

ปัจจุบันประเทศไทยมีโรงงานแบ่งมันสำปะหลังเป็นจำนวนมาก ซึ่งมีกำลังการผลิตรวมทั้งสิ้น 1.7 - 1.8 ล้านตันแบ่งต่อปี น้ำเสียที่ได้จากการกระบวนการผลิตแบ่งมีศักยภาพสูงในการผลิตแก๊สชีวภาพ ดังนั้น งานวิจัยนี้จึงมีวัตถุประสงค์ที่จะศึกษาความเป็นไปได้ทั้งทางด้านเทคนิคและเศรษฐศาสตร์ ในการนำ แก๊สชีวภาพที่ได้จากโรงงานแบ่งมันสำปะหลังมาใช้เป็นเชื้อเพลิงเพื่อผลิตไฟฟ้าและความร้อนใช้ใน โรงงาน ความร้อนส่วนใหญ่ใช้ให้ความร้อนแก่อาคารในกระบวนการอบแบ่ง ในงานวิจัยนี้ได้ศึกษา โรงงานแบ่งมันสำปะหลังจำนวน 2 แห่ง ที่มีการใช้แหล่งพลังงานเพื่อผลิตจากครัวเรือนที่แตกต่างกัน ได้แก่ โรงงานด้านแบบที่ 1 กำลังการผลิต 9.5 ตันแบ่ง/ชั่วโมง ปริมาณน้ำเสีย 2,280 ลูกบาศก์เมตร/วัน ผลิตจากครัวเรือน โดยรับความร้อนจากไอน้ำที่ได้จากหม้อน้ำไอน้ำขนาด 5 ตัน/ชั่วโมง โดยใช้แก๊สเป็น เชื้อเพลิง และเครื่องผลิตลมร้อนขนาด 8 ตัน/ชั่วโมง ที่ใช้น้ำมันเตาเป็นเชื้อเพลิง และ โรงงานด้านแบบที่ 2 กำลังการผลิต 6.3 ตันแบ่ง/ชั่วโมง ปริมาณน้ำเสีย 1,512 ลูกบาศก์เมตร/วัน ผลิตจากครัวเรือน โดยรับ ความร้อนจากหม้อน้ำมันร้อนขนาด 3,000 kW ที่ใช้น้ำมันเตาเป็นเชื้อเพลิง

ขั้นตอนแรกประเมินศักยภาพแก๊สชีวภาพของโรงงานทั้ง 2 แห่ง หลังจากนั้นออกแบบการใช้แก๊สชีวภาพ ในกระบวนการผลิตเพื่อให้ได้ความร้อนเพียงพอ (Thermal Matching) ในการอบแบ่งของโรงงาน ซึ่งได้ ออกแบบ 3 กรณี ได้แก่ กรณีศึกษาที่ 1 การนำแก๊สชีวภาพมาเผาเป็นเชื้อเพลิงโดยตรง กรณีศึกษาที่ 2 การ นำแก๊สชีวภาพมาเป็นเชื้อเพลิงให้ระบบผลิตไฟฟ้าและความร้อนร่วม โดยใช้ในโกรแก๊สเทอร์บิน์ และ กรณีศึกษาที่ 3 การนำแก๊สชีวภาพมาเป็นเชื้อเพลิงให้ระบบผลิตไฟฟ้าและความร้อนร่วม โดยใช้เครื่องยนต์ แก๊สชีวภาพ ส่วนการวิเคราะห์ทางการเงินได้พิจารณา 2 สมมติฐาน คือ โรงงานมีระบบแก๊สชีวภาพแบบ UASB (Upflow Anaerobic Sludge Blanket Reactor) อยู่แล้ว และ โรงงานยังไม่มี ระบบแก๊สชีวภาพ หลังจากนั้นวิเคราะห์ความไวของตัวแปรหลักที่มีผลต่อการเปลี่ยนแปลงในแต่กรัฟศึกษา

ผลการศึกษาพบว่า โรงงานด้านแบบที่ 1 และ 2 มีศักยภาพการผลิตแก๊สชีวภาพประมาณ 962 และ 638 ลูกบาศก์เมตรต่อชั่วโมง ตามลำดับ โดยพบว่า การนำแก๊สชีวภาพมาเผาเป็นเชื้อเพลิงโดยตรงใน กรณีศึกษาที่ 1 ทั้ง โรงงานด้านแบบที่ 1 และ 2 จะให้ผลตอบแทนการลงทุนที่ดีที่สุด เนื่องจากมีเงิน ลงทุน(รวมระบบ UASB) ต่ำที่สุด คือ 14.88 และ 11.04 ล้านบาท ตามลำดับ และมีผลตอบแทนสูง โดย มีอัตราผลตอบแทนต่อเงินลงทุนทั้งหมดของโครงการ (IRR) อัตราผลตอบแทนในส่วนที่ ผู้ประกอบการลงทุน (ROE) และระยะเวลาคืนทุนสูงสุด เท่ากับ 52.2%, 131.0% และ 2 ปี ตามลำดับ สำหรับโรงงานด้านแบบที่ 1 และ เท่ากับ 152.9%, 460.8% และ 0.67 ปี ตามลำดับ สำหรับโรงงาน ด้านแบบที่ 2 แต่ย่างไรก็ตามการนำแก๊สชีวภาพมาเผาเป็นเชื้อเพลิงโดยตรงจะไม่สามารถผลิตไฟฟ้า ได้ และจะใช้แก๊สชีวภาพเพียง 72.92% และ 80.69% ของศักยภาพการผลิตแก๊สชีวภาพทั้งหมดของ โรงงานด้านแบบที่ 1 และ 2 เท่านั้น เมื่อพิจารณาที่ระบบผลิตไฟฟ้าและความร้อนร่วมพบว่า กรณีศึกษา ที่ 3 จะให้ผลตอบแทนการลงทุนที่ดีที่สุด โดยผลิตไฟฟ้าได้ 8.50 GWh/ปี และ 9.06 GWh/ปี ของ โรงงานด้านแบบที่ 1 และ 2 ตามลำดับ ซึ่งผลิตไฟฟ้าได้มากกว่ากรณีศึกษาที่ 2 ด้วย สำหรับผลการ วิเคราะห์ความไวของตัวแปร พนวณว่าตัวแปรที่มีความไวต่อการเปลี่ยนแปลงสูง ได้แก่ อัตราค่าไฟฟ้า และราคาเชื้อเพลิง

Abstract

178898

There are many tapioca factories in Thailand with total capacity of 1.7 to 1.8 million-ton per day. Their wastewater has high-potential for biogas production. This research aims at both technical and financial evaluation on the biogas utilization as a fuel for generating heat and electricity. Heat is the main energy used in the hot air, starch-drying process. Two factories with different heat sources for air heating were conducted as the case studies which were called Factory I with production capacity of 9.5 ton/hr and produced waste water of 2,280 m³/d, and Factory II with production capacity of 6.3 ton/h and produced waste water of 1,512 m³/d, respectively. The Factory I used two heat sources for drying process which were steam generated by 5 ton/h rice-husk boiler and fuel oil for 8 ton/h air heater. While Factory II uses only fuel oil for 3,000 kW hot oil boiler. First the potential on biogas production of both factories was evaluated. Then three cases of biogas utilization were designed with based on suitable thermal-match of their drying processes; Case I: existing fuel substitution by direct burn, Case II: using micro gas-turbine cogeneration system and Case III: using biogas-engine cogeneration system. For financial evaluation two assumptions of without and with the existing UASB (Upflow Anaerobic Sludge Blanket Reactor) in the factory were considered. The sensitivity analysis was also carried out for the main effecting parameters.

The results showed that Factory I and II can produce biogas of 962 m³/h and 638 m³/h, respectively. For biogas utilization, Case I (direct burn) was the best financial return for both factories, since the total investment (including UASB reactor) was minimum, and was about 14.88 million baht and 11.04 million baht for Factory I and II, respectively. The internal rate of return (IRR), return on equity (ROE), and payback period were 52.2%, 131.0%, and 2 years for Factory I, and 152.9%, 460.8%, and 0.67 years for Factory II, respectively. However, the biogas was used only 72.92% to 80.69% of its potential and didn't use for electricity generation. Based on the cogeneration system, Case III was the best. They can produce the electricity of 8.50 GWh/y and 9.06 GWh/y for Factory I and II, respectively, which also produced more than Case II. For sensitivity analysis, the parameters that showed significant affected on the financial return were the electricity and fuel cost.