecular entities (NMEs) through preclinical  

 research and development (R&D) and clinical development phase  

 (Csermely, et al., 2013) 



10 

function”. Even though, the word “noxious” is loose explanations that include all minor 

reactions, for instance, slight dryness of the mouth. This global statement crushes the 

surveillance systems that WHO currently operate. Thus, Edwards and Aronson (2000) 

characterize ADRs: 

“The appreciably harmful or unpleasant reaction, resulting from an 

intervention related to the use of a medicinal product, which predicts 

hazard from future administration and warrants prevention or specific 

treatment, or alteration of the dosage regimen, or withdrawal of the 

product”. 

The terms ‘adverse drug reaction’ and ‘adverse drug effect’ are interchangeable. 

Adverse drug reaction is seen from the point of view of patient, whereas adverse drug 

effect is seen from point of view of drug. Moreover, the terms adverse drug reaction and 

adverse drug effect are supported to ‘toxic effect’ and ‘side effect’. Toxic effect is an 

overestimation of the desired therapeutic effect at normal dose and the same mechanism 

as the therapeutic effect. An example of toxic effect is a calcium antagonist caused 

headache by vasodilatation that is the same mechanism as the therapeutic effect. 

Otherwise, side effect occurs via some other mechanism of therapy and may be dose-

related or not. The example of side effect is anaphylaxis from penicillin usage. 

2.2.2 Epidemiology 

ADRs are the major cause of morbidity and mortality worldwide. They occur in 

everyday medical practice. For example, drug induced morbilliform rash is the 

commonest adverse reaction (Riedl and Casillas, 2003). 14.7% of French and 17% of 

Swiss hospital inpatients have given reliable histories of systemic adverse reactions to 

one or more drugs (Vervloet and Durham, 1998). From US hospitals, 6.7% of inpatients 

have serious ADRs and 0.32% of these have fatal reactions that cause about 100,000 

deaths per year. This number drives ADRs between the fourth and sixth leading cause 

of death in hospital inpatients (Meyer, 2000). In addition, the estimated 10,000 

Canadians die annually from ADRs (Kondro, 2005). Wu, et al. (2010) summarized the 

annual number of total hospital admissions in ten years. They found 557,978 (0.9%) 

from 59,718,694 emergency hospital admissions were diagnosed code indicative of 

ADRs. From these incidents, 26,399 (4.7%) died. The details of Wu, et al. study are 

shown in Table 2.1. 
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Table 2.1 Total number of emergency admissions which diagnosis of ADRs from 1999 

to 2008, modified from Wu, et al. (2010) 

Year 

Total 

number of 

admissions 

Number 

with drug-

induced 

codes 

Total 

admissions 

due to ADRs 

In-hospital 

mortality of 

ADRs 

admissions 

In-hospital 

mortality 

rate of ADRs 

admissions 

1999-2000 5,321,796 16,434 42,453 1,816 4.3 

2000-2001 5,319,791 16,237 43,288 1,879 4.3 

2001-2002 5,337,034 17,151 45,518 2,259 5.0 

2002-2003 5,494,066 16,645 47,455 2,480 5.2 

2003-2004 5,818,057 18,307 53,218 2,672 5.0 

2004-2005 6,116,507 19,652 56,629 2,679 4.7 

2005-2006 6,423,646 20,465 61,931 2,878 4.6 

2006-2007 6,496,945 20,009 64,536 3,013 4.7 

2007-2008 6,560,785 20,685 67,874 3,189 4.7 

2008-2009 6,830,067 22,439 75,076 3,534 4.7 

Change (%) 

1999-2008 
28.3 36.5 76.8 94.6 10.0 

Change (%) 

2004-2008 
11.7 14.2 32.6 31.9 -0.5 

 

2.2.3 Classification 

In modern pharmacology, classification of ADRs is primary differentiated from dose-

related to non-dose-related reactions. Diagram of elementary ADRs differentiation is 

exemplified in Figure 2.6.The categorization was first designated as Type A and type B 

reactions, respectively (Vervloet and Durham, 1998; Riedl and Casillas, 2003; Thien, 

2006).  

Type A reactions are the most, about 80% of ADRs, which predictable and dose-

dependent. This type of reactions includes toxic effects, side effects, and drug-drug 

interactions.  

Type B reactions, comprise of 10–15% of ADRs, are hypersensitivity reactions that are 

unpredictable and non-dose-dependent. This type of reactions is divided into two 

subtypes: immune-mediated (5-10%) and non-immune-mediated (5-10%). Drug 

allergies are hypersensitivity reactions that involve an immune mechanism (IgE-

mediated, T cell-mediated, or an immune complex or cytotoxic reaction). Unpredictable 

non-immune-mediated reactions can be classified as pseudoallergic, idiosyncratic, and 

intolerance. Pseudoallergic reactions are the result of direct mast cell activation and 

degranulation by drugs. They may indistinguishable from Type I hypersensitivity, but 

do not involve drug-specific IgE. Idiosyncratic reactions are pharmacologic reactions 

that occur only in a small percent of the population. Drug intolerance is a lower 

threshold to the normal pharmacologic action of a drug. 



12 

 

Furthermore, two types of reaction were added: reactions related to both dose and time 

(type C) and delayed reactions (type D). The last category can be distributed into two: 

time-related reactions and withdrawal effects. In addition, a sixth category has been 

proposed: unexpected failure. Table 2.2 shows the complete ADRs classification with 

mnemonic purposes, features and examples in each category (Edwards and Aronson, 

2000). 

Adverse drug reactions

Type A (pharmacological) (80%) Type B (hypersensitivity) (10%-15%)

Side effects

Toxic effects

Secondary effects

Drug interactions

Immune-mediated 

(allergic) (5%-10%)

Non-immune-mediated 

(non-allergic) (5%-10%)

IgE-mediated

T cell-mediated

Cytotoxic or 

immune-complex 

reactions

Pseudoallergic reactions

Idiosyncratic reactions

Drug intolerance

 

Figure 2.6 Type A and Type B classification of adverse drug reactions,  

modified from Thien, (2006) 



Table 2.2 Classification of adverse drug reactions, modified from Edwards and Aronson (2000) 

Type of reaction Mnemonic Features Examples 

A: Dose-related Augments  Common  Toxic effects: 

 Related to a pharmacological action of the drug Digoxin toxicity; serotonin syndrome with SSRIs 

 Predictable  Side effects: 

 Low mortality Anticholinergic effects of tricyclic antidepressants 

B: Non-dose-related Bizarre  Uncommon  Immunological reactions: Penicillin hypersensitivity 

 Not related to a pharmacological action of the drug  Idiosyncractic reactions: 

 Unpredictable Acute porphyria, Malignant hyperthermia 

 High mortality Pseudoallergy (eg, ampicillin rash) 

C: Dose-related and 

time-related 

Chronic  Uncommon  Hypothalamic-pituitary-adrenal axis suppression by  

       corticosteroids  Related to the cumulative dose 

D: Time-related Delayed  Uncommon  Teratogenesis 

 Usually dose-related  Carcinogenesis 

 Occurs or becomes apparent some time after the 

use of the drug 

  Tardive dyskinesia 

E: Withdrawal End of use  Uncommon  Opiate withdrawal syndrome 

   Occurs soon after withdrawal of the drug  Myocardial ischaemia (β-blocker withdrawal) 

F: Unexpected 

failure of therapy  

Failure  Common  Inadequate dosage of an oral contraceptive,  

       particularly when used with specific enzyme  

       inducers 
 Dose-related 

 Often caused by drug interactions 

1
3
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2.2.4 Management 

Rapid action is sometimes important because of the serious nature of suspected ADRs, 

such as anaphylactic shock (Edwards and Aronson, 2000; Riedl and Casillas, 2003; 

Thien, 2006). The most important and effective in managing ADRs is the 

discontinuation all of the offending medication, if possible. Alternative medications 

with unrelated chemical structures should be substituted when available, otherwise, 

medicine or medicines judgment using clinical benefit-risk should be considered when 

drug withdrawal as a trial. 

If several medicines are introduced, the need for the drug, the severity of the reaction, 

and its potential for treatment have to be taken for a benefit-risk decision. The non-

essential medicines should be withdrawn first, preferably one at a time. If the reaction is 

likely to be dose-related, dose reduction should be considered. During medication 

withdrawal, the patient should be observed. The monitored period could vary depending 

on the rate of elimination of the drug and the type of pathology. 

If the patient cannot remain without a medicine that has caused an adverse reaction, 

continuing the essential treatment, meanwhile, provide symptomatic relief could be the 

option. Though when treating an adverse reaction, it is important not to submit more 

medicines than are essential. 

2.3 Database in Pharmacology 

A database is a collection of interrelated stored data (Teorey, et al., 2008). The 

integrating collection of many different types supplies the needs of multiple users 

within one or more groups. The reasons for using databases rather than files include 

greater availability to a diverse set of users, integration of data for easier access to and 

updating of complex transaction, and less redundancy of data (Lacroix, 2002; 

Hernandez and Kambhampati, 2004; Louie, et al., 2007). In pharmacology, numerous 

databases have been introduced with the same motivations as general usage in computer 

science. Each database in pharmacology accumulates various types of data depending 

on its purpose. In this review, databases in pharmacology were classified into three 

categories; chemical-target, chemical-response, and genetic-response. However, some 

databases may be overlapping classification. 

2.3.1 Chemical-Target 

Most of pharmacological databases were classified into this category. Examples and 

details of each database were described below. 

2.3.1.1 TTD (Therapeutic Target Database) 

Numbers of proteins, nucleic acids, and other molecular entities have been discovered 

as therapeutic targets that effect by binding to and modulating the activity of a particular 

target. TTD (Chen, et al., 2002; Zhu, et al., 2010) was developed to provide information 

about the known therapeutic targets described in the literatures, the targeted disease 
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conditions, the pathway information, and corresponding drugs/ligands directed at each 

of these targets. The intention of this database is to provide comprehensive information 

about the primary targets and other drug data for the approved, clinical trial and 

experimental drugs. TTD is case insensitive search by target name, drug/ligand name or 

function, disease name, or drug therapeutic classification. Significantly, the updated 

TTD by Zhu, et al. (2010) increased data to 1,894 targets, 560 diseases, and 5,028 

drugs, compared with 433 targets, 125 diseases, and 809 drugs in original released data 

by Chen, et al. (2002). The elements of targets were composed of 348 successful, 292 

clinical trial, and 1,254 research targets while drugs were composed of 1,514 approved, 

1,212 clinical trial and 2,302 experimental drugs. TTD can be accessed at 

http://bidd.nus.edu.sg/group/ cjttd/ttd.asp.  

2.3.1.2 STITCH (Search Tool for Interactions of Chemicals) 

STITCH (Kuhn, et al., 2008; Kuhn, et al., 2010b) is the database of accumulated 

information about interactions between protein and small molecules (drugs or drug-like 

molecules) which can be traced back to the original data sources. It intends to integrate 

dispersed data over the literature and various databases of biological and metabolic 

pathways, crystal structures, binding experiments, and drug-target relationships. STICH 

displays the interactions in network which can be explored interactively or used as the 

basis for large-scale analyses. Kuhn, et al. (2010b) had developed STICH 2.0 that 

connects protein from 630 organisms to over 74,000 different chemicals, including 

2,200 drugs. STITCH can be accessed at http://stitch.embl.de/. 

2.3.1.3 PDTD (Potential Drug Target Database) 

PDTD (Gao, et al., 2008) is a dual function database that associates an informatics 

database to a structural database of known and potential drug targets. It queries drug 

target information and identifies the potential binding proteins of an active compound or 

an existing drug by using reverse docking approach. The comprehensive web-accessible 

database focuses on those drug targets with known 3D-structures. As of September 

2010, PDTD had collected 1,207 entries covering 841 known and potential drug targets 

from Protein Data Bank (PDB) and literatures extractions. Drug targets of PDTD were 

categorized into 15 and 13 types according to two criteria: therapeutic areas and 

biochemical criteria. PDTD is available at http://www.dddc.ac.cn/pdtd/. 

2.3.1.4 KEGG DRUG 

KEGG (Kyoto Encyclopedia of Genes and Genomes) is an integrated database resource 

that consists of 16 main databases. The KEGG DRUG database (Kanehisa, et al., 2010) 

is one of these projects. It is a chemical structure-based and component information 

resource for all prescription in Japan including crude drug and TCM (Traditional 

Chinese Medicine) formulas. Most prescription drugs in the USA and many prescription 

drugs from Europe are also accumulated in this database. As of September 2009, KEGG 

DRUG contained about 9,000 chemical structures and therapeutic efficacy of drugs. In 

addition, it contained two types of molecular networks. The first was a molecular 

interaction network denoting interaction and/or relations with target molecules, drug 
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metabolizing enzymes, drug transporters, and other drugs. The second was the network 

of chemical structure changes in small molecules which covered series of chemical 

modifications introduced by medicinal chemists in the history of drug development, 

secondary metabolic pathways for biosynthesis of druggable natural products and drug 

metabolism. KEGG DRUG is available at http://www.genome.jp/kegg/drug/. 

2.3.1.5 DrugBank 

DrugBank is an unrivalled bioinformatics/cheminformatics resource that combines 

detailed drug data with comprehensive drug target information. Some databases, for 

example, KEGG DRUG, ChEBI, and PubChem are not specifically designed to be drug 

database that provide specific pharmaceutical information or link to specific drug 

targets. Conversely, others, such as online pharmaceutical encyclopedias, tend to offer 

much more detailed clinical information about many drugs but they are not designed to 

contain structural, chemical or physicochemical information. DrugBank solves these 

problems by combining the strengths of each data source to create a single drug 

resource that links sequence, structure, and mechanistic data about drug molecules with 

sequence, structure and mechanistic data about their drug targets (Wishart, et al., 2006). 

In addition, DrugCard is a summary table describing the drug of interest in much 

greater detail. It contains more than 100 data fields with half of the information being 

devoted to drug or chemical data and the other half being devoted to pharmacological, 

pharmacogenomics and molecular biological data. The latest version of DrugBank 

(release 2.0) had been expanded enormously to cover about 4,800 drug entries. 

Moreover, Wishart, et al. (2008) added two new drug categories: Withdrawn drugs and 

Illicit drugs. Table 2.3 present the content data comparison between DrugBank (release 

1.0) versus DrugBank (release 2.0). DrugBank is available at http://www.drugbank.ca. 

 

Table 2.3 Comparison between the data content in DrugBank (release 1.0) versus  

 DrugBank (release 2.0), modified from Wishart, et al. (2008) 

Category 
Release 

1.0 

Release 

2.0 

No. of FDA-approved small molecule drugs 841 1,344 

No. of biotech drugs 113 123 

No. of nutraceutical drugs 61 69 

No. of withdrawn drugs 0 57 

No. of illicit drugs 0 188 

No. of experimental drugs 2,894 3,116 

No. of total Small molecule drugs 3,796 4,774 

No. of names/brand names/synonyms 18,304 28,447 

No. of data fields 88 108 

No. of search types 8 12 
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2.3.2 Chemical-Response 

The examples of chemical-response pharmacological database were detailed below. 

2.3.2.1 TRMP (A Database of Therapeutically Relevant Multiple Pathways) 

The cross-talks between proteins of different pathways are common phenomena and 

often implicate therapeutic efficacies. TRMP (Zheng, et al., 2004) stores the 

therapeutically relevant multiple pathways. Therefore, it gives information for 

facilitating the analysis of the potential implications on multiple target-based therapies 

and understanding of how therapeutic targets interact with other molecules in disease 

and physiological processes. This database contained 11 entries of multiple pathways, 

97 entries of individual pathways, 120 targets covering 72 disease conditions along with 

120 sets of drugs directed at each of these targets. TRMP can be accessed at 

http://bidd.nus.edu.sg/group/trmp/trmp_ns.asp. 

2.3.2.2 SIDER (Side Effect Resource) 

Predicting the possible side effects of drug candidates based on the binding pattern, 

chemical structure, and other properties is attracted to pharmaceutical industry. Side 

effects can also be used to predict novel drug-target interactions and might be utilizable 

for drug re-purposing. Kuhn, et al. (2010a) had compiled package inserts from several 

public resources associated with FDA. The standardized Coding Symbols for a 

Thesaurus of Adverse Reaction Terms (COSTART) were used as the basic lexicon of 

side effects and drug names were mapped to PubChem identifiers. SIDER contained 

62,269 drug–side effect pairs that covered a total of 888 drugs and 1,450 side effects 

terms. About 70% of drugs have between 10 and 100 different side effects (Figure 

2.7A), whereas about 55% of all side effects occur for <10 drugs (Figure 2.7B). SIDER 

is freely available for academic research at http://sideeffects.embl.de. 

 

 

 

Figure 2.7 Statics of SIDER (Kuhn, et al., 2010a) 

(A) A plotted graph of the number of side effects per drug is shown about 200 drugs 

with at least 100 side effects. (B) A plotted graph of drugs per side effects 
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2.3.3 Genetic-Response 

Two databases were evaluated that they contained the information about genetic and 

drug response. The lists and their features were explained as follow. 

2.3.3.1 PharmGKB (The Pharmacogenetics Knowledge Base) 

PharmGKB (Hewett, et al., 2002; Klein and Altman, 2004) is a central repository of 

genotype and phenotype information that relate to pharmacogenetics and is collected by 

laboratories in research network. The objective of the PharmGKB is to boost research in 

the field of pharmacogenetics. PharmGKB models information about cellular 

phenotypes and includes clinical content. The database has a large collection of 

genotypes for genes of pharmacogenetics interest, for instance, 150 genes under study 

and a large ontology of pharmacogenetics concepts, which shows the patterns of 

polymorphisms identified in different populations. Furthermore, it also provides tools 

for submitting, editing viewing, and processing the information. Researchers can submit 

genomic information, drugs, diseases, populations, and so on through web forms or in 

uploaded files containing PharmGKB-defined XML elements. In 2002, PharmGKB had 

incorporated over 600 different relationships that will always be available for 

interpretation and correlation as new hypotheses emerge. This database is available at 

http://www.pharmgkb.org/. 

2.3.3.2 PharmGED (Pharmacogenetic Effect Database) 

Knowledge about protein polymorphisms of drug-related proteins and individual drug 

responses significantly promote pharmacogenetics study and individual prediction of 

drug responses. Zheng, et al. (2007), therefore, had developed PharmGED to provide 

the information about effects of a particular protein polymorphism, non-coding region 

mutation, splicing alteration, and expression variation on the response of a particular 

drug. Entries of this database can be searched by protein name, drug/ligand name, 

disease name, and drug class. The search is case insensitive and wildcards are 

supported. The wild characters are ‘?’ and ‘*’ that represent any single character and a 

string of character of any length respectively. In 2007, PharmGED contained 1,825 

entries covering 108 disease conditions, 266 distinct proteins, 693 polymorphisms, and 

414 drugs/ligands cited from 856 references. This database can be accessed at 

http://bidd.cz3.nus.edu.sg/phg/ that free of charge for academic use. 

2.4 Biological Network 

High-throughput (HT) technologies, such as DNA microarray, potentiate us to 

enumerate and study the dynamics and mechanisms of biological components in cell as 

systems view (Liao, et al., 2003). This concept shares structural principles with 

engineered networks (Alon, 2003). Specific components and their interacting partners 

or substrates can be employed to assemble high-confidence pathways. The topological 

structures yield valuable information about the functions of individual components and 

unexpected relationships between components and cellular processes. The cell 

comprises various types of interaction webs, or networks. None of these networks 
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function independently. Instead, they form a ‘network of networks’ that is responsible 

for the behavior of the cell (Joyce and Palsson, 2006). The integration of all interactions 

may reveal the ultimate description of how complex biological processes occur and can 

be controlled. 

2.4.1 Concepts and Principles 

Cellular interactions are generally assembled into network maps. The network 

description allows application of tools and concepts developed in fields, for examples, 

graph theory, physics, and sociology that have dealt with network problems before. 

They comprise of biological molecules (proteins or genes) entitled vertices or nodes and 

interactions between them defined as edges (in undirected networks) or arcs (in directed 

networks) (Alon, 2003; Zhu, et al., 2007). The directionality of a network depends on 

the characteristics of the biological data. Protein-protein and genetic interactions are 

usually represented with an undirected network. On the contrary, transcription factor 

binding, phosphorylation, and metabolic networks have directions on their interactions. 

Other feature is the strength of interactions. However, this information is rarely used in 

most network analyses (Zhu, et al., 2007). The understanding of network architecture 

and performance are represented by network topology. The most important and 

commonly used topological feature is degree (Figure 2.8). Degree is the number of 

connections linked to one node. A node with high degree (hub) may play an important 

role in maintaining the network structure. 

 

Surprisingly, biological networks share three structural principles with engineered 

networks (Alon, 2003). The first principle is modularity, a set of nodes that have strong 

interactions and common function. For example, proteins work in slightly overlapping 

and regulate within groups as pathways. These complexes are optimized by 

evolutionary process. The second principle is robustness to component tolerances. In 

both engineering and biology, the network design has to operate under all interferences 

that come from intrinsic properties of the components or the environment. The third 

principle is the use of recurring circuit elements to operate the thousands of 

occurrences. As operational amplifiers and memory registers in electronic device, 

metabolic networks apply regulatory circuits, for instance, feedback inhibition and 

 

 

Figure 2.8 Degree: the number of links connected to node i. 

i 
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network motifs in transcriptional network can perform a specific information processing 

task. These concepts ultimately allow characterizing and understanding the laws of 

nature that evolved and designed systems. 

2.4.2 Biological Data Integration 

The amount of data in biology has indeed grown exponentially over the past decade. 

This data is available in a wide variety of formats, annotated, and stored in flat files and 

relational or object-oriented databases. Each data type alone has a limited utility 

because technologies that investigate biological systems have inherently high false-

positive and false-negative rates. To generate an effective knowledge from data, 

scientists must integrate these large and diverse data sets (Hwang, et al., 2005; Louie, et 

al., 2007). The integration of multiple data types provides the greatest information about 

a particular cellular mechanism. Increment of integration experiments help to 

demonstrate the power of combining and correlating several data domains. This covers 

not only biological notions of sequence, expression, interaction, localization, and 

variation but also compounds in an approach called chemogenomics (Table 2.4).  

There are four problems that make data integration important (Hernandez and 

Kambhampati, 2004; Hwang, et al., 2005). First, the variety of data covers several 

biological and genomic research fields. They store different types of data, different 

degree of reliability, and different amounts of error. Second, similar data can be 

contained in several sources but represent heterogeneity depending on the source. This 

representational heterogeneity includes structural, naming, semantic, and content 

differences. Third, web-based sources operate autonomously. They are instability and 

unpredictability that are free to modify and/or remove data. Finally, Individual sources 

serve their own user-access interface, which means different querying capabilities. 
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Table 2.4 Examples of large-scale scientific data integration across domains, modified from Searls (2005) 

Domain   Description 

Sequence 
 Novel transcription elements are discovered by aligning the upstream regions of genes that are co-expressed in microarray experiments and 

detecting especially conserved sites. 
x 

 
Expression 

 
Sequence 

 Phage display finds consensus sequences of ligands for peptide recognition modules, from which protein-interaction maps are inferred by scanning 

whole genomes and then tested by yeast two-hybrid methods. Interaction data can also be used to discover cis-regulatory motifs in upstream 

sequences. 

x 
 

Interaction 
 

Interaction 
 By integrating protein-interaction data with microarray results it is possible to reconstruct complex signaling pathways accurately, without prior 

knowledge of pathway intermediates. Interaction, expression and other functional data sources can be integrated to predict participation in protein 

complexes. 

x 
 

Expression 
 

Sequence 
 Subcellular localizations of gene products are assessed by extensive motif analysis of cDNA sequences and by high-throughput tracking of 

expressed fusion proteins in living cells, demonstrating good mutual confirmation. 
x 

 
Localization 

 
Variation 

 Natural variation in microarray-based gene expression levels segregating as quantitative traits in human families is traced to specific chromosomal 

regions, representing cis- and trans-acting loci as well as putative ‘master regulators’, by linkage analysis using a database of single-nucleotide 

polymorphisms (SNPs). 

x 
 

Expression 
 

Variation 
 Evidence for evolutionary co-variation of interacting protein families can be seen in correlated mutations and similarities in phylogenetic tree 

topologies, according well with databases of known structural domain interactions. 
x 

 
Interaction 

 
Compounds 

 Kinases clustered on both compound selectivity data and sequence similarity produce comparable dendrograms in all but higher-level groupings. 

Yeast deletion screens find proteins that functionally interact with compounds to inhibit cellular proliferation, finding both known and novel on- 

and off-target effects. 

x 
 

Sequence 
 

Compounds 
 Microarray platforms are used to profile compounds for in vivo effects over whole transcriptomes, where, for example, expression profiles have 

been used to accurately classify a variety of psychiatric drugs. Expression patterns can be related not only to drugs but to substructures and other 

chemical features. 

x 
 

Expression 
 

Compounds 
 New pharmacological approaches to protein–protein interaction, such as inhibitors of dimerization or allosteric modulators, can benefit from 

interaction maps that help characterize interfaces, mutation studies that pinpoint crucial amino-acid residues within large contact surfaces and 

database-driven design. 

x 
 

Interaction   

 2
1
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2.5 Knowledge Discovery (KD) 

The current trends of technology inexorably lead to data flood. Huge amounts of data, 

especially as in text, have been accumulated at a very fast pace. Although text expresses 

the vast and wealthy knowledge, pure text is not useful and meaningful. Information is 

hidden and can be seen as the patterns or characteristics of the data. The new discipline, 

called knowledge discovery (KD), has thus emerged to make sense and use of data 

(Chen, et al., 1996). It is a highly complex and demanding process that requires careful 

analysis, specification, implementation and testing. Here two methods of KD, data 

mining and literature mining, were reviewed. 

2.5.1 Data Mining 

Data amass like earths and rocks in a mountain that most of them are not useful. The 

valuable materials are needed to be dug out. Uncovering valuable knowledge may as 

well be excavated from a large amount of data. There is a huge amount of veiled 

information that is potentially important but has not yet been discovery or expressed. 

Data mining is therefore becoming more popular and is needed for efficient data 

analysis. It is the process of extracting valid, previously unknown, comprehensible, and 

actionable information from large data and then utilizes it to make crucial decisions 

(Hsu, 2006).  

2.5.1.1 Data Mining Process 

Data mining consists of six processes (Wirth, 2000), named Cross Industry Standard 

Process for Data Mining (CRISP-DM) and illustrated in Figure 2.9. The sequence of 

procedure is not strict. The arrows in the process diagram indicate the most important 

and frequent dependencies between phases. The outer circle represents the cyclic nature 

of data mining. A data mining process continues after a solution has been set out. In the 

following, each process of CRISP-DM is briefly delineated. 

Business understanding is the primary phase that focuses on understanding the project 

objectives and requirements. It then converts the knowledge into a data mining problem 

explanation and designs the method to achieve the purposes. 

Data understanding starts with a data collection. Only proper data is useful to be 

mined. Domain experts are needed for the selection of data for certain problems.  

Data preparation covers all actions to construct the final data that will be fed into the 

modeling. The data preparation includes table, record and attribute selection, data 

cleaning, construction of new attributes, and transformation of data for modeling tools. 

This task is likely to be performed multiple times and seems to be the longest period of 

data mining. 

Modeling usually involves building a model for the data. Typically, different 

algorithms and techniques are conducted for the same data mining problem type. Some 

techniques have specific requirements on the form of data that stepping back to the data 
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preparation phase is therefore often needed. However, for a certain task, suitable 

techniques should be chosen. 

Evaluation of the model requires to be interpreted by human experts from its 

correctness, comprehensibility, and usefulness. The model should have the high quality 

from a data analysis perspective and properly achieves the business objectives. At the 

end of this phase, a decision on the use of the data mining results should be reached. 

Deployment will be needed to increase knowledge of the data. Creation of the model is 

not the end of the project. The deployment phase can be as simple as generating a report 

or as complex as implementing a repeatable data mining process. 

 

2.5.1.2 Classification 

Any form of interesting information that can be discovered from the data can formulate 

a specific data mining task. There have many different types of data mining tasks, for 

example, classification, clustering, and association. Some of them might overlap with 

others. Only the most popular task called classification was reviewed. 

Classification is a learning method for predicting the class or group of unseen instance 

from pre-labeled (classified) instances (Witten and Frank, 2005; Hsu, 2006). There 

should be at least two classes. The input of a classification model is the attributes of a 

data sample and the output is the class that data sample belongs to. Classification takes 

supervised learning to build a model. A set of data with known classes (training data) is 

needed to estimate the parameters of the classification model. In numeric determination, 

the outcome to be predicted is not a discrete class but a numeric quantity. After the 

 

Figure 2.9 Process diagram of Cross Industry Standard Process for Data Mining  

   (CRISP-DM), modified from Wirth (2000) 
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parameters are set, the model can be applied to automatically classify the new data 

samples. There are many approaches of classification, for example, decision tree, 

nearest neighbor, neural networks, and support vector machine. 

Decision Tree 

A decision tree is a judgment support tool that applies a tree-like flowchart for the 

possible consequence. From its structure, a node symbolizes the test on an attribute, 

each branch stands for outcome of test, and leaf node represents class label. A divide-

and-conquer approach to the problem of learning is a technique of decision tree. An 

attribute is placed and splits branches for every value of the attribute. The process is 

repeated recursively for each branch. Consequently, the tree stops to develop at the leaf 

node when all instances are the same class or almost homogenous. Even though 

decision tree is simple to understand, illustrate, and interpret, its calculations can get 

very complex particularly if many values are uncertain. 

Nearest Neighbor 

One of the classic forms of learning is plain memorization. When a set of training 

instances has been learned, a new instance is searched for the most resembles the 

training data. So instance-based learning is lazy that the closest existing instance is used 

to assign the class to the new one. Sometimes more than one nearest neighbor is 

employed and the majority class of the closest k neighbors is given to the new instance. 

This is termed the k-nearest-neighbor method. Although nearest neighbor is simple and 

effective, it is generally slow. The way to find which member of the training set is 

closest to an unknown test sample is to calculate the distance from every member of the 

training set and select the smallest. The time it takes to make a prediction is thus 

proportional to the number of training instances. 

Neural Networks 

Unlike decision tree which divides the space of examples using straight lines, neural 

networks can be thought as more complex regions. The inspiration of neural networks 

comes from biological networks of central nervous systems. They are presented as 

systems of interconnected neurons that compute values from inputs by feeding 

information through the network. The message is weighted and passed on. When the 

weight associated with an input corresponds to the threshold of the perceptron, an 

output neuron is activated. Although neural networks are successfully applied to a wide 

range of supervised and unsupervised learning problems, the comprehensibility of 

learned models and the time required to induce models from large data sets are two 

fundamental considerations. 

Support Vector Machine (SVM) 

There is resurgence of interest in linear models with the introduction of SVM, the 

combination of linear modeling and instance-based learning. SVM selects a small 

number of critical boundary instances, called support vectors, from each class and 

builds a linear discriminant function, named maximum margin hyperplane, which 
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separates classes as widely as possible. A linear model constructs the new space that 

can represent a nonlinear decision boundary in the original space. These systems 

transcend the limitations of linear boundaries by making it practical to include extra 

nonlinear terms in the function. This is possible to form quadratic, cubic, and higher-

order decision boundaries. 

2.5.2 Literature Mining 

The amount of biomedical literature available online continues to grow rapidly today. 

PubMed/Medline, the largest published literature repositories in the biomedical world, 

contains more than 19 million citations and abstracts from about 5,000 journals (Yu, et 

al., 2007; Lok, 2010). These supply nearly 830,000 articles published in 2009, up from 

some 814,000 in 2008 and around 772,000 in 2007. The advance of genome 

sequencing, the increasing number of genes addressed in single studies, and HT 

experimentation generate the enlargement of publications. Moreover, the growth rate 

exhibits no signs of decreasing, especially as becoming appearance countries such as 

China and Brazil that speed up their research. These occurrences cause the readers 

would stop either when they found the first instance of the necessary fact or after 

reaching their attention/frustration limit. At best, the manual approach does not explore 

the complete range of values available from different sources. In contrast, it leaves 

many of the values blank at worst. Additionally, it is no longer possible for a researcher 

to keep up-to-date with all the relevant literature manually, even on specialized topics 

(Hale, 2005). There are so many techniques that attempt to identify, extract, manage, 

integrate, and discover novel or hidden or unsuspected knowledge. Even though 

computer can rapidly process and integrate this wealth of information, an overwhelming 

amount of biomedical knowledge is recorded in electronic texts and is written down in 

natural language and pictures. Computer, like a human, has difficulty in making sense 

of these and need specialized knowledge in order to understand (Rodriguez-Esteban, 

2009). To overcome this difficulty, literature mining has been developed to 

systematically compare large data sets with all the knowledge that is derived from the 

published data, which allows the biological relevance of the data to be interpreted 

(Krallinger, et al., 2005). 

Literature-mining tools are becoming essential to researchers. They empower 

researchers to identify relevant papers, recognize entity, and pull out specific facts. The 

advanced tools, called text mining, are based on these methods. More than literature 

mining, text mining can automatically discover the novel models and understand 

patterns from large amounts of data (Zaki, et al., 2007). Even literature mining and text 

mining are used interchangeably, literature mining is more general term. Here the most 

important three methodologies, information retrieval, entity recognition, and 

information extraction, that are used for both literature and text mining were briefly 

described (de Bruijn and Martin, 2002; Ananiadou and Mcnaught, 2005; Krallinger, et 

al., 2005; Jensen, et al., 2006; Rzhetsky, et al., 2009). 
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2.5.2.1 Information Retrieval (IR): finding the papers 

IR systems aim to identify the text segments (full articles, abstracts, paragraphs, or 

sentences) in a collection which match a user’s query. IR systems allow us to narrow 

down the set of documents that are relevant to a particular problem. IR technologies are 

in wide-spread use. The most well known IR systems are search engines such as 

Google, which identify those documents on the website that are relevant to a set of 

given words. As part of biomedical world, PubMed is the best-known IR systems. Most 

experimental biologists take advantage of the PubMed information-retrieval system 

available at the NCBI. PubMed is an ad hoc system that uses two established IR 

methodologies: the “Boolean model” and the “Vector model”. The Boolean model 

enables the user to retrieve all documents that contain certain combinations of terms by 

using a logical operation. The Vector model, by contrast, typifies each document by a 

term vector (a value according to a frequency-based weighting scheme) and compare to 

a query vector. Ad hoc IR systems generally give more difficulty than text-

categorization systems in dealing with the many abbreviations, synonyms, and 

ambiguities in biomedical terminology. PubMed and many other good biomedical IR 

systems thus apply thesauri to automatically expand the query with other related terms. 

2.5.2.2 Entity Recognition (ER): indentifying the substance(s) 

The identification of entity types in textual data is known as ‘name entity recognition’ 

or ‘semantic tagging’. In molecular biology, most of these entities are molecules, such 

as genes and proteins that have many of their aliases (objects, concepts, and symbols). 

The seemingly modest goal of ER is to find the biological entities that are mentioned 

within a text. This task is often separated into two sub-tasks. First task is the recognition 

of words. It refers to entities that take advantage of string regularity and write patterns 

to capture the known naming conventions. Second is the unique identification of the 

entities in question. The latter task is lexicon based that uses name lists to tag terms, or 

likely components of entity names. The main difficulty in ER occurs from the lack of 

standardization of names. Each gene or protein typically has several names and 

abbreviations. The recent improvement for resolving ambiguity in gene or protein 

names is therefore an urgent for ER. Although ER might at first seem neither 

challenging nor useful, it is possibly the most difficult task in biomedical literature 

mining and is an essential for both information extraction and information retrieval. 

2.5.2.3 Information Extraction (IE): formalizing the facts 

Readers do not understand text if they only know the entities. They must also realize the 

interactions or relationships between those entities. In contrast to IR systems, IE 

systems propose to extract pre-defined types of fact, in particular, relationships between 

biological entities. Information extraction attempts to identify biologically meaningful 

semantic structures within free text. An example of the using IE applications in 

molecular biology is the identification of protein interactions. There are two different 

fundamental approaches to extracting relationships from biological texts: co-occurrence 

and natural-language processing (NLP). 
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Co-occurrence 

The simplest and straightforward approach to capture entity relationships is to search 

for sentences that frequently mention two entities within abstracts or sentences. If two 

entities are repeatedly mentioned together, it is likely that they are somehow related, 

although the type of relationship is not known. Co-occurrence methods tend to give 

better recall and sensitivity. But co-occurrence produces worse precision and specificity 

than natural-language processing (NLP). Besides its defect, co-occurrence method arise 

erroneous extracted relationships from complex sentences that contain multiple 

relationships. 

Natural-language processing (NLP) 

This method combines the analysis of syntax and semantics. A syntax tree is derived for 

each sentence to delineate noun phrases and represent their interrelationships. 

Subsequently IE is semantically tag the relevant biological entities and other keywords. 

Finally, a rule set is utilized to extract relationships on the basis of the syntax tree and 

the semantic labels. Unfortunately, most NLP systems are unable to extract 

relationships that extend across multiple sentences. However, this is not a complete 

mischance. Because of relationships are usually mentioned within a single sentence, it 

may overcome the limitation. 


