บทที่ 4 ผลการศึกษาและวิเคราะห์ข้อมูล

จากการดำเนินงานวิจัย เพื่อการศึกษาเปรียบเทียบการบิดงอของเหล็กกล้าคาร์บอนต่ำ AISI 1020 ระหว่างกระบวนการเชื่อม FCAW และ กระบวนการเชื่อม GMAW เป็นกระบวนการที่แตกต่างกัน โดยผลของการทดลองมีดังนี้

4.1 การตรวจสอบโครงสร้างแบบมหาภาค (Macrostructure Investigation)

จากผลการทคลองพิจารณาจากลักษณะรูปร่างทางกายภาพของแนวเชื่อม ได้แก่ ความกว้าง ความเรียบ และความสูงของแนวเชื่อม ตลอดจนลักษณะการเกิดเม็คโลหะภายหลังจากการเชื่อม ซึ่งลักษณะ ทางกายภาพ แสคงใน รูปที่ 4.1

รูปที่ 4.1 ลักษณะรูปร่างทางกายภาพของแนวเชื่อม (ก) GMAW (ข) FCAW

4.1.1 ลักษณะทางกายภาพของแนวเชื่อมกระบวนการเชื่อม GMAW

ผลการทคลองพบว่าเมื่อมีการเพิ่มกระแส ไฟเชื่อมตามการทคลอง 200A, 220A และ 240A ตามลำคับ ทำให้เกิดการเปลี่ยนแปลงของผิวแนวเชื่อมจากผิวเรียบและมีความสูงอย่างสม่ำเสมอ เมื่อกระแส ไฟ เชื่อมมากขึ้นทำให้แนวเชื่อมมีลักษณะความสูงเพิ่มขึ้น และเมื่อเพิ่มกระแส ไฟเชื่อมสูงสุดพบว่าผิวของ แนวเชื่อมเริ่ม ไม่เรียบ อันเกิดจากการส่งถ่ายน้ำโลหะที่เป็น ได้เฉพาะแบบลัดวงจร (Short Circuit Transfer) หรือแบบหยด (Globular Transfer) เท่านั้น โดยสังเกต ได้จากการอาร์คในขณะเชื่อมมีเสียงดัง และความสูงของแนวเชื่อมก็เพิ่มขึ้น เมื่อเพิ่มความเร็วในการเดินของแนวเชื่อมที่ 350, 400 และ 450 mm./min ตามลำดับส่งผลทำให้แนวเชื่อมมีขนาดใหญ่ และมีขนาดเล็กลงเมื่อเพิ่มความเร็วในการเดิน ของแนวเชื่อมมากขึ้น และความเร็วในการเชื่อมยังส่งผลทำให้แนวเชื่อม มีความสูงที่มากขึ้นตาม ความเร็วที่เพิ่มขึ้นเพราะเกิดจากการหลอมลึกไม่ทัน

4.1.2 ลักษณะทางกายภาพของแนวเชื่อมกระบวนการเชื่อม FCAW

ผลการทดลองพบว่าผิวหน้าของแนวเชื่อมเมื่อมีการเพิ่มกระแสไฟเชื่อมตามลำดับการทดลง จาก 2200A, 220 และ 240A ทำให้เกิดการเปลี่ยนแปลงของผิวแนวเชื่อมจากผิวเรียบและมีความสูง อย่างสม่ำเสมอ มีการเปลี่ยนแปลงทำให้แนวเชื่อมมีลักษณะความสูงลดลง และเกิดเม็ดโลหะมากขึ้น เมื่อปรับกระแสไฟเชื่อมสูงสุด พบว่าผิวของแนวเชื่อมเริ่มไม่เรียบ และความเร็วในการเดินของ แนวเชื่อมตามลำดับการทดลอง 350,400 และ 450 mm./min ส่งผลทำให้แนวเชื่อมมีขนาดใหญ่ และมีขนาดเล็กลงเมื่อเพิ่มความเร็วในการเดินของแนวเชื่อมมากขึ้น อีกทั้งความเร็วในการเชื่อมยัง ส่งผลทำให้แนวเชื่อมมีความสูงที่สูงขึ้นตามความเร็วที่เพิ่มขึ้นเหมือนกับกระบวนการเชื่อม GMAW

4.1.3 เปรียบเทียบลักษณะทางกายภาพของแนวเชื่อมระหว่างกระบวนการเชื่อม GMAW และกระบวนการเชื่อม FCAW

นำผลจากกระบวนการเชื่อมทั้ง 2 มาเปรียบเทียบกันพบความแตกต่างทั้งทางค้านขนาดและความสูง ของแนวเชื่อม และการเกิดเม็ค โลหะขณะทำการเชื่อม ทั้งนี้เกิดจากหลายปัจจัยที่แตกต่างกัน อีกทั้งผิว ของแนวเชื่อม GMAW มีลักษณะเป็นเกล็ดแต่ผิวสีด้านเล็กน้อยเพราะ ไม่มีฟลักซ์หุ้มจากการเชื่อม แต่ผิวของแนวเชื่อม FCAW เรียบ ไม่มีเกล็ดและมีความมันเงาของแนวเชื่อมเพราะมีฟลักซ์หุ้มแนว เชื่อมขณะทำการเชื่อม ความสูงของแนวเชื่อมและขนาดของแนวเชื่อมที่แตกต่างกัน เกิดจากความร้อน และการเย็นตัวที่ต่างกัน โดยแนวเชื่อม GMAW มีขนาดที่เล็กและมีความสูงของแนวเชื่อมมากกว่า แนวเชื่อม FCAW เพราะกระบวนการเชื่อม GMAW มีจนาดที่เล็กและมีความสูงของแนวเชื่อมมากกว่า เชื่อม FCAW และยังมีอัตราการเย็นตัวการเย็นตัวที่เร็วกว่าจึงทำให้แนวเชื่อม GMAW มีจนาดที่เล็ก กว่าและมีความสูงของแนวที่มากกว่า แนวเชื่อม FCAW และในกระบวนการเชื่อม FCAW มีการเกิด เม็ดโลหะขณะทำการเชื่อมที่มากกว่า แสดงใน รูปที่ 4.2,4.3 และ 4.4

GMAW 240A 27V 350mm./min

FCAW 240A 27V 350mm./min

ร**ูปที่ 4.2** ควบคุมความเร็วของการเดินแนวเชื่อมที่ 350 mm./min

GMAW 240A 27V 400mm./min

FCAW 240A 27V 400mm./min

ร**ูปที่ 4.3** ควบคุมความเร็วของการเดินแนวเชื่อมที่ 400 mm./min

GMAW 240A 27V 450mm./min

ร**ูปที่ 4.4** ควบคุมความเร็วของการเดินแนวเชื่อมที่ 450 mm./min

การผลการทคลอง พิจารณาจากการเปลี่ยนแปลงของการบิคงอเชิงมุม (Distortion) หลังจากการเชื่อม โคยวัคจากลักษณะรูปร่างทางกายภาพของชิ้นงานเชื่อม แสคงในรูปที่ 4.5

รูปที่ 4.5 การบิดงอเชิงมุม (Distortion) ก GMAW ข FCAW

4.2.1 ลักษณะการบิดงอเชิงมุมของกระบวนการเชื่อม GMAW

ผลการทคลองพบว่ากระบวนการเชื่อม GMAW เกิดการบิดงอเชิงมุม (Distortion) บนชิ้นงานเชื่อม เล็กน้อย โดยเกิดจากปัจจัยของกระแสไฟเชื่อมที่ 200A, 220A และ 240A ตามลำดับ ส่งผลต่อการ เปลี่ยนแปลงของการหลอมลึกอันเกิดมาจากความร้อนที่เพิ่มขึ้นตามกระแสไฟที่มากขึ้น ทำให้เกิด ปรากฏการณ์ Marangoni Convection เพราะมีกำมะถัน (Sulfur) 0.014% ที่ผสมอยู่ในลวดเชื่อม AWS A 5.18 ER 70S-6 มีผลต่อความเข้มข้นของแรงตึงผิว (Surface Tension) ทำให้การหลอมลึกของแนว เชื่อม มีก่าความหนาของรอยเชื่อมจริง (Throat) ยาวขึ้น และการเย็นตัวลงของแนวเชื่อมส่งผลต่อการ หดตัวของแนวเชื่อม และส่งผลต่อความเก้นตกก้างตามขวางของแนวเชื่อม ทำให้มีแนวโน้มการบิดงอ เชิงมุมของงานเชื่อมมากขึ้น แสดงตารางที่ 4.1 และแสดงรูปที่ 4.6 - 4.8

4.2.2 ลักษณะการบิดงอเชิงมุมของกระบวนการเชื่อม FCAW

ผลการทคลองพบว่ากระบวนการเชื่อม FCAW เกิดการบิดงอเชิงมุม (Distortion) บนชิ้นงานเชื่อม เล็กน้อย โดยเกิดจากปัจจัยของกระแส ไฟเชื่อม 200A, 220A และ 240A ตามลำดับ ส่งผลต่อการ เปลี่ยนแปลงของการหลอมลึกอันเกิดมาจากความร้อนที่เพิ่มขึ้นตามกระแส ไฟที่ปรับ ทำให้เกิด ปรากฏการณ์ Marangoni Convection เพราะกำมะถัน (Sulfur) 0.008% ที่ผสมในลวดเชื่อม AWS A 5.20 E71T-1 อยู่ก่อนข้างน้อยมีผลต่อความเข้มข้นของแรงตึงผิว (Surface Tension) ทำให้การหลอม ลึกของแนวเชื่อมมีก่าความหนาของรอยเชื่อมจริง (Throat) สั้นมีก่าขาของรอยเชื่อม (Leg) ที่มากขึ้น และการเย็นตัวลงของแนวเชื่อมทำให้เกิดการหดตัวของแนวเชื่อม และส่งผลต่อความเก้นตกก้างตาม ขวางของแนวเชื่อม ทำให้มีแนวโน้มการบิดงอเชิงมุมของงานเชื่อมมากขึ้น แสดงตารางที่ 4.1 และ แสดงรูปที่ 4.6 - 4.8

4.2.3 เปรียบเทียบผลการบิดงอเชิงมุม (Distortion) จากกระบวนการเชื่อมทั้ง 2 ชนิด

นำผลการทดลองทั้ง 2 กระบวนการเชื่อมมาเปรียบเทียบความแตกต่างพบว่าทั้ง 2 กระบวนการเชื่อม มีการบิคงอเชิงมุมของงานเชื่อมเล็กน้อยโดยกระบวนการเชื่อม GMAW มีแนวโน้มที่มากกว่าทั้งนี้มา จากปัจจัยของความร้อน จากกระแสไฟเชื่อมที่เพิ่มขึ้น 200A, 220A และ 240A ตามลำคับโดยทำให้ เกิดปรากฏการณ์ Marangoni Convection และแรงตึงผิว (Surface Tension) ขึ้น ทั้งนี้มาจากกำมะถัน (Sulfur) ที่ผสมอยู่ในลวดเชื่อม ส่งผลต่อความเข้มข้นของแรงตึงผิว (Surface Tension) โดยลวดเชื่อม GMAW AWS A 5.18 ER 70S-6 มีส่วนผสมของกำมะถัน (Sulfur) 0.014% ซึ่งมีมากกว่า ลวดเชื่อม FCAW AWS A 5.20 E71T-1 มีส่วนผสมของกำมะถัน Sulfur 0.008% คังนั้นกระบวนการเชื่อม GMAW จึงมีก่าแรงตึงผิว (Surface Tension) ที่มากกว่าจึงทำให้ก่าความหนาของรอยเชื่อมจริง (Throat) ของการหลอมลึกมากกว่า กระบวนการเชื่อม FCAW และการเย็นตัวลงของแนวเชื่อมทำให้ เกิดการหดตัวของแนวเชื่อม และส่งผลต่อความเก้นตกค้างตามขวางของแนวเชื่อม ทำให้มีแนวโน้ม การบิดงอเชิงมุมของงานเชื่อมมากขึ้น ดังนั้นการบิดงอเชิงมุมของงานเชื่อม FCAW แสดงตารางที่ 4.1 และแสดงรูปที่ 4.6 - 4.8

	เปรียบองศาของการบิดงอเชิงมุม											
ลำดับที่	เปรียบเทียบ	ชิ้นที่ 1	ชิ้นที่ 2	ชิ้นที่ 3	ค่าเฉลี่ย	องศาที่แตกต่าง						
1	GMAW 200 S 350 27V	87.50	87.20	87.40	87.37	ນາ <mark>กกว่า 0.34</mark>						
	FCAW 200 S 350 27V	87.90	88.23	86.98	87.70							
2	GMAW 220 S 350 27V	87.19	87.20	87.10	87.16	มากกว่า 0.19						
	FCAW 220 S 350 27V	87.20	87.50	87.37	87.36							
2	GMAW 240 S 350 27V	87.20	87.20	87.02	87.14	มากกว่า 0.04						
3	FCAW 240 S 350 27V	87.00	87.55	87.00	87.18							
4	GMAW 200 S 400 27V	87.04	87.20	87.40	87.21	ນາ <mark>กกว่า 0.3</mark> 9						
	FCAW 200 S 400 27V	87.90	87.40	87.50	87.60							

ตารางที่ 4.1 เปรียบเทียบการบิดงอเชิงมุมของงานเชื่อม GMAW และ FCAW

เปรียบองศาของการบิดงอเชิงมุม										
ลำดับที่	ลำดับที่	ลำดับที่	ลำดับที่	ลำดับที่	ลำดับที่					
5	GMAW 220 S 400 27V	87.50	87.50	87.40	87.47	ນາ <mark>กกว่า</mark> 0.22				
	FCAW 220 S 400 27V	87.40	87.96	87.70	87.69					
6	GMAW 240 S 400 27V	87.00	87.13	87.00	87.04	มากกว่า 0.10				
	FCAW 240 S 400 27V	87.14	87.10	87.20	87.15					
	GMAW 200 S 450 27V	87.30	87.20	87.10	87.20	มากกว่า 0.60				
/	FCAW 200 S 450 27V	88.00	87.50	87.90	87.80					
0	GMAW 220 S 450 27V	87.50	87.48	87.34	87.44	ນາ <mark>กกว่า 0.3</mark> 6				
8	FCAW 220 S 450 27V	88.10	87.40	87.90	87.80					
0	GMAW 240 S 450 27V	87.10	87.00	87.20	87.10	มากกว่า 0.18				
9	FCAW 240 S 450 27V	87.35	87.20	87.30	87.28					

ตารางที่ 4.1 เปรียบเทียบการบิดงอเชิงมุมของงานเชื่อม GMAW และ FCAW (ต่อ)

4.2.4 เปรียบเทียบการบิดงอเชิงมุม (Distortion) ของงานเชื่อมทางสถิติจากกระบวนการ เชื่อม GMAW และ FCAW

จากตารางที่ 4.2 แสดงการเปรียบเทียบการบิดงอเชิงมุมของงานเชื่อม GMAW และ FCAW พบว่า การบิดงอเชิงมุมของงานเชื่อม GMAW ให้ความสำคัญกับกระแสที่ 240A และความเร็วที่ 400 mm./min (GMAW240AS400) โดยให้ความสำคัญระดับมากสุด (ค่าเฉลี่ยเท่ากับ 87.0433) และการบิดงอเชิงมุมของงานเชื่อม FCAW ให้ความสำคัญกับกระแสที่ 240A และความเร็วที่ 400 mm./min (FCAW240AS400) โดยให้ความสำคัญระดับมากสุด (มีค่าเฉลี่ยเท่ากับ 87.1467) และ จากค่า t-Value และค่า Sig ที่ระดับนัยสำคัญ 0.05 แสดงการบิดงอเชิงมุมของงานเชื่อม ไม่พบค่าความ แตกต่างกันของการบิดงอเชิงมุมของงานเชื่อม โดยที่การบิดงอเชิงมุมของงานเชื่อม FCAW ให้ ความสำคัญในเรื่องคังกล่าวมากกว่า การบิดงอเชิงมุมของงานเชื่อม GMAW ดังแสดงตารางที่ 4.2 รูป ที่ 4.6 - 4.8

		Paire	d San	ples Statistic	8		
		м	NT	Std.	Std. Error	S. (2 4 1 1)	ผลการ
		Mean	Ν	Deviation	Mean	Sig. (2-tailed)	วิเคราะห์
D 1	GMAW200AS350	87.3667	3	.15275	.08819		
Pair I	FCAW200AS350	87.7033	3	.64779	.37400	.507	ไม่แตกต่าง
D : 0	GMAW220AS350	87.1633	3	.05508	.03180		
Pair 2	FCAW220AS350	87.3567	3	.15044	.08686	.171	ไม่แตกต่าง
Dein 2	GMAW240AS350	87.1400	3	.10392	.06000		
Pair 3	FCAW240AS350	87.1833	3	.31754	.18333	.814	ไม่แตกต่าง
D : 4	GMAW200AS400	87.2133	3	.18037	.10414		
Pair 4	FCAW200AS400	87.6000	3	.26458	.15275	.246	ไม่แตกต่าง
Dein 6	GMAW220AS400	87.4667	3	.05774	.03333		
Pair 5	FCAW220AS400	87.6867	3	.28024	.16180	.317	ไม่แตกต่าง
Dein C	GMAW240AS400	87.0433	3	.07506	.04333		
Pair 6	FCAW240AS400	87.1467	3	.05033	.02906	.272	ไม่แตกต่าง
Dein 7	GMAW200AS450	87.2000	3	.10000	.05774		
Pair /	FCAW200AS450	87.8000	3	.26458	.15275	.059	ไม่แตกต่าง
De in 9	GMAW220AS450	87.4400	3	.08718	.05033		
Pair 8	FCAW220AS450	87.8000	3	.36056	.20817	.244	ไม่แตกต่าง
De in O	GMAW240AS450	87.1000	3	.10000	.05774		
Pair 9	FCAW240AS450	87.2833	3	.07638	.04410	.053	ไม่แตกต่าง

ตารางที่ 4.2 เปรียบเทียบการบิดงอเชิงมุมทางสถิติของงานเชื่อม GMAW และ FCAW

ร**ูปที่ 4.6** ควบคุมความเร็วของการเดินแนวเชื่อมที่ 350mm./min

รูปที่ 4.6 ควบคุมความเร็วของการเดินแนวเชื่อมที่ 350mm./min (ต่อ)

รูปที่ 4.7 ควบคุมความเร็วของการเดินแนวเชื่อมที่ 400mm./min

ร**ูปที่ 4.8** ควบคุมความเร็วของการเดินแนวเชื่อมที่ 450mm./min

4.3 การตรวจสอบการหลอมลึกของแนวเชื่อม

จากผลการทคลองพิจารณาจากลักษณะการหลอมลึกของแนวเชื่อม ค้วยเครื่องตรวจสอบแนวเชื่อม กำลังขยาย 5 เท่า นำข้อมูลมาวิเคราะห์ผลทางโครงสร้างแบบมหาภาค แสดงในรูปที่ 4.9

รูปที่ 4.9 แสดงการหลอมลึก (ก) GMAW (ข) FCAW

4.3.1 ผลการหลอมลึกของแนวเชื่อมจากกระบวนการเชื่อม GMAW

ผลการทคลองพบว่าลักษณะการหลอมลึกของการเชื่อมด้วยกระบวนการเชื่อม GMAW เมื่อมีการเพิ่ม กระแสไฟเชื่อมตามลำดับการทคลงจาก 200A, 220A และ 240A ตามลำดับทำให้เกิดการเปลี่ยนแปลง ของการหลอมลึกอันเกิดมาจากความร้อนที่เพิ่มขึ้น ทำให้เกิดปรากฏการณ์ Marangoni Convection โดยกำมะถัน (Sulfur) 0.014% ที่ผสมอยู่ในลวดเชื่อม AWS A 5.18 ER 70S-6 ส่งผลต่อแรงตึงผิว (Surface Tension) มีผลต่อลักษณะการหลอมลึกของแนวเชื่อมทำให้ค่าขาของรอยเชื่อม (Leg) สั้น และค่าความหนาของรอยเชื่อมจริง (Throat) ยาว เมื่อเพิ่มความเร็วในการเดินของแนวเชื่อม ตามลำดับการทคลอง จาก 350, 400 และ 450 mm./min ความเร็วของการเดินแนวเชื่อมส่งผลทำให้ เกิดการเย็นตัวที่เร็วขึ้น ขนาดของการหลอมลึกมีขนาดที่เล็กลงส่งผลทำให้ค่าความหนาของรอยเชื่อม จริง (Throat) ลดลง แสดงตารางที่ 4.3 - 4.4 และรูปที่ 4.10 - 4.12

4.3.2 ผลการหลอมลึกของแนวเชื่อมจากกระบวนการเชื่อมแบบ FCAW

ผลการทดลองพบว่าลักษณะการหลอมลึกของการเชื่อมด้วยกระบวนการเชื่อม FCAW พบว่าเมื่อมีการ เพิ่มกระแส ไฟเชื่อมตามลำดับการทดลงจาก 200A, 220A และ 240A ตามลำดับทำให้เกิดการ เปลี่ยนแปลงของการหลอมลึกอันเกิดมาจากความร้อนที่เพิ่มขึ้น ทำให้เกิดปรากฏการณ์ Marangoni Convection โดยกำมะถัน (Sulfur) 0.008% ที่ผสมอยู่ในลวดเชื่อม AWS A 5.20 E71T-1 ส่งผลต่อแรง ตึงผิว (Surface Tension) มีผลต่อลักษณะการหลอมลึกของแนวเชื่อมทำให้ค่าขาของรอยเชื่อ (Leg) ยาว และค่าความหนาของรอยเชื่อมจริง (Throat) สั้น เมื่อเพิ่มความเร็วในการเดินของแนวเชื่อม ตามลำดับการทดลอง จาก 350,400 และ 450 mm./min ความเร็วของการเดินแนวเชื่อมส่งผลทำใช้ เกิด การเย็นตัวที่เร็วขึ้น ขนาดของการหลอมลึกมีขนาดที่เล็กลง ส่งผลทำให้ค่าความหนาของรอยเชื่อมจริง (Throat) ลดลง แสดงตารางที่ 4.3 - 4.4 รูปที่ 4.10 - 4.12

4.3.3 เปรียบเทียบผลการหลอมลึกการเชื่อมด้วยกระบวนการเชื่อมทั้ง 2 กระบวนการ การเปรียบเทียบลักษณะการหลอมลึกพบว่ากระบวนการเชื่อม GMAW เกิดการหลอมลึกมากกว่า กระบวนการเชื่อม FCAW ทั้งนี้เกิดจากปรากฏการณ์ Marangoni Convection ทั้งนี้มาจากกำมะถัน (Sulfur) ที่ผสมอยู่ในลวดเชื่อม ส่งผลต่อความเข้มข้นของแรงตึงผิว (Surface Tension) โดยลวดเชื่อม AWS A 5.18 ER 70S-6 ของกระบวนการเชื่อม GMAW มีส่วนผสมของกำมะถัน (Sulfur) 0.014% ทำให้ค่าของแรงตึงผิว (Surface Tension) มีความเข้มข้นมากกว่า ค่าของแรงตึงผิว (Surface Tension) ลวดเชื่อม AWS A 5.20 E71T-1 ของกระบวนการเชื่อม FCAW ซึ่งมีส่วนผสมของกำมะถัน (Sulfur) 0.008% ทำให้มีค่าความเข้มข้นน้อยกว่าทำให้ลักษณะของการหลอมลึกของกระบวนการเชื่อม GMAW มีค่า Throat ที่ลึกกว่ากระบวนการเชื่อม FCAW และผลจากค่าแรงตึงผิว (Surface Tension)

ที่น้อยกว่าของกระบวนการเชื่อม FCAW ทำให้ค่าขาของรอยเชื่อม (Leg) ของแนวเชื่อมมีขนาคที่กว้าง กว่ากระบวนการเชื่อม GMAW แสดงตารางที่ 4.3 - 4.4 รูปที่ 4.10 - 4.12

ลำดับที่	เปรียบเทียบ	ชิ้นที่ 1	ชิ้นที่ 2	ชิ้นที่ 3	ค่าเฉลี่ย	mm.
1	GMAW 200 S 350 27V	7.11	7.16	7.07	7.11	มากกว่า 2.44
1	FCAW 200 S 350 27V	4.24	4.99	4.78	4.67	
2	GMAW 200 S 400 27V	6.14	6.09	6.87	6.37	มากกว่า 2.12
2	FCAW 200 S 400 27V	4.29	4.33	4.13	4.25	
2	GMAW 200 S 450 27V	5.75	5.37	5.89	5.67	มากกว่า 1.80
3	FCAW 200 S 450 27V	3.98	3.85	3.79	3.87	
	GMAW 220 S 350 27V	8.2	7.44	7.08	7.57	มากกว่า 2.50
4	FCAW 220 S 350 27V	5.10	5.13	4.99	5.07	
-	GMAW 220 S 400 27V	6.80	6.62	6.40	6.61	มากกว่า 1.85
5	FCAW 220 S 400 27V	4.44	4.49	5.34	4.76	
6	GMAW 220 S 450 27V	6.52	5.83	6.1	6.15	มากกว่า 2.05
0	FCAW 220 S 450 27V	3.93	4.32	4.04	4.10	
7	GMAW 240 S 350 27V	7.63	8.05	8.21	7.96	มากกว่า 2.31
/	FCAW 240 S 350 27V	5.45	5.82	5.70	5.66	
Q	GMAW 240 S 400 27V	7.13	7.12	7.39	7.21	มากกว่า 2.13
8	FCAW 240 S 400 27V	5.29	5.08	4.89	5.09	
0	GMAW 240 S 450 27V	6.71	6.89	7.39	7.00	มากกว่า 2.09
9	FCAW 240 S 450 27V	4.82	4.77	5.13	4.91	

ตารางที่ 4.3 เปรียบเทียบค่าการหลอมลึกของแนวเชื่อมระหว่าง GMAW และ FCAW

ค่าการหลอมลึกของชิ้นงาน mm.									
ลำดับที่	เปรียบเทียบ	ชิ้นที่ 1	ชิ้นที่ 2	ชิ้นที่ 3	ค่าเฉลี่ย				
	GMAW 200 S 350 27V	7.11	7.16	7.07	7.11				
200A	GMAW 200 S 400 27V	6.14	6.09	6.87	6.37				
	GMAW 200 S 450 27V	5.75	5.37	5.89	5.67				
	GMAW 220 S 350 27V	8.2	7.44	7.08	7.57				
220A	GMAW 220 S 400 27V	7.14	6.62	6.4	6.72				
	GMAW 220 S 450 27V	6.52	5.83	6.1	6.15				
240A	GMAW 240 S 350 27V	7.63	8.05	8.21	7.96				
	GMAW 240 S 400 27V	7.13	7.12	7.39	7.21				
	GMAW 240 S 450 27V	6.71	6.89	7.39	7.00				
	FCAW 200 S 350 27V	4.24	4.99	4.78	4.67				
200A	FCAW 200 S 400 27V	4.29	4.33	4.13	4.25				
	FCAW 200 S 450 27V	3.98	3.85	3.79	3.87				
	FCAW 220 S 350 27V	5.10	5.13	4.99	5.07				
220A	FCAW 220 S 400 27V	4.44	4.49	5.34	4.76				
	FCAW 220 S 450 27V	3.93	4.32	4.04	4.10				
	FCAW 240 S 350 27V	5.45	5.82	5.7	5.66				
240A	FCAW 240 S 400 27V	5.29	5.08	4.89	5.09				
	FCAW 240 S 450 27V	4.82	4.77	5.13	4.91				

ตารางที่ 4.4 เปรียบเทียบค่าการหลอมลึกด้วยกระแสไฟเชื่อม

4.3.4 เปรียบเทียบการหลอมลึกของแนวเชื่อมระหว่างทางสถิติหะหว่างกระบวน การเชื่อม

GMAW และ FCAW

จากตารางที่ 4.5 แสดงการเปรียบเทียบการหลอมลึกของงานเชื่อม GMAW และ FCAW พบว่าการ หลอมลึกของงานเชื่อม GMAW ให้ความสำคัญกับกระแสที่ 240 A และความเร็วที่ 350 mm./min (GMAW240AS350) โดยให้ความสำคัญระดับมากสุด (ค่าเฉลี่ยเท่ากับ 7.9633) และ การหลอมลึกของ งานเชื่อม FCAW ให้ความสำคัญกับกระแสที่ 240 Aและความเร็วที่ 350 mm./min (FCAW240AS350) โดยให้ความสำคัญระดับมากสุด (มีค่าเฉลี่ยเท่ากับ 5.6567) และจากค่า t-Value และค่า Sig ที่ระดับ นัยสำคัญ 0.05 แสดงการหลอมลึกของงานเชื่อมพบค่าความแตกต่างกันของการหลอมลึกของงาน เชื่อม โดยที่การหลอมลึกของงานเชื่อม GMAW ให้ความสำคัญในเรื่องดังกล่าวมากกว่า การหลอมลึก ของงานเชื่อม FCAW ดังแสดงตารางที่ 4.5 รูปที่ 4.10, 4.11 และ 4.12

ตารางที่ 4.5 เปรียบเทียบการหลอมลึกทางสถิติของงานเชื่อม GMAW และ FCAW

				Std.	Std.	Sig.	
		Mean	Ν	Deviation	Error Mean	(2-tailed)	ผลการวิเคราะห์
	GMAW200AS35						
Pair 1	0	7.1133	3	.04509	.02603	.008	แตกต่าง
	FCAW200AS350	4.6700	3	.38691	.22338		
	GMAW220AS35						
Pair 2	0	7.5733	3	.57178	.33012	.015	แตกต่าง
	FCAW220AS350	5.0733	3	.07371	.04256		
	GMAW240AS35						
Pair 3	0	7.9633	3	.29956	.17295	.002	แตกต่าง
	FCAW240AS350	5.6567	3	.18877	.10899		
	GMAW200AS40						
Pair 4	0	6.3667	3	.43662	.25208	.021	แตกต่าง
	FCAW200AS400	4.2500	3	.10583	.06110		
	GMAW220AS40						
Pair 5	0	6.6067	3	.20033	.11566	.044	แตกต่าง
	FCAW220AS400	4.7567	3	.50580	.29202		
	GMAW240AS40						
Pair 6	0	7.2133	3	.15308	.08838	008	แตกต่าง
	FCAW240AS400	5.0867	3	.20008	.11552		
	GMAW200AS45						
Pair 7	0	5.6700	3	.26907	.15535	.009	แตกต่าง
	FCAW200AS450	3.8733	3	.09713	.05608		
	GMAW220AS45						
Pair 8	0	6.1500	3	.34771	.20075	.022	แตกต่าง
	FCAW220AS450	4.0967	3	.20108	.11609		

Paired Samples Statistics

ตารางที่ 4.5 เปรียบเทียบการหลอมลึกทางสถิติของงานเชื่อม GMAW และ FCAW (ต่อ)

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean	Sig. (2-tailed)	ผลการวิเคราะห์
	GMAW240AS45						
Pair 9	0	6.9967	3	.35233	.20342	.003	แตกต่าง
	FCAW240AS450	4.9067	3	.19502	.11260		

GMAW 200A 27V 350mm./min 7.11mm. FCAW 200A 27V 350mm./min 4.67mm.

GMAW 220A 27V 350mm./min 7.57mm. FCAW 220A 27V 350mm./min 5.07mm.

ร**ูปที่ 4.10** ควบคุมความเร็วของการเดินแนวเชื่อมที่ 350mm./min

รูปที่ 4.11 ควบกุมความเร็วของการเดินแนวเชื่อมที่ 400mm./min

รูปที่ 4.12 ควบคุมความเร็วของการเดินแนวเชื่อมที่ 450mm./min

4.4 การตรวจสอบอุณหภูมิความร้อน (Heat Input) และอัตราการเย็น

การทคลองพิจารณาจากการเปลี่ยนแปลงของอุณหภูมิขณะทำการเชื่อมและอัตราการเย็นตัวของงาน เชื่อมขณะเย็นตัวลง และนำมาเปรียบเทียบกัน

4.4.1 เปรียบเทียบผลอุณหภูมิความร้อน (Heat Input) และอัตราการเย็นตัวของแนวเชื่อม ด้วยกระบวนการเชื่อมทั้งสองชนิด

ผลการทดลองอุณหภูมิความร้อนและอัตราการเย็นตัวทั้ง 2 กระบวนการเชื่อมนำมาเปรียบเทียบกัน พบว่าความร้อนที่เกิดขึ้นจากกระบวนการเชื่อม GMAW มีอุณหภูมิความร้อนน้อยกว่ากระบวนการ การเชื่อม FCAW โดยความร้อน (Heat Input) ที่เกิดขึ้นจากการกระแสไฟเชื่อมที่เพิ่มขึ้น 200A, 220A และ 240A ตามลำดับ ทำให้มีความร้อนสะสมเพิ่มขึ้นตามกระแสไฟเชื่อมที่สูงขึ้น และกระบวนการ เชื่อม FCAW มีฟลักซ์ปกคลุมแนวเชื่อมจึงส่งผลทำให้อุณหภูมิความร้อนของแนวเชื่อมมีการสะสม ความร้อนที่มากกว่าการเชื่อม GMAW และมีอัตราการเย็นตัวของแนวเชื่อมสัมพันธ์กับความเร็วใน การเดินแนวเชื่อมที่เร็วขึ้นทั้ง 2 กระบวนการ ดังนั้นพบว่ากระบวนการเชื่อม FCAW มีการสะสมความ ร้อนที่มากกว่ากระบวนการเชื่อม GMAW และอัตราการเย็นตัวของแนวเชื่อม FCAW มีการสะสมความ ร้อนที่มากกว่ากระบวนการเชื่อม GMAW และอัตราการเย็นดัวของแนวเชื่อม FCAW เย็นตัวได้ช้ากว่า GMAW อย่างชัดเจนทั้งนี้เกิดจากฟลักซ์ที่ปกคลุมแนวเชื่อมของลวดเชื่อมกระบวนการเชื่อม FCAW แสดงตารางที่ 4.6 และ 4.7

	ความร้อนสูงสุด (°C)											
ลำดับที่	เปรียบเทียบ	ชิ้นที่ 1	ชิ้นที่ 2	ชิ้นที่ 3	ค่าเฉลี่ย	(°C)						
1	GMAW 200 S 350 27V	665	658	660	661							
	FCAW 200 S 350 27V	820	8180	810	816	มากกว่า 115						
2	GMAW 200 S 400 27V	635	639	640	638							
2	FCAW 200 S 400 27V	753	781	795	776	มากกว่า 138						
2	GMAW 200 S 450 27V	570	579	587	579							
3	FCAW 200 S 450 27V	651	658	665	658	มากกว่า 79						
	GMAW 220 S 350 27V	780	783	778	780							
4	FCAW 220 S 350 27V	970	985	960	972	มากกว่า 191						
<i>z</i>	GMAW 220 S 400 27V	725	736	719	727							
3	FCAW 220 S 400 27V	849	846	852	849	ນາ <mark>ก</mark> กว่า 123						
(GMAW 220 S 450 27V	623	620	623	622							
6	FCAW 220 S 450 27V	670	675	673	673	มากกว่า 50						
7	GMAW 240 S 350 27V	812	817	815	815							
/	FCAW 240 S 350 27V	986	995	980	987	มากกว่า 164						

ตารางที่ 4.6 เปรียบเทียบความร้อนแนวเชื่อม GMAWและ FCAW

ความร้อนสูงสุด ([°] C)											
ลำดับที่	เปรียบเทียบ	ชิ้นที่ 1	ชิ้นที่ 2	ชิ้นที่ 3	ค่าเฉลี่ย	(°C)					
7	GMAW 240 S 350 27V	812	817	815	815						
1	FCAW 240 S 350 27V	986	995	980	987	มากกว่า 164					
8	GMAW 240 S 400 27V	741	735	731	736						
	FCAW 240 S 400 27V	807	820	815	814	มากกว่า 78					
9	GMAW 240 S 450 27V	712	700	717	710						
	FCAW 240 S 450 27V	738	735	751	741	มากกว่า 32					

ตารางที่ 4.6 เปรียบเทียบความร้อนแนวเชื่อม GMAWและ FCAW (ต่อ)

ตารางที่ 4.7 เปรียบเทียบอัตราการเย็นตัวของแนวเชื่อม GMAW และ FCAW

	เวลาของการเย็นตัวที่ 220 (๊C) (๊C/sec)										
ถำดับที่	เปรียบเทียบ	ชิ้นที่ 1	ชิ้นที่ 2	ชิ้นที่ 3	ค่าเฉลี่ย		แตกต่าง				
1	GMAW 200 S 350 27V	2.06	2.06	1.97	2.03						
1	FCAW 200 S 350 27V	2.48	2.53	2.44	2.48	ช้ากว่า	0.46				
2	GMAW 200 S 400 27V	1.28	1.27	1.23	1.26						
	FCAW 200 S 400 27V	1.42	1.38	1.45	1.42	ช้ากว่า	0.16				
2	GMAW 200 S 450 27V	0.83	0.90	0.84	0.86						
3	FCAW 200 S 450 27V	1.07	1.03	0.98	1.03	ช้ากว่า	0.17				
	GMAW 220 S 350 27V	1.86	1.93	1.92	1.90						
4	FCAW 220 S 350 27V	3.12	3.08	3.19	3.13	ช้ากว่า	1.23				
	GMAW 220 S 400 27V	1.48	1.50	1.48	1.49						
5	FCAW 220 S 400 27V	1.75	1.76	1.73	1.74	ช้ากว่า	0.26				
	GMAW 220 S 450 27V	1.12	1.10	1.12	1.11						
6	FCAW 220 S 450 27V	1.18	1.20	1.17	1.18	ช้ากว่า	0.07				
	GMAW 240 S 350 27V	2.08	1.96	2.25	2.10						
7	FCAW 240 S 350 27V	3.01	3.05	2.93	2.99	ช้ากว่า	0.90				

	เวลาของการเย็นตัวที่ 220 (°C) (°C/sec)									
ลำคับที่	เปรียบเทียบ	ชิ้นที่ 1	ชิ้นที่ 2	ชิ้นที่ 3	ค่าเฉลี่ย		แตกต่าง			
8	GMAW 240 S 400 27V	1.45	1.33	1.42	1.40					
	FCAW 240 S 400 27V	1.83	1.85	1.87	1.85	ช้ากว่า	0.45			
0	GMAW 240 S 450 27V	1.13	1.17	1.19	1.16					
9	FCAW 240 S 450 27V	1.42	1.37	1.44	1.41	ช้ากว่า	0.24			

ตารางที่ 4.7 เปรียบเทียบอัตราการเย็นตัวของแนวเชื่อม GMAW และ FCAW (ต่อ)

4.4.4 เปรียบเทียบความร้อน (Heat Input) ของแนวเชื่อมทางสถิติจากกระบวนการเชื่อม GMAW และ FCAW

จากตารางที่ 4.8 แสดงการเปรียบเทียบความร้อน (Heat Input) ของงานเชื่อม GMAW และ FCAW พบว่าความร้อนของงานเชื่อม GMAW ให้ความสำคัญกับกระแสที่ 240 A และความเร็วที่ 350 mm./min (GMAW240AS350) โดยให้ความสำคัญระดับมากสุด (ก่าเฉลี่ยเท่ากับ 814.6667) และ ความร้อนของงานเชื่อม FCAW ให้ความสำคัญกับกระแสที่ 240 A และความเร็วที่ 350 mm./min (FCAW240AS350) โดยให้ความสำคัญระดับมากสุด (มีก่าเฉลี่ยเท่ากับ 987.0000) และจากก่า t-Value และก่า Sig ที่ระดับนัยสำคัญ 0.05 แสดงความร้อนของงานเชื่อมพบก่าความแตกต่างกันของความร้อน ของงานเชื่อม โดยที่ความร้อนของงานเชื่อม FCAW ให้ความสำคัญในเรื่องดังกล่าวมากกว่า ความร้อนของงานเชื่อม GMAW ดังแสดงตารางที่ 4.8

ตารางที่ 4.8 เปรียบเทียบความร้อน (Heat Input) ทางสถิติของงานเชื่อม GMAW และ FCAW

				Std.	Std.	Sig.	ยลอาราิเอราะห์
		Mean	Ν	Deviation	Error Mean	(2-tailed)	MPRILLA 99119 10 11
Dela 1	GMAW200AS350	661.0000	3	3.60555	2.08167	000	unena
Pair I	FCAW200AS350	816.0000	3	5.29150	3.05505	.000	88911191 IN
D · O	GMAW220AS350	780.3333	3	2.51661	1.45297	001	umomon
Pair 2	FCAW220AS350	971.6667	3	12.58306	7.26483	.001	116116113
Pair 3	GMAW240AS350	814.6667	3	2.51661	1.45297	000	แตกต่าง
	FCAW240AS350	987.0000	3	7.54983	4.35890	.000	

Paired Samples Statistics

ตารางที่ 4.8 เปรียบเทียบความร้อน (Heat Input) ทางสถิติของงานเชื่อม GMAW และ FCAW (ต่อ)

				Std.	Std.	Sig.	แลลารวิเลราะห์
		Mean	Ν	Deviation	Error Mean	(2-tailed)	MPILL 1 9961 9 10 11
Dain 4	GMAW200AS400	638.0000	3	2.64575	1.52753	006	แต่อต่าง
1 all 4	FCAW200AS400	776.3333	3	21.38535	12.34684	.006	
Dain 5	GMAW220AS400	726.6667	3	8.62168	4.97773	002	แต่อต่าง
Pair 5	FCAW220AS400	849.0000	3	3.00000	1.73205	.003	88911191 IN
Dain6	GMAW240AS400	735.6667	3	5.03322	2.90593	006	แตกต่าง
Pair 6	FCAW240AS400	814.0000	3	6.55744	3.78594	.006	
Dain 7	GMAW200AS450	578.6667	3	8.50490	4.91031	000	แต่อต่าง
Pair /	FCAW200AS450	658.0000	3	7.00000	4.04145	.000	II ALL IN
Dain 9	GMAW220AS450	622.0000	3	1.73205	1.00000	002	แต่อต่าง
Pair 8	FCAW220AS450	672.6667	3	2.51661	1.45297	.002	ITALLAL IN
	GMAW240AS450	709.6667	3	8.73689	5.04425	009	แตกต่าง
Pair 9	FCAW240AS450	741.3333	3	8.50490	4.91031	.008	

Paired Samples Statistics

4.4.5 เปรียบเทียบอัตราการเย็นตัวของงานเชื่อมทางสถิติจากกระบวน การเชื่อม GMAW และ FCAW

จากตารางที่ 4.9 แสดงการเปรียบเทียบอัตราการเย็นตัวของงานเชื่อม GMAW และ FCAW พบว่า อัตราการเย็นตัวของงานเชื่อม GMAW ให้ความสำคัญกับกระแสที่ 240 A และความเร็วที่ 350 mm./min (GMAW240AS350) โดยให้ความสำคัญระคับมากสุด (ค่าเฉลี่ยเท่ากับ 2.0967) และ อัตรา การเย็นตัวของงานเชื่อม FCAW ให้ความสำคัญกับกระแสที่ 220 Aและความเร็วที่ 350 mm./min (FCAW220AS350) โดยให้ความสำคัญระคับมากสุด (มีค่าเฉลี่ยเท่ากับ 3.1300) และจากค่า t-Value และค่า Sig ที่ระดับนัยสำคัญ 0.05 แสดงอัตราการเย็นของงานเชื่อมพบค่าความแตกต่างกันอัตราการ เย็นของงานเชื่อม โดยที่อัตราการเย็นของงานเชื่อม FCAW ให้ความสำคัญในเรื่องดังกล่าวมากกว่า อัตราการเย็นของงานเชื่อม GMAW ดังแสดงตารางที่ 4.9

ตารางที่ 4.9 เปรียบเทียบอัตราการเย็นตัวทางสถิติของงานเชื่อม GMAW และ FCAW

				Std.	Std.	Sig.	
		Mean	Ν	Deviation	Error Mean	(2-tailed)	ผลการวิเคราะห์
D 1	GMAW200AS350	2.0300	3	.05196	.03000	001	แต่อต่อง
Pair I	FCAW200AS350	2.4833	3	.04509	.02603	.001	LEVITIVI IN
Dain 2	GMAW220AS350	1.9033	3	.03786	.02186	001	unonia
Pair 2	FCAW220AS350	3.1300	3	.05568	.03215	.001	
Dain 2	GMAW240AS350	2.0967	3	.14572	.08413	017	แตกต่าง
Pair 3	FCAW240AS350	2.9967	3	.06110	.03528	.017	
Dain 4	GMAW200AS400	1.2600	3	.02646	.01528	041	แตกต่าง
Pair 4	FCAW200AS400	1.4167	3	.03512	.02028	.041	LEVITIVI IN
Dain 5	GMAW220AS400	1.4867	3	.01155	.00667	000	แตกต่าง
Pair 3	FCAW220AS400	1.7467	3	.01528	.00882	.000	
Dain 6	GMAW240AS400	1.4000	3	.06245	.03606	008	แต่อต่าง
Pair o	FCAW240AS400	1.8500	3	.02000	.01155	.008	LEVITIVI IN
Dain 7	GMAW200AS450	.8567	3	.03786	.02186	040	แต่อต่าง
rall /	FCAW200AS450	1.0267	3	.04509	.02603	.040	ARAILIAI IN
Dair 9	GMAW220AS450	1.1133	3	.01155	.00667	044	แตกต่าง
Pair 8	FCAW220AS450	1.1833	3	.01528	.00882	.044	1911913
Pair 9	GMAW240AS450	1.1633	3	.03055	.01764	011	
	FCAW240AS450	1.4100	3	.03606	.02082	.011	แตกตาง

Paired Samples Statistics

4.5 การตรวจสอบโครงสร้างแบบจุลภาค (Microstructure Investigation)

การพิจารณาผลการตรวจสอบโครงสร้างแบบจุลภาค พิจารณาจากลักษณะขนาคของเกรนบริเวณ เขตที่ได้รับอิทธิพลจากความร้อน (HAZ) การวิเคราะห์ผลจากลักษณะ โครงสร้างจุลภาคใช้กล้อง จุลทรรศน์ที่กำลังขยาย 50 เท่า และ 100 เท่า แสคงใน รูปที่ 4.13

รูปที่ 4.13 โครงสร้างแบบจุลภาค ก GMAW ข FCAW

4.5.1 เปรียบเทียบผลจากการเชื่อมด้วยกระบวนการเชื่อมทั้งสองชนิด

เมื่อทำการเปรียบเทียบการตรวจสอบของกระบวนการเชื่อม GMAW และกระบวนการเชื่อมแบบ FCAW ทางจุลภาคพบว่าโครงสร้างบริเวณกระทบร้อน HAZ มีขนาดของ Grain Size ที่แตกต่างกัน โดยมีความเร็วในการเชื่อมและฟลักซ์ปกคลุมแนวเชื่อมเป็นปัจจัยสำคัญ พบว่า กรณีที่ Grain Size ของการเชื่อม GMAW มีขนาดเล็กกว่าเพราะมีอัตราการเย็นตัวที่เร็วกว่า ในขณะที่การเชื่อม FCAW มีการปกคลุมแนวเชื่อมด้วยฟลักซ์ จึงส่งผลให้อัตราการเย็นตัวในแนวเชื่อมช้ากว่าการเชื่อม GMAW ทำให้มีการโตของเกรน (Grain Growth) มีมากขึ้นตามอัตราการเย็นตัวในการทดลอง โดยเกรนที่โต ที่สุดจะมีความเร็วที่ช้าที่สุดในช่วงกระแสไฟเชื่อมของกระบวนการนั้นๆ ดู ตารางที่ 4.10 - 4.11 และ รูปที่ 4.14 - 4.16

รูปที่ 4.14 ควบคุมความเร็วของการเดินแนวเชื่อมที่ 350mm./min

รูปที่ 4.14 ควบคุมความเร็วของการเดินแนวเชื่อมที่ 350mm./min (ต่อ)

รูปที่ 4.15 ควบคุมความเร็วของการเดินแนวเชื่อมที่ 400mm./min

รูปที่ 4.16 ควบคุมความเร็วของการเดินแนวเชื่อมที่ที่ 450mm./min

ตารางที่ 4.10 เปรียบเทียบขนาดเกรน (Grain Size)

	ขนาดของ (Grain Size) มาตรฐาน ASTM											
ลำดับที่	เปรียบเทียบ	ชิ้นที่ 1	ชิ้นที่ 2	ชิ้นที่ 3	ค่าเฉลี่ย							
1	GMAW 200 S 350 V27	9.95	9.90	10.10	9.98							
	FCAW 200 S 350 V27	9.50	9.30	9.40	9.40	โตกว่า						
2	GMAW 200 S 400 V27	10.45	10.50	10.48	10.48							
	FCAW 200 S 400 V27	10.10	10.30	10.20	10.20	โตกว่า						
	GMAW 200 S 450 V27	10.09	10.10	10.06	10.08							
3	FCAW 200 S 450 V27	9.85	9.80	9.91	9.85	โตกว่า						
4	GMAW 220 S 350 V27	10.40	10.25	10.20	10.28							
4	FCAW 220 S 350 V27	9.80	9.75	9.87	9.81	โตกว่า						
5	GMAW 220 S 400 V27	10.60	10.50	10.45	10.52							
5	FCAW 220 S 400 V27	9.30	9.40	9.40	9.37	โตกว่า						

ตารางที่ 4.10 เปรียบเทียบขนาดเกรน (Grain Size) (ต่อ)

	ขนาดของ (Grain Size) มาตรฐาน ASTM											
ลำดับที่	เปรียบเทียบ	ชิ้นที่ 1	ชิ้นที่ 2	ชิ้นที่ 3	ค่าเฉลี่ย							
6	GMAW 220 S 450 V27	9.95	10.25	10.30	10.17							
	FCAW 220 S 450 V27	9.65	9.60	9.70	9.65	โตกว่า						
7	GMAW 240 S 350 V27	10.26	10.25	10.29	10.27							
	FCAW 240 S 350 V27	9.70	9.60	9.80	9.70	โตกว่า						
Q	GMAW 240 S 400 V27	10.60	10.75	10.40	10.58							
8	FCAW 240 S 400 V27	9.43	9.50	9.70	9.54	โตกว่า						
9	GMAW 240 S 450 V27	10.68	10.62	10.70	10.67							
	FCAW 240 S 450 V27	10.06	10.08	10.10	10.08	โตกว่า						

ตารางที่ 4.11 เปรียบเทียบขนาดเกรน (Grain Size) กับกระแสไฟเชื่อม

ลำดับที่	เปรียบเทียบ	ชิ้นที่ 1	ชิ้นที่ 2	ชิ้นที่ 3	ค่าเฉลี่ย
	GMAW 200 S 350 V27	9.95	9.90	10.10	9.98
350	GMAW 220 S 350 V27	10.40	10.25	10.20	10.28
	GMAW 240 S 350 V27	10.26	10.25	10.29	10.27
400	GMAW 200 S 400 V27	10.45	10.50	10.48	10.48
	GMAW 220 S 400 V27	10.60	10.50	10.45	10.52
	GMAW 240 S 400 V27	10.60	10.75	10.40	10.58
450	GMAW 200 S 450 V27	10.09	10.10	10.06	10.08
450	GMAW 220 S 450 V27	9.95	10.25	10.30	10.17
	GMAW 240 S 450 V27	10.68	10.62	10.70	10.67
250	FCAW 200 S 350 V27	9.50	9.30	9.40	9.40
350	FCAW 220 S 350 V27	9.80	9.75	9.87	9.81
	FCAW 240 S 350 V27	9.70	9.60	9.80	9.70

ลำดับที่	เปรียบเทียบ	ชิ้นที่ 1	ชิ้นที่ 2	ชิ้นที่ 3	ค่าเฉลี่ย
	FCAW 200 S 400 V27	10.10	10.30	10.20	10.20
400	FCAW 220 S 400 V27	9.30	9.40	9.40	9.37
	FCAW 240 S 400 V27	9.43	9.50	9.70	9.54
	FCAW 200 S 450 V27	9.85	9.80	9.91	9.85
450	FCAW 220 S 450 V27	9.65	9.60	9.70	9.65
	FCAW 240 S 450 V27	10.06	10.08	10.10	10.08

ตารางที่ 4.11 เปรียบเทียบขนาดเกรน (Grain Size) กับกระแสไฟเชื่อม (ต่อ)

4.5.2 เปรียบเทียบขนาดเกรน (Grain Size) ของงานเชื่อมทางสถิติจากกระบวนการเชื่อม GMAW และ FCAW

จากตารางที่ 4.12 แสดงการเปรียบเทียบขนาดเกรน (Grain Size) ของงานเชื่อม GMAW และ FCAW พบว่าขนาดเกรนของงานเชื่อม GMAW ให้ความสำคัญกับกระแสที่ 200 A และความเร็วที่ 350 mm./min (GMAW200AS400) โดยให้ความสำคัญระดับมากสุด (ค่าเฉลี่ยเท่ากับ 9.9833) และขนาด เกรนของงานเชื่อม FCAW ให้ความสำคัญกับกระแสที่ 220A และความเร็วที่ 400 mm./min (FCAW240AS400) โดยให้ความสำคัญระดับมากสุด (มีค่าเฉลี่ยเท่ากับ 9.3667) และจากค่า t-Value และค่า Sig ที่ระดับนัยสำคัญ 0.05 แสดงขนาดเกรนของงานเชื่อมพบค่าความแตกต่างกันของขนาด เกรนของงานเชื่อม โดยที่ขนาดเกรนของงานเชื่อม FCAW ให้ความกลุด (มีค่าเฉลี่ยเท่ากับ 9.3667) และจากค่า t-Value และค่า Sig ที่ระดับนัยสำคัญ 0.05 แสดงขนาดเกรนของงานเชื่อมพบค่าความแตกต่างกันของขนาด เกรนของงานเชื่อม โดยที่ขนาดเกรนของงานเชื่อม FCAW ให้ความสำคัญ 500 หลางการางที่ 4.12 รูปที่ 4.14, 4.15 - 4.16

ตารางที่ 4.12 เปรียบเทียบขนาดเกรน (Grain Size)ทางสถิติของงานเชื่อม GMAW และFCAW

				Std.	Std.	Sig.	
		Mean	Ν	Deviation	Error Mean	(2-tailed)	ผลการวิเคราะห์
Pair 1	GMAW200AS350	9.9833	3	.10408	.06009	.015	แตกต่าง
_	FCAW200AS350	9.4000	3	.10000	.05774		
Pair 2	GMAW220AS350	10.2833	3	.10408	.06009	.026	แตกต่าง
	FCAW220AS350	9.8067	3	.06028	.03480		

Paired Samples Statistics

ตารางที่ 4.12 เปรียบเทียบขนาดเกรน (Grain Size)ทางสถิติของงานเชื่อม GMAW และFCAW (ต่อ)

				Std.	Std.	Sig.		
		Mean	N	Deviation	Error Mean	(2-tailed)	ผลการวิเคราะห์	
Dain 2	GMAW240AS350	10.2667	3	.02082	.01202	007	แต่อต่าง	
Pair 3	FCAW240AS350	9.7000	3	.10000	.05774	.007	ITALLAL IN	
Dein 4	GMAW200AS400	10.4767	3	.02517	.01453	024	แตกต่าง	
Pair 4	FCAW200AS400	10.2000	3	.10000	.05774	.024		
D : 5	GMAW220AS400	10.5167	3	.07638	.04410	004		
Pair 5	FCAW220AS400	9.3667	3	.05774	.03333	.004		
D : (GMAW240AS400	10.5833	3	.17559	.10138	026	แตกต่าง	
Pair 6	FCAW240AS400	9.5433	3	.14012	.08090	.026		
D : 7	GMAW200AS450	10.0833	3	.02082	.01202	024	unadas	
Pair 7	FCAW200AS450	9.8533	3	.05508	.03180	.034	แตกตาง	
D : 0	GMAW220AS450	10.1667	3	.18930	.10929	0.40		
Pair 8	FCAW220AS450	9.6500	3	.05000	.02887	.042	แตกตาง	
	GMAW240AS450	10.6667	3	.04163	.02404	002	unadas	
Pair 9	FCAW240AS450	10.0800	3	.02000	.01155	.002	แตกต่าง	

Paired Samples Statistics

4.6 การทดสอบความแข็ง (Hardness Testing)

4.6.1 เปรียบเทียบผลทดสอบความแข็ง (Hardness Testing) จากการเชื่อมด้วยกระบวน การเชื่อมทั้งสองชนิดบริเวณ BM,HAZ และWM

4.6.1.1 ความแข็งของงานเชื่อมบริเวณเนื้อโลหะ (BM)

ตารางที่ 4.13 SPSS เปรียบเทียบค่าความแข็งบริเวณเนื้อโลหะ BM

Paired Samples Statistics

		Maan	N	Std.	Std.	Sig.	แลการวิเคราะห์
		wiean	IN	Deviation	Error Mean	(2-tailed)	MPIIII 19 1911 1 10 11
Pair 1	GMAW200AS350BM	117.6333	3	.11547	.06667	108	ใ งนี่แต่อต่าง
	FCAW200AS350BM	118.2667	3	.64291	.37118	.198	

		Maan	N	Std.	Std.	Sig.	แลการวิเคราะห์	
		Iviean	IN	Deviation	Error Mean	(2-tailed)	MPIII I I ISLI I I ALI	
Dain 2	GMAW220AS350BM	117.1500	3	3.11809	1.80023	252	ไม่และส่วง	
Pair 2	FCAW220AS350BM	118.7167	3	1.36961	.79075	.555	60366711171 IN	
n : 2	GMAW240AS350BM	116.1300	3	3.17832	1.83500	050	Nelumon's s	
Pair 3	FCAW240AS350BM	119.9500	3	4.85206	2.80134	.059	Intro 12	
D · 4	GMAW200AS400BM	116.1000	3	2.35797	1.36137	596	Julumon's s	
Pair 4	FCAW200AS400BM	117.2000	3	1.27574	.73655	.586	88988911191 IN	
D · C	GMAW220AS400BM	117.3833	3	1.91398	1.10504	227	Julumon's s	
Pair 5	FCAW220AS400BM	121.1833	3	2.75061	1.58806	.237	ENTENTIAL IN	
D · C	GMAW240AS400BM	117.7167	3	1.41804	.81870	200	Julumon's s	
Pair 6	FCAW240AS400BM	122.0667	3	4.47893	2.58591	.200	11111011011	
D : 5	GMAW200AS450BM	119.2167	3	1.65404	.95496	000	Nelumonia e	
Pair 7	FCAW200AS450BM	119.5167	3	1.78489	1.03051	.888	11111011013	
D: 0	GMAW220AS450BM	117.4000	3	1.23187	.71122	105	Nelumonia e	
Pair 8	FCAW220AS450BM	120.6333	3	3.13940	1.81253	.105	11111111111	
Pair 9	GMAW240AS450BM	118.6167	3	5.00408	2.88911]a ı	
	FCAW240AS450BM	120.5667	3	.53463	.30867	.599	ไมแตกตาง	

ตารางที่ 4.13 SPSS เปรียบเทียบค่าความแข็งบริเวณเนื้อโลหะ BM (ต่อ)

Paired Samples Statistics

จากตารางที่ 4.13 แสดงการเปรียบเทียบผลทดสอบความแข็งของงานเชื่อมบริเวณเนื้อโลหะ (BM) GMAW และ FCAW พบว่าผลทดสอบความแข็งของงานเชื่อมบริเวณเนื้อโลหะ (BM) GMAW ให้ความสำคัญกับกระแสที่ 200A และความเร็วที่ 450mm./min (GMAW200AS450) โดยให้ ความสำคัญระดับมากสุด (ค่าเฉลี่ยเท่ากับ 119.2167) และ ความแข็งของงานเชื่อมบริเวณเนื้อโลหะ (BM) ของงานเชื่อม FCAW ให้ความสำคัญกับกระแสที่ 220A และความเร็วที่ 450mm./min (FCAW220AS450) โดยให้ความสำคัญระดับมากสุด (มีค่าเฉลี่ยเท่ากับ 120.6333) และจากค่า t-Value และก่า Sig ที่ระดับนัยสำคัญ 0.05 แสดงค่าความแข็งของงานเชื่อมบริเวณเนื้อโลหะ (BM) ไม่พบ ก่าความแตกต่างกันของความแข็งของงานเชื่อมบริเวณเนื้อโลหะ (BM) โดยที่ความแข็งของงานเชื่อม บริเวณเนื้อโลหะ (BM) FCAW ให้ความสำคัญในเรื่องดังกล่าวมากกว่า ความแข็งของงานเชื่อม เนื้อโลหะ (BM) GMAW ดังตาราง 4.13 แสดงก่าความแข็งของงานเชื่อมบริเวณเนื้อโลหะ(BM)

4.6.1.2 ความแข็งของบริเวณกระทบร้อน (HAZ)

ตารางที่ 4.14 SPSS เปรียบเทียบค่าความแข็งบริเวณกระทบร้อน HAZ

		Moon	N	Std.	Std.	Sig.	แลการวิเคราะห์
		Mean	IN	Deviation	Error Mean	(2-tailed)	MPIIII 1 1911 1 10 11
Doir 1	GMAW200AS350HAZ	142.6867	3	3.09267	1.78556	082	່າງການ
rall 1	FCAW200AS350HAZ	144.9100	3	2.41895	1.39658	.082	1911161116111
Pair 2	GMAW220AS350HAZ	139.0233	3	10.64361	6.14509	550	¹ งในตอต ่ วง
	FCAW220AS350HAZ	144.4900	3	3.42041	1.97477	.339	1911161116117
Dain 2	GMAW240AS350HAZ	133.4833	3	5.03580	2.90742	5((¹ งในตอต่าง
Pair 3	FCAW240AS350HAZ	137.1433	3	4.35552	2.51466	.300	INTIALLIAL IN
Dain 4	GMAW200AS400HAZ	142.2333	3	5.30219	3.06122	942	ไม่แตกต่าง
Pair 4	FCAW200AS400HAZ	143.5967	3	6.63652	3.83159	.842	
De in 6	GMAW220AS400HAZ	139.7233	3	1.32425	.76456	000	ใ งในตอต่าง
Pair 5	FCAW220AS400HAZ	142.5000	3	1.65526	.95567	.090	เมแตกตาง
D : (GMAW240AS400HAZ	143.1900	3	1.56502	.90357	7//	ปีงในตอสวา
Pair 6	FCAW240AS400HAZ	143.9333	3	2.53246	1.46211	./66	1911161116113
D : 7	GMAW200AS450HAZ	145.7900	3	6.82754	3.94188	41.6	ปีงในตอสวา
Pair /	FCAW200AS450HAZ	150.0667	3	2.35313	1.35858	.416	1911161116113
D . O	GMAW220AS450HAZ	141.0233	3	3.01737	1.74208	129	^ป ิมในตอต ่ วม
Pair 8	FCAW220AS450HAZ	142.7567	3	4.08002	2.35560	.128	เมแตกตาง
Pair 9	GMAW240AS450HAZ	140.1100	3	7.43002	4.28972	540	տ, , , , , , ,
	FCAW240AS450HAZ	143.2000	3	1.28526	.74205	.549	ไมแตกตาง

Paired Samples Statistics

จากตารางที่ 4.14 แสดงการเปรียบเทียบผลทดสอบความแข็งของบริเวณกระทบร้อน (HAZ) GMAW และ FCAW พบว่าผลทดสอบความแข็งของบริเวณกระทบร้อน (HAZ) GMAW ให้ความสำคัญกับ กระแสที่ 200 A และความเร็วที่ 450 mm./min (GMAW200AS450) โดยให้ความสำคัญระดับมากสุด (ค่าเฉลี่ยเท่ากับ 145.7900) และ ความแข็งของบริเวณกระทบร้อน (HAZ) FCAW ให้ความสำคัญกับ กระแสที่ 200 A และความเร็วที่ 450 mm./min (FCAW200AS450) โดยให้ความสำคัญระดับมากสุด (มีค่าเฉลี่ยเท่ากับ 150.0667) และจากค่า t-Value และค่า Sig ที่ระดับนัยสำคัญ 0.05 แสดงค่าความแข็ง ของบริเวณกระทบร้อน (HAZ) ไม่พบค่าความแตกต่างกันของความแข็งของบริเวณกระทบร้อน (HAZ) โดยที่ความแข็งของบริเวณกระทบร้อน (HAZ) FCAW ให้ความสำคัญในเรื่องคังกล่าวมากกว่า ความแข็งของบริเวณกระทบร้อน (HAZ) GMAW ดังตาราง4.14 แสดงค่าความแข็งของบริเวณกระทบ ร้อน (HAZ)

4.6.1.3 ความแข็งของบริเวณแนวเชื่อม (WM)

ตารางที่ 4.15 SPSS เปรียบเทียบค่าความแข็งบริเวณแนวเชื่อม (WM)

		Moon	N	Std.	Std.	Sig.	แลการวิเคราะห์
		Ivicali	IN	Deviation	Error Mean	(2-tailed)	MPILLI ISLI IOLI
Doin 1	GMAW200AS350WM	152.8833	3	1.55349	.89691	247	ไม่แตกต่าง
Pair I	FCAW200AS350WM	154.9833	3	2.38240	1.37548	.247	
Pair 2	GMAW220AS350WM	151.4500	3	4.55000	2.62694	5 4 9	ไม่แต่อต่าง
	FCAW220AS350WM	152.9000	3	5.68573	3.28266	.348	
D : 2	GMAW240AS350WM	150.7267	3	.79977	.46175	1.42	մ ուս, ու երե
Pair 3	FCAW240AS350WM	152.0833	3	1.14054	.65849	.142	1911161116112
D : 4	GMAW200AS400WM	164.6000	3	7.91896	4.57202	(12	ไม่แตกต่าง
Pair 4	FCAW200AS400WM	166.7167	3	10.08493	5.82254	.612	
	GMAW220AS400WM	161.0333	3	2.98091	1.72103	002	ไม่แตกต่าง
Pair 5	FCAW220AS400WM	172.4500	3	3.97712	2.29619	.092	
D : (GMAW240AS400WM	168.1833	3	3.28646	1.89744	525	Nelumentee
Pair 6	FCAW240AS400WM	171.0500	3	5.10686	2.94845	.535	เมแตกด 13
D : 7	GMAW200AS450WM	170.9167	3	8.94655	5.16530		Nelumentee
Pair /	FCAW200AS450WM	177.3000	3	7.80721	4.50749	.576	1911161116112
D : 0	GMAW220AS450WM	167.7000	3	3.73631	2.15716	0.40	Nelumentee
Pair 8	FCAW220AS450WM	168.0667	3	8.11793	4.68689	.949	ไมแตกต่าง
Pair 9	GMAW240AS450WM	170.8833	3	3.21805	1.85794	2(0	
	FCAW240AS450WM	173.7167	3	3.90683	2.25561	.368	ไมแตกตาง

Paired Samples Statistics

จากตารางที่ 4.15 แสดงการเปรียบเทียบผลทดสอบความแข็งของบริเวณแนวเชื่อม (WM) GMAW และ FCAW พบว่าพบว่าผลทดสอบความแข็งของบริเวณแนวเชื่อม (WM) GMAW ให้ความสำคัญกับ กระแสที่ 200 A และความเร็วที่ 450 mm./min (GMAW200AS450) โดยให้ความสำคัญระดับมากสุด (ก่าเฉลี่ยเท่ากับ 170.9167) และ ความแข็งของบริเวณแนวเชื่อม (WM) FCAW ให้ความสำคัญกับ กระแสที่ 200 A และความเร็วที่ 450 mm./min (FCAW200AS450) โดยให้ความสำคัญระดับมากสุด (มีค่าเฉลี่ยเท่ากับ 177.3000) และจากค่า t-Value และค่า Sig ที่ระดับนัยสำคัญ 0.05 แสดงค่าความแข็ง ของบริเวณแนวเชื่อม (WM) ไม่พบค่าความแตกต่างกันของความแข็งของบริเวณแนวเชื่อม (WM)) โดยที่ความแข็งของบริเวณแนวเชื่อม (WM) FCAW ให้ความสำคัญในเรื่องคังกล่าวมากกว่า ความแข็ง ของบริเวณแนวเชื่อม (WM) GMAW คังตาราง 4.15 แสดงความแข็งของบริเวณแนวเชื่อม (WM)

สรุป ค่าความแข็ง (Hardness) จากการทคลองงานเชื่อมค้วยกระบวนการเชื่อม GMAW และ FCAW ทั้งสองกระบวนการ พบว่า ค่าทางสถิติ SPSS แสดงให้เห็นว่าทุกบริเวณของงานเชื่อมไม่มีความ แตกต่างกัน โดยที่ความแข็งของกระบวนการเชื่อม FCAW ให้ความสำคัญกับเรื่องดังกล่าวมากกว่า และในทุกกระบวนการเชื่อมพบว่า ความแข็งของเนื้อโลหะ (BM) น้อยกว่าบริเวณกระทบร้อน (HAZ) เล็กน้อย และส่วนบริเวณเนื้อเชื่อม (WM) ให้ค่าความแข็งมากสุด