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บททีÉ 2 

ทฤษฎ ี

 

2.1 ระบบผลึก 

 

2.1.1 โครงสร้างผลกึ [18] 

โครงสร้างผลึก (crystal structure) นัÊนคือการจดัเรียงตวัของไอออนในผลึกโครงสร้างผลกึจะประกอบ

ไปดว้ย หน่วยเซลล์ (unit cell) โดยทีÉหน่วยเซลล์ คือกลุ่มไอออน ทีÉจดัเรียงตวักันเป็นโครงสร้างสาม

มิติแบบแลตทิซกลุ่มปริภูมิของโครงสร้างผลึกแต่ละชนิดจะบอกสมบติัความสมมาตร (symmetry) 

ของผลึกซึÉงโครงสร้างของผลึกและความสมมาตรของผลึกนีÊจะแสดงสมบตัิหลาย ๆ  อย่างของผลกึนัÊน 

ๆ เช่น การแตกร้าว แถบพลงังานโครงสร้างทางอิเล็กทรอนิกส์ (band structure) และสมบติัทางแสง

ของผลึก (crystal optics) การศึกษาโครงสร้างผลึกมีการกาํหนดแกนสมมติและมุมขึÊนภายในรูปผลึก

ซึÉงมีอะตอมอยูต่ามเหลีÉยมมุมต่าง ๆ ในทิศทาง 3 มิติเพืÉอใหง่้ายในการศึกษาโครงสร้างผลึก ดงัแสดง

ในรูปทีÉ 2.1 

 

 

 

 

 

รูปทีÉ 2.1 แสดงแกนสมมติและมุมภายในผลึกในการศึกษาโครงสร้างผลกึ 

โดยทีÉ  x, y, z เป็นแกนสมมติอา้งอิงซึÉงมีจุดกาํเนิด O (origin) อยู่ตรงตาํแหน่งอะตอมหนึÉง ๆ ของ

หน่วยเซลล์หนึÉง  α, β, γ เป็นมุมทีÉเกิดขึÊนภายในผลึกอยูร่ะหวา่งแกน x, y, z 

ลกัษณะของผลึกแบ่งเป็น 2 แบบคอื 

1. ผลึกเดีÉยว (single crystal) คือ ผลึกทีÉไม่จบักลุ่มกัน มีการจดัเรียงตวัของอะตอมในผลึกเป็น

ระเบียบสมบูรณ์ ซึÉงหน่วยเซลล์ทุกหน่วยจะเรียงตวัไปในทิศทางเดียวกนั ผลึกเดีÉยวมีทัÊงในธรรมชาติ

และจากการสังเคราะห์ขึÊนเองโดยการควบคุมอุณหภูมิและความดนั เช่น ควอตซ์โทแพซคอรันดมั 

และโกเมน เป็นตน้  
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  2. แอกกริเกท (aggregates) คือ ผลึกหลายๆ ผลึกมาจบัตวักนัเป็นกลุ่ม แต่ละผลึกจะมีการเรียง

ตวักนัของอะตอมภายในอย่างเป็นระเบียบ แต่เมืÉอผลึกแต่ละกลุ่มมาจบัตวักนัจะทาํใหเ้กิดความไมเ่ป็น

ระเบียบขึÊน เพราะแต่ละกลุ่มผลึกมีทิศทางการเรียงตวัเฉพาะของกลุ่มแตกต่างกนั 

 

ความไม่สมบูรณ์ของผลึก 

โครงสร้างของผลึกทีÉมีอนุภาคหรืออะตอมเรียงตวักนัอยู่อย่างเป็นระเบียบถูกตอ้งตามระบบผลึกเรียก

ไดว่้าเป็น perfect crystals แต่โดยปกติแลว้ผลึกทีÉสมบูรณ์นัÊนหาได้ยากเพราะมกัจะมีข้อบกพร่องอยู่

เสมอและส่วนมากเป็นผลึกไม่สมบูรณ์เมืÉอพิจารณาในระดบัแลตทิซซึÉงในทีÉนีÊจะพิจารณาถึงความไม่

สมบูรณ์ในผลึกเพียง 1 ลกัษณะคือความไม่สมบูรณ์แบบจุด (point defects) ความไม่สมบูรณ์ 

แบบจดุ (point defects) แบ่งเป็นลกัษณะต่างๆ ดงันีÊ   

1. ช่องวา่ง (vacancy) เกิดขึÊนเมืÉอบางอะตอมทีÉควรมีหายไป (แสดงดงัรูปทีÉ 2.2) 

 

 

 

 

 

 

 

 

รูปทีÉ 2.2 แสดงความไม่สมบูรณ์ของผลึกแบบ vacancy และinterstitials 

2. การแทรกทีÉในตวัเอง (self - interstitials) เกิดขึÊนเมืÉอมีไอออนเกินมามากกวา่ปกติทาํให้

ไอออนนัÊนเขา้ไปอยู่ระหวา่งช่องวา่งระหว่างไอออนภายในผลึกซึÉงเป็นสาเหตุทาํใหต้าํแหน่งไอออนทีÉ

อยู่ใกลเ้คียงบิดเบีÊยวไป แสดงดงัรูปทีÉ 2.2 

3. มลทินของผลึก (impurity atom) ไดแ้ก่การทีÉมีไอออนหรือธาตุอืÉนเขา้มาแทรก (interstitial 

impurity atom) หรือเขา้มาแทนทีÉไอออนปกติ (substitutional impurity atom) แสดงดงัรูปทีÉ 2.3 
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รูปทีÉ 2.3 แสดง impurity atom 

4.  Frenkel imperfection เป็นลกัษณะทีÉไอออนบางตาํแหน่งขาดหายไปแลว้ไอออนทีÉหายไป

นัÊนเขา้ไปแทรกอยูใ่นช่องวา่งระหว่างไอออนใกลเ้คียงแสดงดงัรูปทีÉ 2.4 

5. Schottky imperfection เป็นลกัษณะทีÉประจุบวกและประจุลบหายไปพร้อมกนัแสดงดงัรูป

ทีÉ 2.4 

 

 

 

 

 

 

 

 

รูปทีÉ 2.4 การเกิด Frenkel imperfection และ Schottky imperfection 

 

2.1.2 การจัดกลุ่มแลตทิซ 

แลตทิซของผลึกมีการจดักลุม่ตามสมมาตรของผลกึ ซึÉง a, b, c  เป็นระยะห่างระหว่างไอออน เรียกวา่ 

สเปซแลตทิซ (space lattice) มีหน่วยเป็น Angstroms (Å)  เราสามารถจดักลุ่มแลตทิซออกเป็น 7 

ระบบทีÉมีรูปแบบสอดคลอ้งกบัโครงสร้างระบบผลกึ (crystal structure) ดงัตารางทีÉ 2.1  
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ตารางทีÉ 2.1 แสดงกลุ่มแลตทิซโครงสร้างระบบผลึก (crystal structure) 

 

ระบบ ค่าเซลลพ์ารามิเตอร์ โครงสร้าง 

1. cubic a = b = c, α = β = γ= 90° 

 
2. tetragonal a = b ≠ c, α = β = γ= 90° 

 
3. orthorhombic a ≠ b ≠ c, α = β = γ= 90 

 
4. rhombohedral a = b = c, α = β = γ ≠ 90° 

 
5. hexagonal a = b ≠ c, α = β = 90°, γ = 120° 

 
6. monoclinic a ≠ b ≠ c, α = γ = 90°, β ≠ 90° 

 
7. triclinic a ≠ b ≠ c, α ≠ β ≠ γ 

 
 

ในงานวจิยันีÊทาํการศึกษาโครสร้างซิงค์ออกไซดที์Éมีโครงสร้างแบบ wurtzite ซึÉ งมีลกัษณะหนึÉงหน่วย

เซลลแ์บบ hexagonal โดยมี space groupแบบ P63mc หรือ C6v 
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2.2 ซิงค์ออกไซด์ [19] 

ซิงคอ์อกไซด์ (zinc oxide : ZnO) เป็นสารกึÉงตวันาํชนิดเอน็ (n-type) มีช่องวา่งแถบพลงังานประมาณ 

3.37 อิเลก็ตรอนโวลต ์(eV) ผลึกของซิงคอ์อกไซด์มีการจดัเรียงโครงสร้างแบบทึบทีÉสุดแบบรูปหก

เหลีÉยมประชิด (hexagonal closed pack : hcp) ภายในโครงสร้างมีซิงค์อะตอม (zinc  : Zn2+) แทรกอยู่

ตรงตาํแหน่งกึÉงกลางระหว่างออกซิเจน (oxygen : O2-) ซึÉ งมีการจดัเรียงตวัแบบโพรงทรงเหลีÉยมสีÉหนา้ 

(tetrahedral) เรียกวา่  wurtzite structure ดงัในรูปทีÉ 2.5 

 

 

 

 

 

 

 

 

รูปทีÉ 2.5 แสดงโครงสร้างแบบ wurtzite ของซิงคอ์อกไซด ์

 

สารกึÉงตวันาํเป็นวสัดุทีÉมีสภาพนาํไฟฟ้าสูงกวา่ไดอิเลก็ทริกแต่ตํÉากว่าสารตวันําลกัษณะแถบพลงังาน 

(energy band) โดยทัÉวไปจะประกอบด้วยแถบเวเลนซ์ (valence band) และแถบการนาํไฟฟ้า 

(conduction band) มีช่องวา่งพลงังาน (energy gap : Eg)ซึÉงมีความกวา้งไม่เกิน 4 eV กัÊนระหวา่งแถบ

ทัÊงสองนีÊหน่วยของพลงังานคืออิเลก็ตรอนโวลต ์(electron volt : eV) ซึÉงหมายถึงพลงังานทีÉใช้งานใน

การทาํใหอ้ิเล็กตรอนหนึÉงตวัวิÉงผ่านสนามศกัยไ์ฟฟ้า 1 โวลตเ์มืÉออิเลก็ตรอนทีÉอยู่ในแถบเวเลนซ์ไดรั้บ

พลงังานมากพอก็จะสามารถขา้มช่องวา่งพลงังานไปยงัแถบการนาํและทาํให้เกิดการนํากระแสได้ซึÉ ง

สารกึÉงตวันาํแบ่งออกไดเ้ป็น 2ชนิดคือสารกึÉ งตวันําบริสุทธิÍ  (intrinsic semiconductor) และสารกึÉ ง

ตวันาํไม่บริสุทธิÍ  (extrinsicsemiconductor) 

1. สารกึÉงตวันาํบริสุทธิÍ จะยดึเหนีÉยวกนัดว้ยพนัธะโควาเลนซ์เช่นซิลิกอนหรือเจอร์มาเนียมซึÉ งอยู่ใน

ธาตุหมู่ 4A การนาํไฟฟ้าในสารกึÉงตวันําชนิดนีÊอธิบายได้โดยพิจารณาแถบพลงังานทีÉ0 องศาเคลวิน

สารกึÉงตวันาํมีแถบวาเลนซ์ทีÉมีอิเลก็ตรอนบรรจุอยูเ่ต็มแต่แถบการนาํจะว่างเปล่าไม่มีพาหะประจุอยู่

เลยแต่ถา้ทาํใหอุ้ณหภูมิสูงขึÊนจะทาํใหผ้ลึกเกิดการสัÉนสะเทือนและทาํให้วาเลนซ์อิเล็กตรอนเกิดการ

เคลืÉอนทีÉหลุดออกจากพนัธะโควาเลนซ์กลายเป็นอิเลก็ตรอนอิสระและสามารถเคลืÉอนทีÉจากแถบวา

เลนซ์ไปยงัแถบการนาํไดเ้นืÉองจากช่องวา่งพลงังานในสารกึÉงตวันาํบริสุทธิÍ มีความกวา้งไม่มากนกั 
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ไม่จาํเป็นต้องให้พลงังานสูงแก่อิ เล็กตรอนอิเล็กตรอนก็สามารถเคลืÉอนทีÉไปยงัแถบการนาํได้การ

เคลืÉอนทีÉของวาเลนซ์อิเล็กตรอนแต่ละตวัจะทาํให้เกิดโฮล (hole) เกิดขึÊนตวัอย่างเช่นซิลิกอนทีÉมี 

วาเลนซ์อิเล็กตรอน 4 ตวัเมืÉอให้อุณหภูมิเพิÉมขึÊนพลงังานความร้อนทีÉระดบัอุณหภูมิห้องก็เพียงพอทีÉจะ

กระตุน้ใหอ้ิเลก็ตรอนเคลืÉอนทีÉจากแถบวาเลนซ์ไปยงัแถบการนาํไดก้ารทีÉอิเลก็ตรอนกระโดดจากแถบ

วาเลนซ์ไปยงัแถบการนาํจะทาํให้เกิดโฮลในแถบวาเลนซ์ซึÉงโฮลทีÉเกิดขึÊนมีประจุเป็นบวกและเกิด

อิเลก็ตรอนในแถบการนาํซึÉงมีประจุไฟฟ้าเป็นลบโดยเกิดเป็นคู่อิเล็กตรอนโฮล (electron – hole pair) 

ดงันัÊนสารกึÉงตวันาํบริสุทธิÍ จึงมีพาหะนาํไฟฟ้า 2 ชนิดคืออิเล็กตรอนและโฮล 

 

2. สารกึÉงตวันาํไม่บริสุทธิÍสามารถแสดงสมบติัการนาํไฟฟ้าไดโ้ดยการเติมสารเจอืลงในอะตอมตวัทาํ

ละลายทาํใหเ้กิดการละลายของแข็งแบบแทนทีÉหรือการแทรกสารเจือทีÉเติมลงไปช่วยให้อิเล็กตรอน

หรือโฮลเกิดขึÊนมาในแลตทิชก่อให้เกิดการนาํไฟฟ้าไดโ้ดยสารกึÉงตวันาํไม่บริสุทธิÍ แบ่งออกเป็น 2 

ชนิดคือชนิดเอน็ (n) และชนิดพี (p) 

1. สารกึÉงตวันาํไม่บริสุทธิÍชนิดเอน็ (n-type semiconductor) คือสารกึÉงตวันาํทีÉมีพาหะประจุ 

ลบมากกวา่พาหะประจุบวกเพราะมีอิเล็กตรอนเพิÉมมาจากสารเจือตวัอยา่งเช่นพลวง (Sb) ทีÉมีวาเลนซ์

อิเลก็ตรอน 5 ตวัถูกเติมลงไปในซิลิกอน (Si) ทีÉมีวาเลนซ์อิเลก็ตรอน 4 ตวัดงัรูปทีÉ 2.6 อิเลก็ตรอนจาก

สองอะตอมจบัคู่กนัดว้ยพนัธะโควาเลนซ์ 4 พนัธะและจะเหลือวาเลนซ์อิเล็กตรอนของพลวง 1 ตวั

ดึงดูดกบันิวเคลียสอย่างหลวมๆ เมืÉอให้พลงังานค่าหนึÉงก็จะกลายเป็นอิเล็กตรอนอิสระและสามารถ

นาํกระแสไดเ้รียกพลวงว่าตวัให้ (donor) โดยมีระดบัพลงังานอยู่ใตแ้ถบการนาํเรียกวา่ระดับตวัให ้

(donor level: Ed) 

 

 

 

 

 

 

 

 

รูปทีÉ 2.6 แสดงคู่อิเลก็ตรอนในพนัธะโควาเลนซ์ของผลึกซิลิกอน 
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2. สารกึÉงตวันาํไม่บริสุทธิÍชนิดพี (p-type semiconductor) เป็นสารกึÉงตวันาํทีÉมีการเติมสารเจอื

เพืÉอให้มีพาหะประจุบวกมากกว่าพาหะประจุลบตวัอย่างเช่นการเติมธาตุหมู่ 3A อนัได้แก่โบรอน 

(B)ลงในซิลิกอนเมืÉออะตอมซึÉงมีวาเลนซ์อิเลก็ตรอน 3 ตวัของสารเจือมีพนัธะโควาเลนซ์กบัอะตอมทีÉ

มีวาเลนซ์อิเล็กตรอน 4 ตวัทาํใหเ้กิดโฮล 1 โฮลขึÊนในโครงสร้างและพร้อมทีÉจะรับอิเลก็ตรอนจงึเรียก

สารเจือเหล่านีÊ วา่ ตวัรับ (acceptor) ดงัแสดงในรูปทีÉ 2.7 โดยมีระดบัพลงังานเหนือแถบวาเลนซ์

อิเลก็ตรอนเล็กนอ้ยเรียกว่าระดบัตวัรับ (acceptor level : Ea) อิเลก็ตรอนในแถบวาเลนซ์เขา้ไปอยู่ใน

ระดบัตวัรับนีÊไดง้่ายกว่าเขา้ไปอยูใ่นแถบการนาํเนืÉองจากใชพ้ลงังานน้อยกว่าเมืÉออิเล็กตรอนออกไป

จากแถบวาเลนซ์แลว้จะทาํใหเ้กิดโฮลทีÉมีสภาพเคลืÉอนทีÉไดซึ้É งทาํให้มีการนําไฟฟ้าเกิดขึÊนในสารกึÉ ง

ตวันาํชนิดนีÊ  

 

 

 

 

 

 

 

 รูปทีÉ 2.7 แสดงคู่อิเลก็ตรอนและโฮลในพนัธะโควาเลนซ์ของผลกึซิลกิอน 

 

2.3 เคมีคอมพวิเตอร์ (computational chemistry) 

การวจิยัทางเคมีในปัจจุบนันีÊ มีการวจิยัแบบใหม่ทีÉผูว้ิจยัไม่ตอ้งทดลองในห้องปฏิบติัการและอยู่กบั

สภาวะแวดลอ้มทีÉมีสารเคมีอยูร่อบตวันัÉนคือเทคนิคการวจิยัทีÉมีชืÉอเรียกวา่ เคมีคอมพิวเตอร์  ซึÉ งเป็น

สาขาหนึÉ งของวชิาเคมีโดยใช้เครืÉ องคอมพิวเตอร์และซูเปอร์คอมพิวเตอร์ในการคาํนวณ  มีการใช้

ทฤษฎีในทางกลศาสตร์ควอนตมั เคมีคอมพิวเตอร์นีÊสามารถคาํนวณไดใ้นระดบัโมเลกุลจนถึงอะตอม

ของสาร เทคนิคนีÊ ดูสมบติัเฉพาะตวัของสารเหล่านัÊน รวมถึงสามารถทาํนายโครงสร้างของสารเคมี

เหล่านัÊนได ้
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2.4 กลศาสตร์คลืÉน  

ในปี ค.ศ. 1926 ไดมี้นกัฟิสิกส์ชาวออสเตรีย คนหนึÉงชืÉอ โชรดิงเจอร์  (Erwing SchrÖdinger) ได้นาํ

แนวความคิดเรืÉ องทวิภาพของคลืÉนและอนุภาค ไปพัฒนาจนกลายเป็น กลศาสตร์คลืÉน (wave 

mechanics) ซึÉ งเป็นรูปแบบหนึÉงของกลศาสตร์ควอนตมั ซึÉ งหลกัของกลศาสตร์คลืÉนคือสมการคลืÉน

ของสมการโชรดิงเจอร์ (SchrÖdinger's wave equation) สามารถนาํไปคาํนวณหาสมบตัิของสสารทาง

เคมีไดโ้ดยผ่านตวัดาํเนินการ (operater) ต่างๆ ซึÉงฟังก์ชนัคลืÉนนีÊ เป็นสิÉงทีÉเกีÉยวขอ้งกับระบบของเคมี

คอมพิวเตอร์ 

 

2.5 สมการโชรดิงเจอร์ [20] 

ในทฤษฎีควอนตมันัÊน เนืÉองจากอนุภาคมีการประพฤติตวัเสมือนคลืÉน ทาํให้เราไม่สามารถระบุ

ตาํแหน่งทีÉแน่นอนได ้ แต่เราสามารถอธิบายด้วยฟังก์ชนัคลืÉน (wave function, ) โดยความน่าจะ

เป็นทีÉจะพบอนุภาคทีÉตาํแหน่งใด ๆ ณ เวลาใด ๆ (probability density) สามารถอธิบายไดด้ว้ยฟังก์ชนั 

| 2| ฟังก์ชนัคลืÉนและพลงังานรวมของระบบใดๆ สามารถหาได้จากการแก้สมการคลืÉนของโชรดิง

เจอร์ในการคาํนวณจากการช่วยเหลือของโปรแกรมสําหรับการสร้างแบบจาํลองโมเลกุลทางเคมี 

(Molecular Modeling Program) ต่างๆ โดยสามารถคาํนวณหาสมบติัต่างๆ ไดเ้ช่น ค่าพลงังาน, สมบติั

ทางโครงสร้างของโมเลกุล, ค่าสมบติัทางอุณหพลศาสตร์ เป็นตน้ ดว้ยการอาศยัหลกัการพืÊนฐานของ

การแก้สมการโชรดิงเงอร์ (Schrödinger Equation) แสดงในสมการนีÊ  

 

 EH                                                               (2.1) 

 

 เมืÉอ H  คือ  ตวัดาํเนินการฮามิลโตเนียน (Harmiltonian Operator)  

    คือ  ฟังกช์นัคลืÉน (Wave Function) ขึÊนอยู่กบัตาํแหน่งของอนุภาคใน 

                                                       ระบบและสปินโมเมนตมัเชิงมุม (Spin Angular Momentum) 

  E  คือ  ค่าพลงังาน (Energy) ของระบบ 

 

ตวัดาํเนินการฮามิลโตเนียนแสดงค่าในเทอมของพลงังานจลน์ (Kinetic Energy) และพลงังานศกัย ์

(Potential Energy) แสดงในสมการทีÉ 2.2 

 

VTH                       (2.2) 

 

 เมืÉอ T  คือ  ตวัดาํเนินการพลงังานจลน์ (Kinetic Energy Operator) เป็นการ 
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บอกถึงการเคลืÉอนทีÉของอนุภาคในระบบ 

  V  คือ  ตวัดาํเนินการพลงังานศกัย ์(Potential Energy Operator) เป็นแรง 

กระทาํแบบคูลอมบ ์(Coulomb Interaction) 

 

   2
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 เมืÉอ h  คือ  ค่าคงทีÉของ Plank (6.6 × 10-34 J·s) 

  im  คือ  มวลของอนุภาค i  

  
2  คือ  ตวัดาํเนินการลาพลาเซียน (Laplacian Operator) 

 

   
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

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
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



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ji ij

ji

r
ee

V                                    (2.4) 

 

 เมืÉอ ji ee ,  คือ  ประจุสําหรับอเิลก็ตรอน ie มีค่าเท่ากบั e และสําหรับนิวเคลียส  

                                                      ie มีค่าเท่ากบั eZi เมืÉอ iZ คือ เลขอะตอม (Atomic Number) 

  ijr  คือ  ระยะห่างระหวา่ง ie และ je  

 

โดยสมการโชรดิงเงอร์แบ่งออกเป็น 2 กรณีคอื สมการทีÉไม่ขึÊนกบัเวลา และสมการทีÉขึÊนกบัเวลา ซึÉง

การคาํนวณทางเคมีเชิงคาํนวณจะสามารถหาค่าพลงังานและสมบติัทางโครงสร้าง โดยใชส้มการ             

โชรดิงเงอร์ทีÉไม่ขึÊนกบัเวลาตามสมการทีÉ 2.5 ทาํใหร้ะบบของโมเลกลุมีตวัดาํเนินการฮามิลโตเนียน

ดงันีÊ  

 


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
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  




 


                 (2.5) 

 

 เมืÉอ ji,  คือ  อเิลก็ตรอน 

   ,  คือ  นิวเคลียส 

   คือ  เลขอะตอม 

  r  คือ  ระยะห่างระหวา่งนิวเคลียส  และ   
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  ir  คือ  ระยะห่างระหวา่ง อเิลก็ตรอน iและ Nuclei   

  ijr  คือ  ระยะห่างระหวา่ง อเิลก็ตรอน iและ j  

 

โดยในเทอมแรกและเทอมทีÉสองแสดงตวัดาํเนินการพลงังานจลน์ของนิวเคลียสและอิเล็กตรอน 

ตามลาํดบั ส่วนเทอมทีÉสาม คือ แรงผลกั (Repulsion) ระหว่างนิวเคลียส สําหรับเทอมทีÉสีÉ  คือ แรง

ดึงดูดแบบคูลอมบ ์(Coulomb Attraction) ระหวา่งอิเล็กตรอนและนิวเคลียส และเทอมสุดทา้ยเป็นแรง

ผลกัระหวา่งอิเล็กตรอนเมืÉอตวัดาํเนินการฮามิลโตเนียนของระบบมีความยุ่งยากและมีความซับซ้อน

จึงตอ้งอาศยัการประมาณค่าเขา้มาช่วยในการหาฟังก์ชนัคลืÉนในระบบโมเลกุล 

 

2.6 การประมาณค่าบอร์น–ออบเพนไฮเมอร์(Born – Oppenheimer 

      Approximation) 

สมการโชรดิงเจอร์สามารถหาผลเฉลยทีÉถูกต้อง (Exact Solution) ได้เฉพาะอะตอมไฮโดรเจนหรือ

ไอออนทีÉคลา้ยคลึงกบัอะตอมไฮโดรเจน (Hydrogen–liked atom) เท่านัÊน สําหรับระบบทีÉมีอิเลก็ตรอน

ตัÊงแต่ 2 ตวัขึÊนไปนัÊน สมการโชรดิงเจอร์ไม่สามารถหาผลเฉลยทีÉถูกตอ้งได ้ทาํให้มีการประมาณค่า

ต่างๆ เพืÉอใช้ในการแกส้มการโชรดิงเจอร์ของระบบโมเลกุล การแก้สมการโชรดิงเจอร์สามารถทาํให้

ง่ายขึÊ น โดยอ าศ ัยการประมาณค่าทีÉ เ รียกว่า การประมาณค่าบอร์น-ออบเพนไฮเมอร์(Born–

Oppenheimer Approximation) โดยพิจารณาว่ามวลของนิวเคลียสมีค่ามากกว่ามวลของอิเล็กตรอน

มาก ( emm  ) เมืÉอการประมาณค่าแบบบอร์น-ออบเพนไฮเมอร์จะแยกการพิจารณาการเคลืÉอนทีÉ

ของนิวเคลียสและอิเล็กตรอนออกจากกนัจึงสามารถประมาณว่านิวเคลียสหยุดนิÉงเนืÉองจากนิวเคลียส

มีนํÊ าหนักทีÉมากกว่าอิเล็กตรอนหรือไม่มีพลงังานจลน์ทาํให้สมการทีÉ 2.5 ในเทอมแรกหายไปและ

เทอมทีÉสามมีค่าคงทีÉเนืÉองจากเป็นพลงังานศกัยร์ะหวา่งนิวเคลียส ซึÉงการประมาณค่าสามารถทาํไดโ้ดย

การจาํกัดตาํแหน่งในการเคลืÉอนทีÉของนิวเคลียสไปยงัตาํแหน่งอืÉนๆ เพืÉอคาํนวณฟังก์ชันคลืÉนของ

อิเลก็ตรอนซํÊ าๆ เพืÉอหาพลงังานสําหรับการจดัเรียงของนิวเคลียสทีÉเป็นไปไดท้ัÊงหมด จากนัÊนพิจารณา

ค่าพลงังานทีÉตํÉาทีÉสุดซึÉงจะแสดงถึงรูปร่างของโมเลกุลทีÉเสถียร ดงันัÊนจึงเหลือเพียงการแก้สมการใน

ส่วนของอิเล็กตรอนเท่านัÊน โดยอิเล็กตรอนจะเคลืÉอนทีÉในสนามของนิวเคลียส ฮามิลโตเนียนของ

อิเลก็ตรอนขึÊนกบัตาํแหน่งของนิวเคลียสไม่ไดข้ึÊนกบัโมเมนตมัของนิวเคลียส เรียกวา่ elecH  (Purely 

Electron Hamiltonian)โดยสมการทีÉ 2.6 และ 2.7 แสดงสมการโชรดิงเงอร์และฮามิลโตเนียนทีÉ

พิจารณาเฉพาะส่วนของอิเล็กตรอนตามลาํดบัโดยสมการ 2.7 ขึÊนอยู่กับส่วนของอิเล็กตรอนและ

สามารถอธิบายพฤติกรรมต่อการระบุพฤติกรรมการสปินของอิเลก็ตรอน 

elecelecelecelec EH                      (2.6) 
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2.7 Hartree-Fock method 

ระเบียบวธีิฮาทรี-ฟอกซ์ เป็นพืÊนฐานการคาํนวณสําหรับระบบทีÉมีหลายอิเล็กตรอน โดยฮามิลโตเนียน

สําหรับ n อิเล็กตรอนแสดงในสมการทีÉ 2.7 ซึÉ งเทอมทีÉสองเป็นพลงังานศักย์ของแรงดึงดูดระหว่าง

อิเลก็ตรอน และนิวเคลียสอะตอมกลางซึÉงมีประจุ Z ( nZ  ) ในขณะทีÉเทอมสุดทา้ยเป็นพลงังานศกัย์

จากแรงผลกัระหว่างอิเล็กตรอนกับอิเล็กตรอน โดยทีÉ iมากกว่า j เพืÉอหลีกเลีÉยงการนับแรงผลกั

ระหว่างอิเล็กตรอนซํÊ า 2 ครัÊ ง และตดัเทอม 
ijr
e 2'   จากนัÊนการพิจารณาการสปินของอิเล็กตรอนตาม

หลักการของเพาลี โดยไม่ให้อิเล็กตรอนมากกว่า 2 ตวัอยู่ในทีÉว่างของออร์บิทัลเดียวกัน และ

อิเลก็ตรอนทัÊงสองตอ้งมีสปินทีÉต่างกนัจึงทาํให้ระบบทีÉมีอิเล็กตรอนมากกวา่สองตวัจะมีเลขควอนตมั

ในการอธิบายอิเล็กตรอนต่างกันเช่น ฮีเลียม จะประกอบไปดว้ยอิเล็กตรอนทีÉมีเลขควอนตัมทีÉไม่

เหมือนกนั จึงสามารถเขียนฟังก์ชนัคลืÉนของอะตอมฮีเลียมปกติไดเ้ป็น 

 

                                                      )2(1)1(1)2,1(  ssHe                    (2.8a) 

 หรือ    )1(1)2(1)2,1(  ssHe                   (2.8b) 

 

ฟังก์ชนัคลืÉนทัÊง 2 สมการนีÊ เป็นไปตามหลกัการจาํกดัจาํเพาะของเพาลี แต่ไม่ถูกตอ้งนกัเพราะฟังก์ชนั

คลืÉนในลกัษณะดงักล่าว เช่น ในสมการทีÉ 2.8a จะตอ้งระบุลงไปวา่อิเล็กตรอนตวัทีÉ 1 อยู่ในออร์บิทลั

1s ดว้ยฟังก์ชนัสปิน (ms = +1/2) และอิเลก็ตรอนตวัทีÉ 2 อยู่ในออร์บิทลั1s ดว้ยฟังก์ชนัสปิน   (ms 

= -1/2) ซึÉ งทาํไม่ไดเ้พราะอิเลก็ตรอนเป็นอนุภาคเอกลกัษณ์ไม่สามารถบอกไดว่้าอิเล็กตรอนตวัใดมี ms 

= +1/2 และตวัใดมี ms = -1/2 ดงันัÊนตอ้งเขียนฟังก์ชนัคลืÉนในลกัษณะใหม่โดยนําสมการ 2.8a และ 

2.8b มาบวกลบกนัและพิจารณาผลทีÉไดด้งันีÊ  

 

)1(1)2(1)2(1)1(1)2,1()1,2(  ssssHeHe     (2.9) 

  )1(1)2(1)2(1)1(1)2,1()1,2(  ssssHeHe                 (2.10) 

 

จากสมการ 2.9 และ 2.10 แสดงถึงฟังก์ชนัคลืÉนของอิเล็กตรอนทัÊง 2 อิเล็กตรอนทีÉไม่สามารถบอก

ความแตกต่างได ้ซึÉงบอกได้เพียงว่าอิเล็กตรอนตวัหนึÉงอยู่ในออร์บิท ัล1s ดว้ยฟังก์ชนัสปิน  และ

อิเลก็ตรอนอีกตวัอยู่ในออร์บิทลั 1s ดว้ยฟังก์ชนัสปิน   แต่ไม่ทราบวา่แต่ละอิเล็กตรอนมีสปินแบบ

ใดและเมืÉอสลบัตาํแหน่ง 1 กบั 2 ในสมการ 2.9 จะไดว่้า 
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)2(1)1(1)1(1)2(1)2,1()1,2(  ssssHeHe    (2.11) 

 

ซึÉ งผลทีÉไดเ้หมือนเดิมคือ ไดฟั้งก์ชนัเดิมกลบัมา จึงเรียกสมการ 2.11 ว่าสมมาตร (Symmetric) ต่อการ

สลบัตาํแหน่งของอิเลก็ตรอนในทาํนองเดียวกนัเมืÉอสลบัตาํแหน่ง 1 กบั 2 ในสมการ 2.10 จะไดว่้า  

)2(1)1(1)1(1)2(1)2,1()1,2(  ssssHeHe   

))1(1)2(1)2(1)1(1(  ssss     (2.12) 

 

ซึÉ งได้ฟังก์ชันเดิมเช่นกันแ ต่มีเครืÉ องหมายตรงข้าม จึง เ รียกสมการ 2.12 ว่าปฏิสมมาตร

(Antisymmetric) ต่อการสลบัตาํแหน่งของอิเล็กตรอนดงันัÊนฟังก์ชันในสมการทีÉ 2.11 และ 2.12 จะ

แทนฟังก์ชันคลืÉนของอะตอมฮีเลียมได้ปกติ แต่ในธรรมชาติมีเพียงอะตอมฮีเลียมทีÉมีฟังก์ชัน

แบบปฏิสมมาตรเท่านัÊนดงันัÊนฟังก์ชนัคลืÉนทีÉถูกตอ้งของอะตอมฮเีลียมปกติจงึเป็นในสมการ 2.12 คือ 

 

  )1(1)2(1)2(1)1(1
2
1)2,1(  ssss                                (2.13) 

 

โดยค่าคงทีÉ 
2
1

คือค่าคงทีÉของนอร์มาไลซ์ ซึÉงใช้ได้กบัระบบทีÉมีอิเล็กตรอนหลายตวัอีกด้วย ดงันัÊน

หลกัการกีดกนัของเพาลีอาจกล่าวไดใ้หม่วา่ ฟังก์ชนัคลืÉนรวมของระบบทีÉมีอิเล็กตรอน 2 ตวัขึÊนไป

จะตอ้งปฏิสมมาตรต่อการสลบัตาํแหน่งของอิเล็กตรอน 2 ตวัใดๆ สมการ 2.13 อาจเขียนใหม่ในรูป

ตวักาํหนด (Determinant) ไดว้า่ 

 

)2(1)2(1
)1(1)1(1

!
1)2,1(



ss
ss

N
     (2.14) 

  

สมการ 2.14 เป็นอีกรูปแบบหนึÉงในการเขียนแทนฟังก์ชนัคลืÉนสําหรับอิเล็กตรอนจาก J.C Slater เรา

จึงเรียกตวักาํหนดสมการ 2.14 วา่ตวักาํหนดสเลเตอร์(Slater Determinant) สามารถเขียนในรูปทัÉวไป

ไดด้งันีÊ  
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

                                (2.15) 
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โดยทีÉ                               )()2()1(),,2,1( 21 NXXXN N                                 (2.16) 

ซึÉ งออร์บิทลัเชิงโมเลกุล (Molecular Orbital, MO) สามารถจาํลองขึÊนจากการรวมเชิงเส้นตรง (Linear 

Combination) ของออร์บิทลัเชิงอะตอม (Atomic Orbital, AO) ในแต่ละนิวเคลียสนัÉนคือ LCAO-MO 

(Linear Combination of Atomic Orbital to Form Molecular Orbital) โดยฟังก์ชนัคลืÉนของออร์บิทลั

เชิงโมเลกุลทีÉเกิดจากการรวมกนัเชิงเส้นตรง สําหรับ N ออร์บิทลัเชิงอะตอมสามารถเขียนไดด้งันีÊ  

 

NNiiii ccc   2211      (2.17)  

 

 หรือ     



k

ii c
1

        (2.18) 

 

เมืÉอ i  คือ ออร์บิทลัเชิงโมเลกุลทีÉ i 

 ic  คือ  สมัประสิทธ์โมเลกุล (Molecular Coefficient) 

   คือ  ออร์บิทลัเชิงอะตอมทีÉ ߤหรือ Basis Function 

 

โดยทีÉ k จะตอ้งมากกวา่หรือเท่ากบัครึÉ งหนึÉงของจาํนวนอเิล็กตรอนทัÊงหมดของระบบทีÉกาํลงัพิจารณา 

Hamiltonian สําหรับระบบทีÉมีอิเล็กตรอนมากกวา่ 1 ตวั สามารถเขียนไดด้งัสมการทีÉ 2.7 

ถา้ให ้ แทน Antisymmetric Normalized Wavefunctionพลงังานของระบบจะอยูใ่นรูปของ

อนิทริกรลัแสดงในสมการ 2.19 

 

  dHE *'        (2.19) 

 

โดยมี คือ Complex Conjugate ของ  จากนัÊนทาํการอินทิเกรตครอบคลุมพิกดัของอิเล็กตรอนทัÊงหมด 

ซึÉงถา้  เป็นฟังก์ชนัคลืÉนแม่นตรง (Exact Wavefunction,  ) สําหรับสภาวะพืÊนค่าพลงังานทีÉได้ใน

สมการ 2.12 จะเป็นพลงังานแม่นตรงของระบบแต่ถา้  เป็นฟังก์ชนัอืÉนๆ จะทาํให้ได้ค่าพลงังาน 'E

ทีÉไดจ้ากการอินทิเกรตมีค่ามากกวา่ค่าพลงังานแม่นตรงของระบบ E  เสมอ (Upper Bound to The 

Exact Energy) 

 

  EdH *   

                                              
EdHE    *'                                (2.20) 
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ค่า 'E  สามารถทาํให้ตํÉาลง (Minimize) ไดแ้ละเมืÉอ 'E  ต ํÉาทีÉสุดจะทาํให้   ใกล้เคียง  มากทีÉสุด

ทฤษฎี Hartree-Fock นีÊ ในระบบอะตอมจะมีอิเล็กตรอน N ตวั เราตอ้งพิจารณาเทอมแรกเป็นพลงังาน

ศกัยจ์ากแรงดึงดูดระหว่างอิเล็กตรอน และประจุของนิวเคลียสรวม เทอมสุดทา้ยเป็นพลงังานศกัย ์

จากแรงผลกัระหว่างคู่อิเล็กตรอน ในการประมาณค่านัÊนสําหรับสองพจน์แรกจะถูกแทนด้วย coreH  

ซึÉ งจะกล่าวในลําดับต่อไป ส่วนพจน์สุดท้ายเป็นพจน์ของพลังงานศักย์ระหว่างอิเล็กตรอนกับ

อิเลก็ตรอนจะแยกพิจารณาออกเป็น 2 กลุ่ม คือ อิเลก็ตรอนทีÉเราสนใจตวัใดตวัหนึÉงกบัอิเลก็ตรอนตวัทีÉ

เหลือทัÊงหมดจะถูกพิจารณาความสัมพนัธ์เป็นแบบอิเล็กตรอนกบัสนามไฟฟ้าของอิเล็กตรอนตวัทีÉ

เหลือ  เพืÉอให้พิจารณาไดง้่ายจงึจดัรูปอย่างง่ายในรูปสมการ Hartree – Fock 

iii XXF                                                                  
(2.21) 

 

 เมืÉอ  F  คือ  Fock Operator 

 

โดยสมการ Hartree-Fockจําเ ป็นต้องแก้ด้วยวิธีวนรอบ (Iteration) เ พืÉอให้เป็นสมการ Pseudo 

Eigenvalue แต่ต่อมา Roothaan และ Hall เสนอวิธีการแก้สมการ Hartree-Fock ดว้ย Basis Function 

ผลทีÉไดคื้อ 

 

                                          




N

ii cSF
1

0)(


             เมืÉอ  N,,2,1                         (2.22) 

 

ซึÉ งสามารถเขียนในรูปสมการเมทริกซ์ทีÉเรียกสมการ Roothaan-Hall ดงันีÊ  

 

ScFc                                 (2.23) 

      

 เมืÉอ S  คือ  สมาชิกของ Overlap Matrix 

  i  คือ  พลงังานหนึÉงอเิลก็ตรอนของออร์บิทลัเชิงโมเลกลุ i หรือพลงังาน 

                                                       ออร์บิทลั 

  F  คือ  สมาชิกของ Fock Matrix 

 

โดย    



  

 


 

 2
1

1 1

N N
core PHF                               (2.24) 

 

 1
* )1()1( rdS 

                     (2.25) 
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เมืÉอ  coreH  แสดงพลงังานของอิเลก็ตรอนเดีÉยวภายในสนามของนิวเคลียส 

 

1
1 1

2* )1(
2
1 rd

r
ZH

M

A A

A
i

core 
  








 



    (2.26) 

 

 P  คือ  Density Matrix ของอิเล็กตรอนเดีÉยว 

 





occ

i
iii ccP

1

*2        (2.27) 

 

  คือ อินทริกรัลของแรงผลกัระหวา่งคู่อิเล็กตรอน (Two-Electron Integrals) 

 

  21
*

12

* )2()2(1)1()1( rdrd
r


   








    (2.28) 

 

โดย Occupied (occ) คือออร์บิทลัทีÉมีอิเล็กตรอนบรรจุอยู่ ซึÉ งเลข 2 ในสมการ 2.27แสดงถึงการมี 2 

อิเลก็ตรอนในแต่ละออร์บิทลัเชิงโมเลกุล และเครืÉองหมายดอกจนั (*) หมายถึง Complex Conjugate   

โดยพลงังานของอิเลก็ตรอน (Electronic Energy) มาจากสมการนีÊ  

 

 
 

 FPE
N N

ee 
 


1 12

1
   (2.29) 

 

เมืÉอรวมสมการ 2.27 กบัสมการแรงผลกัระหวา่งนิวเคลยีสจะไดพ้ลงังานรวมของระบบ (Total 

Energy) 

 





  



r
eZZ

E nr
2'

     (2.30) 

 

โดยความสัมพนัธ์กนัของสมการ Roothaan-Hall จะไม่มีความสัมพนัธ์เชิงเส้น เนืÉองจาก Fock Matrix 

)( f ขึÊนกบัสัมประสิทธิÍ ออร์บิทลัเชิงโมเลกุล ic  ทาํใหต้อ้งแก้ไขดว้ยวิธี วนรอบ (Iteration )แบบทีÉ

เรียกวา่ Self-Consistent-Field (SCF) บางครัÊ งจงึนิยมเรียกระเบียบวธีิ Hartree-Fock ว่า SCF 
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ถา้คาํนวณ SCF ของโครงสร้างอะตอมหรือโมเลกุลดว้ยระเบียบวธีิ Hartree-Fock จะทาํใหไ้ดพ้ลงังาน

ทีÉต่างจากพลงังานจริงเนืÉองจากบางส่วนของความขดัแยง้ในการตดัผลของรีเลติวตีิ(Relativity),  

สปินออร์บิทลั(Spin-Orbital) และการคู่ควบ (Coupling) ซึÉ งมีขนาดใหญ่สําหรับ Core อิเลก็ตรอนดว้ย

พลงังานจลน์สูง ขนาดของความแตกต่างทีÉเหลือนีÊ เรียกพลงังานสหสัมพนัธ์ (Correlation Energy) 

 

2.8 Density-Functional Theory (DFT) 

Density-Functional Theory (DFT) สามารถใชอ้ธิบายฟังกช์นัคลืÉนของระบบทีÉมีอิเลก็ตรอนมากกวา่ 1 

ตวั ซึÉ งทฤษฎีทาง Density-Functional Theory เกิดขึÊนครัÊ งแรกในปี ค.ศ. 1964โดยการตีพิมพง์านวิจยั

ของ Hohenberg and KohnซึÉงเป็นการแสดงใหเ้ห็นเป็นครัÊ งแรกวา่ เราสามารถเขียนพลงังานรวมของ

ระบบ และ สมบติัอืÉนๆ ของระบบ ในรูปฟังกช์ันของความหนาแน่นของอิเลก็ตรอน (electron 

density, )(r ) โดยทีÉอนุภาคเคลืÉอนทีÉอยู่ในศกัยภ์ายนอก (External Potential, Vext) สําหรับค่าพลงังาน

ทีÉสภาวะพืÊนไดม้าจากฟังกช์นัพลงังานทีÉต ํÉาทีÉสุด ซึÉงสามารถหาได้จากสมการ 2.31 

 

)]([)()()]([ rFdrrrVrE ext        (2.31) 

 

โดยทีÉเทอมแรกแสดงถึงอนัตรกิริยาระหวา่งอิเล็กตรอนและ External Potentialส่วนเทอมทีÉสองคือ

ฟังก์ชนัของความหนาแน่นอิเลก็ตรอนซึÉงประกอบไปดว้ยผลรวมพลงังานจลน์ของอเิลก็ตรอนและผล

ของแรงกระทาํระหว่างอิเล็กตรอนกบัอิเลก็ตรอนซึÉงพลงังานทีÉต ํÉาทีÉสุดของระบบ (Minimum Energy) 

จะมีความสัมพนัธ์กบัสภาวะพืÊนทีÉแทจ้ริงของความหนาแน่นของอิเล็กตรอนดงันัÊนการเปลีÉยนแปลง

ฟังก์ชนัความหนาแน่นของอิเลก็ตรอน จะนาํมาใชใ้นการคาํนวณค่าพลงังานทีÉตํÉาทีÉสุดของระบบโดย

คาํตอบทีÉดีทีÉสุดสัมพนัธ์กับพลงังานทีÉต ํÉาทีÉสุดและถ้าความหนาแน่นของอิเล็กตรอนไม่ถูกต้องค่า

พลงังานจะให้ค่าสูงกวา่พลงังานทีÉแทจ้ริงต่อมา Kohn-Shamไดเ้สนอฟังก์ชัน )]([ rF  ซึÉงแสดงดงั

สมการทีÉ 2.32 

 

       )()()()( rErErErF XCHKE       (2.32) 

 

  

เมืÉอ   )(rEKE   คือ พลงังานจลน์ของระบบทีÉไม่มีแรงกระทาํระหวา่งอิเล็กตรอน 

                                                     และความหนาแน่นของอิเล็กตรอนเดียวกนั โดยทีÉค่าของพลงังานมี 

                                                     ค่านอ้ยมากสามารถรวมกบัค่าพลงังาน exchange และ correlation 

  )(rEH   คือ  Hartree Electrostatic Energy   
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  )(rEXC   คือ  เทอมทีÉเกิดจาก exchange และ correlation 
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จากสมการ 2.33และ 2.34 สามารถหาค่าพลงังานในระบบ N-electron จาก Kohn-Sham ไดใ้นสมการ

ทีÉ 2.35 
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โดยทีÉความหนาแน่นอเิลก็ตรอน ของระบบสามารถหาไดจ้ากสมการดงันีÊ 
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สําหรับสมการทัÉวไปของ Kohn-Sham สามารถเขียนไดด้งัสมการทีÉ 2.37 
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 เมืÉอ XCV  คือ  ฟังกช์นัของเทอม Exchange-Correlation 

  i  คือ  Orbital Energy 
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สําหรับการแก้สมการของ Kohn-Sham สามารถทาํไดโ้ดยการสมมติความหนาแน่นอิเล็กตรอน  เพืÉอ

คาํนวณหาฟังก์ชนัของเทอม Exchange-Correlation และทาํการแกส้มการเพืÉอหา i  หลงัจากนัÊนนาํ 
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i  ทีÉคาํนวณได้ก่อนหน้านีÊ ไปคาํนวณหาความหนาแน่นอิเล็กตรอน  ใหม่แลว้นาํความหนาแน่น

อิเล็กตรอน ))(( r  ใหม่ทีÉคาํนวณได้ไปแทนทีÉ  ทีÉสมมติขึÊน กระบวนนีÊทาํซํÊ าจนกว่าจะได้ i ทีÉ

เหมาะสม โดยทีÉ i ทีÉคํานวณไดใ้หม่ต้องมีÉค่าใกล้เคียงหรือเท่ากับ i อนัเดิม จุดสําคญัในการ

คาํนวณโดย DFT คือ Exchange-Correlation Functional โดยใช้ฟังก์ชนัในการประมาณเทอม 

Exchange-Correlation 

 

 

2.8.1 The local Density Approximation (LDA) [21] 

จากสมการ 2.37เราไม่สามารถทราบค่าของฟังก์ชนั Exchange-Correlation, XCV  ทีÉแทจ้ริงได ้ทาํให้ใน

การคาํนวณตอ้งมีการประมาณค่า Exchange-Correlation, XCV โดยการประมาณค่าทีÉง่ายและไดรั้บ

ความนิยมคือวิธีLDAโดยทีÉ   )(rEXC   ขึÊ นอยู่กับความหนาแน่นอิเล็กตรอนแต่ละจุดในพืÊนทีÉ 

สําหรับการประมาณค่า  )(rEXC   คาํนวณมาจาก homogeneous electron gas ซึÉงแนวคิดนีÊ เป็นของ 

Kohn และ Shamโดยสามารถเขียนไดด้งัสมการทีÉ 2.39 

 

                                                     rdrrrE xc
LDA
xc

3                                               
(2.39) 

 

  rxc   คือ พลงังานแลกเปลีÉยน (exchange) และ พลงังานสหสัมพนัธ์ (correlation) ต่ออนุภาค

ของ homogeneous electron gas กบัความหนาแน่นอิเล็กตรอน ซึÉง   rxc   สามารถเขียนอยู่ในรูป

ผลรวมของพลงังาน พลงังานแลกเปลีÉยน และ พลงังานสหสัมพนัธ์ ดงัสมการทีÉ 2.40 

 

                                                    rrr cxxc                                                       (2.40) 

 

โดยทีÉในเทอมของพลงังานแลกเปลีÉยนสามารถคาํนวณไดจ้ากสมการทีÉ 2.41 
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(2.41) 

 

สําหรับเทอมของพลงังานสหสัมพนัธ์สามารถคาํนวณไดห้ลากหลายวธีิ เช่น Vosko-Wilk-Nusair 

(VWN), Perdew-Zunger (PZ81) , Cole-Perdew (CP)และ Perdew-Wang (PW92) 
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2.8.2 The generalized gradient approximation (GGA) [22] 

การประมาณค่าแบบ LDA สามารถอธิบายได้ดีในระบบทีÉมีความหนาแน่นอิเล็กตรอนคงทีÉ แต่ไม่

สามารถอธิบายระบบทีÉมีการเปลีÉยนแปลงของความหนาแน่นอิเล็กตรอนได ้เช่น ระบบทีÉเป็นโมเลกุล

ทีÉมีความซับซ้อน ซึÉ งปัญหานีÊ สามารถแก้ไขได้โดยการพิจารณาการไล่ระดบัของความหนาแน่น

อิเล็กตรอนเรียกวิธีนีÊ ว่า  generalized gradient approximation (GGA) ซึÉ งสามารถคํานวณค่า 

 )(rEXC   ไดจ้ากสมการทีÉ 2.42 

 

                                              
          rdrrrfrEGGA

xc
3,   

                                    
(2.42)

 
 

 

2.9 Plane wave [23] 

การคาํนวณฟังก์ชนัคลืÉนสําหรับระบบขยาย (extended system) ยงัคงมีความซับซ้อน สําหรับปัญหานีÊ

สามารถแก้ไขโดยการสมมติให้ระบบทีÉสนใจแทนด้วยกล่องของอะตอมทีÉมีการซํÊ ากันเป็นคาบ 

(periodic system)ทัÊงในแนวแกน x  y และ z ซึÉ งขนาดของกล่องจะถูกแทนดว้ยเวกเตอร์ 1a  2a และ 

3a ซึÉงปริมาตรของกล่องสามารถหาไดจ้ากสมการทีÉ 2.43 

 

                                                           321 aaac                                                             (2.43) 

 

ซึÉ งเวกเตอร์ทัÊงสามเป็นเวกเตอร์ในผลึกจริง โดยทีÉเวกเตอร์ของผลึก ( R ) เกิดจากผลรวมของเวกเตอร์ 

primitive latticeดงัสมการทีÉ 2.44 

 

                                                     332211 aNaNaNR                                                      (2.44) 

 

โดยทีÉ 1N , 2N , 3N คือ ค่าคงทีÉจาํนวนจริง 

สําหรับฟังกช์นัคลืÉนของระบบทีÉมีการซํÊ ากันเป็นคาบ สามารถเขียนอยู่ในรูปสมการทีÉ 2.45 

 

                                                    rue nk
rik

nk
                                                                      (2.45) 

 

โดยทีÉ  runk คือ ฟังกช์นัคาบ (periodic function) 
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ในทางคณิตศาสตร์ การทีÉบอกว่าฟังก์ชนั  runk มีลกัษณะเป็นคาบนัÊน หมายความว่ามีสมบตัิการซํÊ า

กนัดงัสมการทีÉ 2.46 

                                                      ruRru nknk                                                                   (2.46) 

 

ซึÉ ง R ก็คือค่าระยะคาบ หมายความวา่ เมืÉอทาํการเลืÉอนตาํแหน่งเป็นระยะทาง R ฟังก์ชัน  runk  ก็

ยงัคงเป็นฟังก์ชันเดิม ซึÉ งการเขียนฟังก์ชนัคลืÉนในสมการทีÉ (2.45) นัÊน เสนอขึÊนมาโดย Bloch ซึÉ ง

เรียกวา่ Bloch’s theoremโดยทีÉ r คือ ตาํแหน่งของผลึก k  คือ wave vector, n  คือ band index สําหรับ

ฟังก์ชนัคลืÉนในสมการทีÉ สามารถเขียนอยูใ่นรูปผลรวมของ plane wave ไดด้งัสมการทีÉ 2.47 

 

                                               
    rkGi

G
Gnknk eur  ,                                                         (2.47) 

 

โดยทีÉ G  คือ Reciprocal lattice vectors หาไดจ้ากสมการทีÉ 2.48 

 

                                                 332211 bNbNbNG                                                           (2.48) 

 

สําหรับค่า 1b , 2b และ 3b สามารถหาไดจ้ากสมการ 2.49, 2.50 และ 2.51 
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3.0 ศักย์เทียม (pseudopotential) 

ในทางวสัดุศาสตร์อิเลก็ตรอนสามารถแบ่งออกเป็นสองประเภทคือ อิเลก็ตรอนวงใน (core electrons)

และอิเล็กตรอนวงนอกสุด (valence electrons) ซึÉ งอิเล็กตรอนวงนอกสุดจะมีบทบาทมากกว่า

อิเล็กตรอนวงใน สําหรับฟังก์ชนัคลืÉนแบบ plane wave  มีขอ้จาํกดัทางด้าน cutoffE จึงไม่สามารถ

อธิบายพฤติกรรมของอิเล็กตรอนวงในได ้เพืÉอแกปั้ญหาทีÉเกิดขึÊนศกัยข์องอิเล็กตรอนวงในจะแทนทีÉ

ดว้ยฟังก์ชนัศักย์เทียม (pseudopotential, )(rV PS )โดยทีÉฟังก์ชนัคลืÉนเทียม (pseudo wavefunction, 

 rPS ) ทีÉตาํแหน่งมากกวา่ค่าระยะรัศมีอิเล็กตรอนวงใน (core radius, cr ) จะต้องสอดคลอ้งกบั

ฟังก์ชนัคลืÉนของอิเลก็ตรอนทัÊงหมด   r  ดงัแสดงในรูปทีÉ 2.8 

 

 

 

 

 

 

 

 

 

 

 

 

รูปทีÉ 2.8 แสดงศกัยเ์ทียมและฟังก์ชนัคลืÉนเทียม 

 

จากรูปทีÉ 2.8 เส้นประแสดงถึงฟังก์ชนัคลืÉนและศกัยข์องระบบจริง ส่วนเส้นทึบแสดงถึงฟังก์ชนัคลืÉน

เทียมและศกัยเ์ทียม โดยจะพบว่าในระยะทีÉน้อยกวา่ค่าระยะรัศมีอิเล็กตรอนวงใน (core radius, cr ) 

ฟังก์ชนัคลืÉนเทียมมีความซบัซ้อนทีÉนอ้ยกวา่ฟังก์ชนัคลืÉนในระบบ สําหรับระยะทีÉมากกว่าค่าระยะรัศมี

อิเลก็ตรอนวงใน (core radius, cr ) ฟังก์ชนัคลืÉนเทียมตอ้งสามารถอธิบายพฤติกรรมของอิเลก็ตรอนได้

ดีเทียบเท่ากบัฟังก์ชนัคลืÉนของระบบจริงโดยฟังก์ชนัคลืÉนเทียมสามารถหาไดจ้ากการแก้สมการของ 

Kohn-Sham โดยการแทนทีÉฟังก์ชนัคลืÉน   r  ดว้ยฟังก์ชนัคลืÉนเทียม  rPS  ภายใตเ้งืÉอนไขทีÉวา่

ค่า eigenvalues ของทัÊงสองเท่ากนั  PS
l

AE
l    สําหรับศกัยเ์ทียมสามารถหาไดจ้ากสมการทีÉ 2.52 

 

                                                rVrVV PS
nl

PS
loc

PS                                                                  (2.52) 
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โดยทีÉ  PS
locV  คือ local potential 

          
PS
nlV คือ nonlocal potential โดยมีค่าเท่ากบั  

l
lll V 

 
ฟังก์ชนัศกัยเ์ทียมช่วยลดความซบัซ้อนทีÉเกิดจากอตัรกิริยาระหวา่งอิเล็กตรอนวงในสุดกบันิวเคลียสทีÉ

พบในสมการของโชรดิงเจอร์ โดยการแทนทีÉเทอมของศกัยท์างคูลอมบ์ (Coulombic potential) ของ

อิเล็กตรอนวงในสุดด้วยฟังก์ชันศักย์ ซึÉ งทาํให้ช่วยลดขนาดฟังก์ชันพืÊนฐานและช่วยลดจาํนวน

อิเลก็ตรอนในการคาํนวณ 

 

3.1 พลวตัเชิงโมเลกุล (Molecular Dynamic) [24] 

พลศาสตร์ระดับโมเลกุล (Molecular dynamics, MD) เป็นรูปแบบหนึÉ งของการจาํลองทาง

คอมพิวเตอร์ เพืÉอศึกษาการเคลืÉอนทีÉของอนุภาค โดยให้อนุภาคหรือโมเลกุลเกิดอนัตรกิริยาระหวา่ง

กนัในช่วงเวลาหนึÉง ในการคาํนวณสมบติัต่างๆของระบบทีÉเราสนใจ สามารถทาํดว้ยการแกปั้ญหาทาง

คณิตศาสตร์ของสมการการเคลืÉอนทีÉ (equations of motion) ของนิวตนัสําหรับหลกัการแกส้มการทาง

คณิตศาสตร์นัÊนมีมากมายอาทิเช่น Verlet algorithm, leapfrog และ Gear predictor-corrector algorithm 

เป็นตน้ โดยทีÉโปรแกรม CPMD ใช้การแก้ปัญหาทางคณิตศาสตร์ของ Verlet algorithm โดยทัÉวไป

แล้วในการศึกษาพลศาสตร์ระดบัโมเลกุลแบ่งออก 3 ส่วน คือ เริÉ มต้น (start-up) อีควิลิเบรชัน 

(equilibration) และการเก็บขอ้มูลเพืÉอทาํการคาํนวณ (production) แสดงดงัรูปทีÉ 2.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

รูปทีÉ 2.9แสดงแผนผงัการคาํนวณทางพลศาสตร์ระดบัโมเลกลุ 

Start-up 

Equilibration 

Rescale Velocities 

Production dynamics 

Analysis of trajectories 

Temp OK? 
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โดยทีÉแต่ละส่วนมีหนา้ทีÉดงัต่อไปนีÊ  

1. เริÉมตน้ (start-up) เป็นการกาํหนดค่าตวัแปรทีÉใชใ้นการคาํนวณ เช่น จาํนวนอนุภาค อณุหภูมิ 

ตาํแหน่งของอนุภาค และ ความเร็วของอนุภาคเริÉมตน้ 

2. ปรับโครงสร้างของระบบ (equilibration) เพืÉอให้ได้โครงสร้างและความเร็วของอนุภาคทีÉ

สอดคลอ้งกบัอุณหภูมิทีÉกาํหนด โดยทีÉมีการคาํนวณแรงกระทาํระหว่างอนุภาค ตาํแหน่งของอนุภาค 

ความเร็วของอนุภาค และ อุณหภูมิของระบบ 

3. การเก็บขอ้มูล (production) เป็นการเก็บขอ้มูลเพืÉอนาํไปทาํการคาํนวณสมบตัิของสาร 

สําหรับการศึกษาพลศาสตร์ระดบัโมเลกุลสามารถอธิบายไดด้งันีÊจะเริÉมดว้ยการกาํหนดตาํแหน่งและ

ความเร็วของอนุภาคในระบบโดยใช้จาํนวนของอนุภาค อุณหภูมิ เป็นตวักาํหนดตาํแหน่งแลความเร็ว

ของอนุภาคในระบบ โดยทีÉตาํแหน่งของอนุภาคขึÊนอยู่กบัระบบทีÉเราสนใจ เช่น face center cubic 

(fcc),  body center cubic (bcc), hexagonal closet pack (hcp) เป็นตน้ ในทาํนองเดียวกนักับความเร็ว

ของอนุภาคในระบบตอ้งมีการกาํหนดความเร็วและทิศทางการเคลืÉอนทีÉแบบสุ่มเช่นกนัเมืÉอไดก้าํหนด

เงืÉอนไขเริÉมตน้เป็นทีÉเรียบร้อยจากนัÊนอนุภาคในระบบจะเคลืÉอนทีÉไประยะเวลาหนึÉงเพืÉอลดผลกระทบ

ทีÉเกิดจากการจดัเรียงตวัของอนุภาคในตอนตน้ จึงทาํการคาํนวณหาแรงลพัธ์ทีÉกระทาํต่อแต่ละอนุภาค

จากนัÊนจึงจะสามารถคาํนวณความเร็วและตาํแหน่งอนุภาคเมืÉอเวลาผ่านไป dt โดยอาศยัสมการ การ

เคลืÉอนทีÉของระบบอนุภาคตาม verlet algorithm ดงัสมการทีÉ 2.53 และ 2.54 
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สมการขา้งตน้คือสมการทีÉใชใ้นกระบวนการการศึกษาการเคลืÉอนทีÉของระบบอนุภาคโดยอาศยัการ

จาํลองโดยสอดคลอ้งกับขัÊนตอนวิธี (algorithm) ทีÉเรียกว่า verlet algorithm ซึÉ งเป็นพืÊนฐานทีÉใช้ใน

การศึกษาทางดา้น molecular dynamics โดยทีÉตาํแหน่งและความเร็วของอนุภาคทีÉได้จากการคาํนวณ

ก่อนหนา้มาเป็นค่าเริÉมตน้ในการจาํลองชุดถดัไป และมีการเก็บขอ้มูลของอนุภาคทีÉเวลาต่างๆ สําหรับ

ช่วงเวลาควรเลือกช่วงเวลาให้เหมาะสม ซึÉ งถา้เลือกช่วงเวลาทีÉสัÊ นไปอาจส่งผลให้อนุภาคเกิดการ

ซ้อนทบักนั หรือ ช่วงเวลามากเกินไปส่งผลใหก้ารคาํนวณใช้เวลามากขึÊน นอกจากนีÊ ยงัประกอบไป

ดว้ยเงืÉอนไขแบบคาบ โดยใช้เทคนิคการจาํลองระบบลอมหรือระบบเงาของระบบจริง เมืÉออนุภาคใด

เคลืÉอนทีÉออกจากระบบจริง แลว้อนุภาคเงาของอนุภาคจริงนัÊนๆ ในระบบเงาจะเคลืÉอนทีÉเข้าสู่ระบบ

จริง เพืÉอควบคุมจาํนวนของอนุภาคในระบบ สําหรับการเคลืÉอนทีÉของอนุภาคในระบบสามารถทาํได้

โดยการแกส้มการการเคลืÉอนทีÉของอนุภาคโดยวธีิการทางคณิตศาสตร์เพืÉอหาตาํแหน่งและความเร็ว 
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