กิตติกรรมประกาศ

ขอขอบพระคุณ สำนักบริหารโครงการส่งเสริมการวิจัยในอุดมศึกษาและพัฒนา มหาวิทยาลัยวิจัยแห่งชาติสำนักงานคณะกรรมการการอุดมศึกษาและมหาวิทยาลัยทักษิณ สำหรับเงินอุดหนุนโครงการวิจัยเรื่องการศึกษาองค์ประกอบทางเคมี สมบัติเชิงหน้าที่และ กิจกรรมการต้านออกซิเดชันของโปรตีนไฮโดรไลเสตจากกล้ามเนื้อปลาแป้ นเขี้ยวที่ผลิตโดย ใช้ส่วนสกัดจากเครื่องในปลาดุกบิ๊กอุย" จำนวน 316,666 บาท ขอขอบพระคุณ คณะเทคโนโลยีและการพัฒนาชุมชน มหาวิทยาลัยทักษิณที่ให้การสนับสนุนด้านอุปกรณ์ และเครื่องมือวิทยาศาสตร์สำหรับการวิจัยกรั้งนี้ และขอขอบพระคุณ ศาสตราจารย์ ดร สุทธวัฒน์ เบญจกุล นักวิจัยที่ปรึกษา ที่ให้คำแนะนำที่เป็นประโยชน์สำหรับการวิจัยครั้งนี้

รองศาสตราจารย์ ดร.สรรพสิทธิ์ กล่อมเกล้า หัวหน้าโครงการฯ

บทคัดย่อ

จากการศึกษาองค์ประกอบทางเคมี สมบัติเชิงหน้าที่และกิจกรรมการต้านอนุมูล อิสระของโปรตีนไฮโดรไลเสตจากกล้ามเนื้อปลาแป้ นเขี้ยวที่ผ่านการเตรียมโดยใช้ส่วนสกัด เครื่องในปลาดุกบิ๊กอุยที่ระดับการย่อยสลาย ร้อยละ 70 พบว่า โปรตีนไฮโดรไลเสตจาก กล้ามเนื้อปลาแป้ นเขี้ยวที่ผ่านการทำแห้งโดยการระเหิดมีปริม**น**โปรตีนสูง (ร้อยละ 89.02) และมีสีเหลืองอมน้ำตาล(L* = 63.67, a* = 6.33, b* = 22.41) นอกจากนี้โปรตีนไฮโดรไล-เสตประกอบด้วยกรดอะมิโนจำเป็นในปริมาณสง(ร้อยละ 48.22) โดยเฉพาะอย่างยิ่งไลซีน และอาร์จินีน โปรตีนไฮโดรไลเสตสามารถละลายได้ดีโดยสามารถละลายได้ในช่วงพีเอช กว้าง (3-9) ซึ่งมีค่าการละลายมากกว่าร้อยละ 77 เมื่อความเข้มข้นของโปรตีนไฮโดรไลเสต เพิ่มขึ้นดัชนีกิจกรรมกานกิดอิมัลชันมีค่าลดลง (p<0.05) ส่วนความสามารถในการเกิด โฟมกลับมีค่าเพิ่มขึ้น นอกจากนี้เมื่อความเข้มข้นของโปรตีนไฮโดรไลเสตเพิ่มขึ้น กิจกรรม การจับอนุมูลอิสระ 2,2-Diphenyl-1-picrylhydrazyl (DPPH) 2,2-Azino-bis(3-ethylbenzothiazothiazoline-6-sulfonic acid) (ABTS) รีดิวซึ่งพาวเวอร์ และ กิจกรรมการจับโลหะ เพิ่มขึ้น(p<0.05) กิจกรรมการจับอนุมูลอิสระABTS ของโปรตีนไฮโดรไลเสตมีความคงตัว เมื่อผ่านการให้ความร้อนที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 180 นาทีและมีความคง ตัวในพีเอชช่วงกว้าง(1-11) ดังนั้นโปรตีนไฮโดรไลเสตจากกล้ามเนื้อปลาแป้ นเขี้ยวที่ผลิต โดยส่วนสกัดเครื่องในปลาดุกบิ๊กอุยสามารถใช้เป็นแหล่งของเปปไทด์ที่มีสมบัติเชิงหน้าที่ และมีกิจกรรมการต้านอมุมูลอิสระ

คำสำคัญ โปรตีเนส เอนไซม์ทริปซิน โปรตีนไฮโดรไลเสตสมบัติเชิงหน้าที่ สารต้านอนุมูล อิสระ

Abstract

Chemical compositions, functional properties and antioxidative activities of a protein hydrolysate prepared from toothed ponyfish (Gazza minuta) muscle, using viscera extract from hybrid catfish (Clarias macrocephalus × Clarias gariepinus), with a degree of hydrolysis (DH) of 70%, were investigated. Freezedried hydrolysate had a high protein content (89.02%, dry weight basis) and it was brownish yellow in color (L*=63.67, a*=6.33, b*=22.41). The protein hydrolysate contained a high amount of essential amino acids (48.22%) and had arginine and lysine as the dominant amino acids. The protein hydrolysate had a good solubility. It was soluble over a wide pH range (3-9), in which more than 77% solubility was obtained. The emulsifying activity index of the protein hydrolysate decreased with increasing concentration (p<0.05). Conversely, the foaming abilities increased as the hydrolysate concentrations increased (p<0.05). Protein hydrolysate exhibited increases in 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2-Azino-bis(3ethylbenzo-thiazothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, ferric reducing power (FRAP) and metal chelating activity as hydrolysate concentration increased (p<0.05). ABTS radical scavenging activity of protein hydrolysate was stable when heated at 100°C for 180 min and subjected to a wide pH range (1-11). Therefore, protein hydrolysate from the muscle of toothed ponyfish produced by viscera extract from hybrid catfish can be used as a promising source of functional peptides with antioxidant properties.

Keywords: Proteinase, Trypsin, Protein hydrolysate, Functionalities, Antioxidant

CONTENTS

	Page
Contents	iv
List of Tables	v
List of Figures	vi
Chapter 1	1
Introduction	4
Materials and Methods	6
Results and Discussion	16
Conclusion	33
References	34
Output	39
Financial report	40
Appendix	41
Curriculum Vitae	42

LIST OF TABLES

Table		Page
1	Proximate composition of freeze-dried hydrolysate produced from	17
	toothed ponyfish muscle and toothed ponyfish muscle	
2	Amino acid composition of freeze-dried hydrolysate produced from	19
	toothed ponyfish muscle	
3	L*, a* and b*-values of freeze-dried hydrolysate produced from	21
	toothed ponyfish muscle	
4	Solubility of protein hydrolysate from toothed ponyfish muscle	22
	prepared using proteinases from hybrid catfish viscera at various pH	
5	Emulsifying properties of toothed ponyfish protein hydrolysate at	24
	various concentrations	
6	Foaming properties of toothed ponyfish protein hydrolysate at	25
	various concentrations	
7	FRAP and metal chelating activity of toothed ponyfish protein	30
	hydrolysate at different concentrations	

LIST OF FIGURES

Figure		Page
1	DPPH (a) and ABTS (b) radical scavenging activity of toothed	28
	ponyfish protein hydrolysate at different concentrations	
2	Effect of pHs (a) and heating time (b) on ABTS radical scavenging	32
	activity of tooth ponyfish protein hydrolysate prepared using hybrid	
	catfish viscera extract	