TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (in Thai)	v
ABSTRACT (in English)	viii
TABLE OF CONTENTS	xi
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
CHAPTER 1 INTRODUCTION	1
1.1 Pre-cretaceous volcanic rocks in Thailand	1
1.2 Scope of study	7
1.3 Location and accessibility	7
1.4 Topography and Physiography	8
CHAPTER 2 GEOLOGICAL SETTING	12
2.1 Silurian Igneous Rocks	12
2.2 Carboniferous-Devonian Metamorphic Rocks	15
2.3 Carboniferous Sedimentary Rocks	15
2.4 Permian-Carboniferous Sedimentary Rocks	15
2.5 Triassic-Permian Igneous Rocks	16
2.6 Triassic Sedimentary and Igneous Rocks	16
2.7 Recent Sediment Deposits	17
CHAPTER 3 OCCURRENCE, LITHOLOGY AND PETROGRAPHY	18
3.1 Group I Rocks	18
3.1.1 Occurrence	18
3.1.2 Lithology and Petrography	21
3.2 Group II Rocks	35

xii

3.2.1 Occurrence	35
3.2.2 Lithology and Petrography	38
CHAPTER 4 GEOCHEMISTRY	
4.1 Sample Preparation	52
4.2 Analytical techniques	53
4.3 Element Mobility	54
4.4 Magmatic Affinities of Mafic Igneous Rocks	63
4.5 Tectonic Setting of Eruption	70
CHAPTER 5 CONCLUSIONS	82
5.1 Chiang Rai-Chiang Mai Volcanic belt	82
5.2 Tectonic Implications	86
REFERENCES	88
APPENDIX	97
CURRICULUM VITAE	131

LIST OF TABLES

Table		Page
4.1	Whole-rock analyses and some selected ratios of the studied least-	55
	altered mafic igneous rocks	
4.2	REE, Hf and Ta analyses (ppm), and some selected chondrite-	62
	normalized ratios of the studied least-altered mafic igneous rocks	

LIST OF FIGURES

Figure		Page
1.1	Distribution of Pre-Cretaceous mafic volcanic rocks in Thailand	2
1.2	Map of Chiang Rai Province of Thailand showing accessibility to	9
	the study areas	
1.3	Topographic map showing the study area of Mae Sai area and the	10
	locations of collected mafic igneous rocks	
1.4	Topographic map showing the study area of Mae Chan area and the	11
	locations of collected mafic igneous rocks	
2.1	Simplified geologic map of Mai Sai area and location of collected	13
	samples	
2.2	Simplified geologic map of Mai Chan area and location of collected	14
	samples	
3.1	The outcrop of Group I Microdiorite at grid reference 849435	19
3.2	The outcrop of Group I Microdiorite at grid reference 854463	19
3.3	The float rocks of Group I Diorite at grid reference 846425	20
3.4	The float rocks of Group I Diorite at grid reference 845473	20
3.5	Gabbro/diorite breccias of Group I rocks injected by felsic plutonic	22
	rock at grid reference 885513	
3.6	The outcrop of the Permian gray-limestones at grid reference	22
	909546	
3.7	Photomicrographs of Group I Gabbro (sample number MS10B4)	23
	showing amphibole (amp) and plagioclase (plag)	
3.8	Photomicrographs of Group I Diorite (sample number MS5B6(13))	25
	showing amphibole (amp), plagioclase (plag) and titanite (ti)	
3.9	Photomicrographs of Group I Monzodiorite (sample number	27
	MS6.3B5(D)) showing amphibole (amp), plagioclase (plag), quartz	
	(qtz) and interstitial intergrowths	

3.10	Photomicrographs of Group I Microgabbro (sample number	29
	MS12B3) showing amphibole (amp), plagioclase (plag) and opaque	
	mineral (opq)	
3.11	Photomicrographs of Group I Microgabbro (sample number	31
	MS16B1) showing kink-band feature of amphibole (amp)	
3.12	Photomicrographs of Group I Microdiorite (sample number	32
	MS65B5) showing amphibole (amp), plage (plagioclase) and ti	
	(titanite)	
3.13	Photomicrographs of Group I Andesite/Basalt (sample number	34
	MC6.3B5(B)) showing amphibole (amp), plagioclase laths (plag)	
	and ophitic/subophitic intergrowths	
3.14	The outcrop of Group II Diorite at grid reference 922251	36
3.15	The outcrop of Group II Gabbro at grid reference 999275	36
3.16	The float rocks of Group II Microdiorite/Microgabbro at grid	37
	reference 008350	
3.17	The yellow-reddish brown weathering surface and float rocks of	37
	Group II Gabbro at grid reference 939151	
3.18	Photomicrographs of Group II Gabbro (sample number MC18B2)	39
	showing clinopyroxene (cpx), plagioclase (plag)	
3.19	Photomicrographs of Group II Diorite (sample number MC39B3)	42
	showing green amphibole (amp), opaque mineral (opq) and	
	plagioclase (plag)	
3.20	Photomicrographs of Group II Microgabbro (sample number	44
	MC25B5) showing clinopyroxene (cpx), plagioclase (plag), and	
	intergranular texture	
3.21	Photomicrographs of Group II Microdiorite/Microgabbro (sample	46
	number MC17.2B2) showing plagioclase (plag) and exsolution	
	structure of clinopyroxene (cpx)	
3.22	Photomicrographs of Group II Andesite/Basalt (sample number	48
	MC40B3) showing green amphibole (amp), plagioclase laths (plag),	
	and intergranular texture	
	\sim	

3.23	Photomicrographs of Group II Basalt (sample number MC69.1B61)	50
	showing clinopyroxene (cpx), plagioclase (plag) and	
	ophitic/subophitic intergrowths	
4.1	Plot of Zr/TiO2 against Nb/Y for the studied, least-altered mafic	64
	igneous rocks	
4.2	Chondrodite-normalized patterns for the representatives of Group I	66
	and Group II mafic igneous rocks	
4.3	N-MORB normalized multi-element patterns for the representatives	67
	of (a) Group I and (b) Group II mafic igneous rocks	
4.4	Zirconia variation diagrams for CaO, TiO2, SiO2, Na2O, P2O5,	68
	FeO*, K2O and MgO for the studied, least-altered mafic igneous	
	rocks	
4.5	Zirconia variation diagrams for Ni, V, Cr, Nb, Y, Rb, Sr, Ba and Sr	69
	for the studied, least-altered mafic igneous rcoks	
4.6	Ti/Y-Nb/Y discrimination diagram (after Pearce, 1982) for the	71
	studied, least-altered mafic igneous rocks	
4.7	Ti-V tectonic discrimination diagram (after Shervais, 1982) for the	71
	studied, least-altered mafic igneous rocks	
4.8	Zr/Y-Ti/Y discrimination diagram between plate-margin basalt and	72
	within-plate basalt (after Pearce and Gale, 1977) for the studied,	
	least-altered mafic igneous rocks	
4.9	Zr/Y-Zr discrimination diagram (after Pearce and Norry, 1979) for	72
	the studied, least-altered mafic igneous rocks	
4.10	Cr-Y discrimination diagram (after Pearce, 1982) for the studied,	73
	least-altered mafic igneous rocks	
4.11	Nb/Y-Zr/P ₂ O ₅ discrimination diagram (adapted from Floyd and	73
	Winchester, 1975) for the studied, least-altered mafic igneous rocks	
4.12	Ti-Zr discrimination diagram for the studied, least-altered mafic	74
	igneous rocks (a) after Pearce (1982) and (b) after Pearce and Can	
	(1973)	

4.13	TiO ₂ -Y/Nb discrimination diagram (from Floyd and Winchester,	75
	1975) for the studied, least-altered mafic igneous rocks	
4.14	The Zr-Nb-Y discrimination diagram for the studied, least-altered	75
	mafic igneous rocks (after Meschede, 1986)	
4.15	The Zr-Ti-Y discrimination diagram for the studied, least-altered	76
	mafic igneous rocks (after Pearce and Cann, 1973)	
4.16	The Th-Hf-Ta discrimination diagram (after Wood, 1980) for the	76
	studied, least-altered mafic igneous rocks	
4.17	The La-Y-Nb discrimination diagram (after Cabanis and Lecolle,	77
	1989) for the studied, least-altered mafic igneous rocks	
4.18	Chondrite-normalized REE patterns and N-MORB normalized	79
	multi-element patterns for the studied, least-altered mafic igneous	
	rocks of Group I and their modern analogue	
4.19	Chondrite-normalized REE patterns and N-MORB normalized	80
	multi-element patterns for the studied, least-altered mafic igneous	
	rocks of Group II and their modern analogue	
5.1	Schematic diagrams showing tectonic evolution of Shan-Thai and	87
	Indochina terranes	