Synergistic Effects of Acyclovir and Andrographolide Derivative on Drug-Resistant Herpes Simplex Virus Type 1

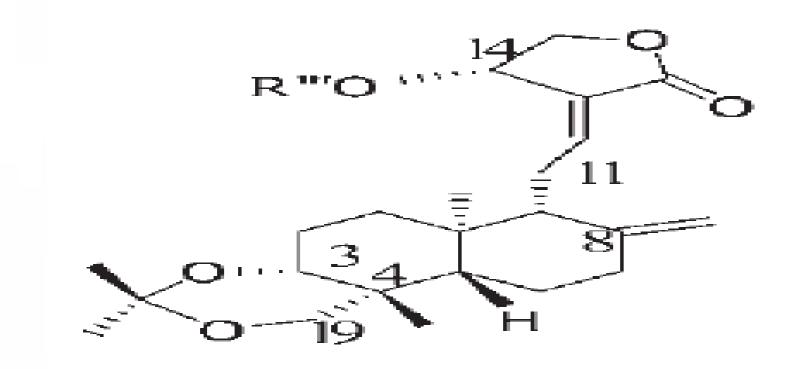
Chamsai Pientong¹, Thongkoon Priengprom¹, Tipaya Ekalaksananan¹, Bunkerd Kongyingyoes², Supawadee Suebsasana³, Chantana Aromdee⁴

¹Department of Microbiology, Faculty of Medicine, ²Department of Pharmacology, Faculty of Medicine, ⁴Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, ³Faculty of Pharmacy, Thammasat University

Acyclovir (ACV) is the common drug for therapy of herpes simplex virus (HSV) infections but ACV-resistant HSVs are frequently isolated from immunosuppressed patients. Therefore, the novel

Results

Table 1. Cytotoxicity, antiviral activity and selective index of IPAD

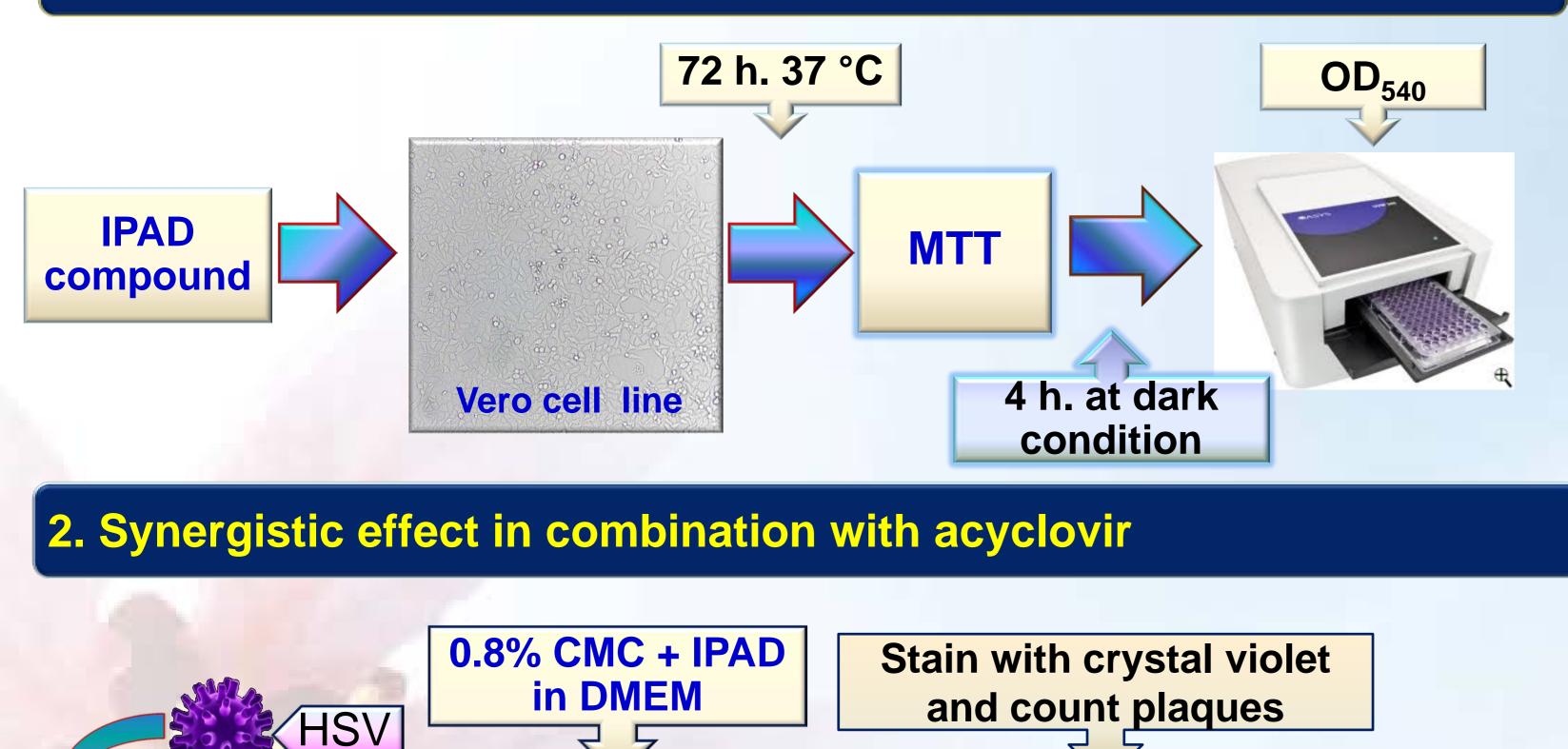

antiviral agents are still needed. In our previous report, andrographolide derivative or 3,19-isopropylideneandrographolide (IPAD) has inhibitory effect on HSV replication of both wild type and drug-resistant strains.

Objective

This study aimed to determine synergistic effects of ACV combining with IPAD on drug-resistant HSV-1.

Materials and Methods

Wild type HSV-1 (strain KOS 1-003) and drug-resistant HSV-1 consisting of dxpIII (phosphonoacetate- and phosphonoformate-resistant), ACGr4 (ACV-resistant with thymidine kinase (TK)-deficient), and dlsptk (ACV-resistant with TK deletion) were used.



Compound	СС50 (µМ)	HSV-1 KOS		HSV-1 ACGr4		HSV-1 dlsptk		HSV-1 dxplll	
		IC ₅₀ (μΜ)	SI	ΙC ₅₀ (μΜ)	SI	IC ₅₀ (μΜ)	SI	ΙC ₅₀ (μΜ)	SI
IPAD	39.71	16.96	2.34	17.12	2.32	17.89	2.22	16.86	2.36
ACV	>1000	0.49	>2040	161.45	>6.19	575.91	>1.74	450.25	>2.22

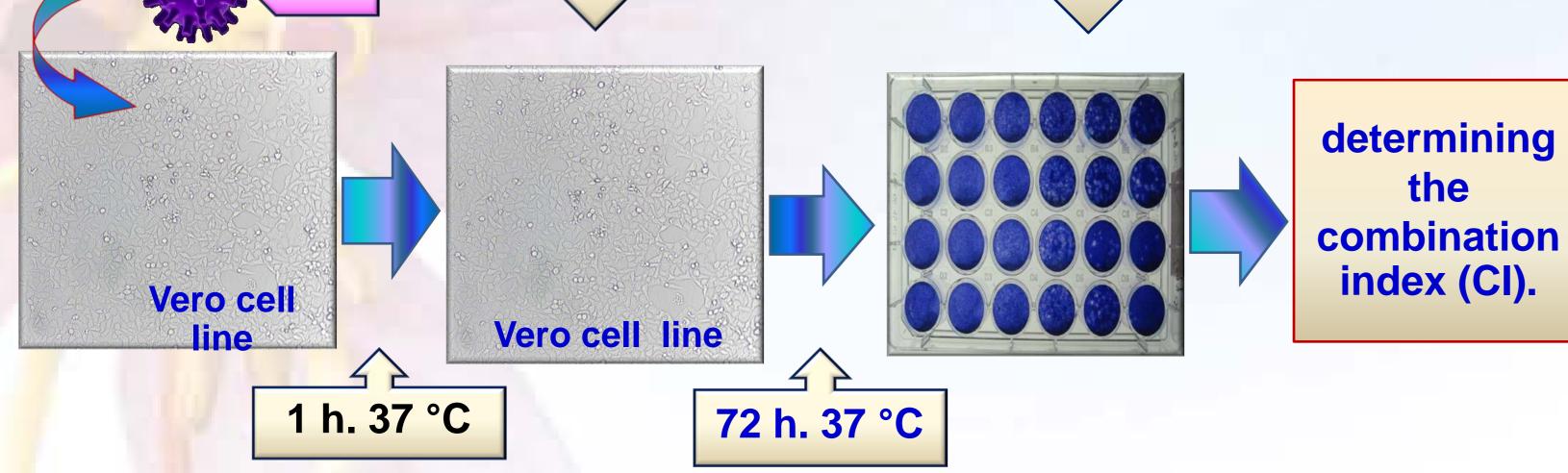

on	anti-HŚV ad	ctivity.		ombination of IF		
Compounds combination ratio	Compound concentration (µM)		Mean percentage of inhibition (%)	Experimental CI values	Description	
		IPAD	ACV	IPAD+ ACV		
				HSV-1 (KOS)		
		20.50	-	100		
		-	22.20	100		
	2 X IC50	20.50	22.20	100	1	additive

Figure 1. Chemical structure of 3,9-isopropylideneandrographolide (IPAD)

1. Cytotoxicity (MTT assay)

1 X IC50	17.94	0.44 100		0.52	synergism				
0.2 X IC50	12.81	0.04	100	0.04	strong syn.				
		HS							
	20.50	-	100						
	_	2220.2	100						
2 X IC50	20.50	2220.2	100	1	additive				
1 X IC50	17.94	444.03	100	0.45	synergism				
0.2 X IC50	12.81	22.20	88.5	0.01	strong syn.				
HSV-1 dlsptk									
	20.50	-	100						
	-	2220.2	100						
2 X IC50	20.50	2220.2	100	1	additive				
1 X IC50	17.94	444.03	98.55	0.59	synergism				
0.2 X IC50	12.81	22.20	88.41	0.01	strong syn.				
HSV-1 dxplll									
	20.50	-	100						
	-	2220.2	100						
2 X IC50	20.50	2220.2	100	1	additive				
1 X IC50	17.94	444.03	100	0.62	synergism				
0.2 X IC50	12.81	22.20	100	0.06	strong syn.				

(D)1

CI = (D)1 + (D)2(D)12 + (D)12 = dose x % inhibition of compound 1

(D)12 = [dose compound 1 x % inhibition of compound 1+2] +

[dose compound 2 x % inhibition of compound 1+2]

(D)2 = dose x % inhibition of compound 2

CI, combination index, a quantitative measure calculated by Calcusyn Software. This index quantifies the interaction between the tested compounds as described by Chou (2006). In detail, CI > 1 means antagonism, 1 means additive effect 0.10 to 0.30 means strong synergism, 0.30–0.70 means synergism, 0.70–0.85 means moderate synergism, and 0.85–0.90 means slight synergism.

Conclusion

This result suggested that IPAD might be a candidate drug for HSV wild type and drug-resistant HSV-1 therapy.

Acknowledgement

This project was supported by Khon Kaen University

FACULTY OF MEDICINE KHON KAEN UNIVERSITY, THAILAND. คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น