Sunanta Srisopha 2012: The Q_{α} – Convolution of Arithmetic Functions. Master of Science (Mathematics), Major Field: Mathematics, Department of Mathematics. Thesis Advisor: Assistant Professor Pattira Ruengsinsub, Ph.D. 54 pages.

Let \mathcal{A} denote the set of arithmetic functions. Let $\alpha \in \mathcal{A}$ be such that $\alpha(n) \neq 0$ for all $n \in \mathbb{N}$, for $f, g \in \mathcal{A}$, we define the Q_{α} - convolution as

$$(f \diamond g)(n) = \sum_{xy=n} \frac{\alpha(n)}{\alpha(x)\alpha(y)} f(x)g(y).$$

In this thesis, we establish some properties of the Q_{α} - convolution \diamond , connections between the Dirichlet convolution \ast and Q_{α} - convolution \diamond , characterizations of completely multiplicative functions under the Q_{α} - convolution and the algebraic independence of arithmetic functions under the Q_{α} - convolution.

Let g^{*k} denote the convolution power $g * \cdots * g$ with k factor $g \in \mathcal{A}$. Consider the polynomial convolution equation of the form

$$Tg = a_d * g^{*d} + a_{d-1} * g^{*(d-1)} + \dots + a_1 * g + a_0 = 0$$
(1)

with fixed coefficients $a_d, a_{d-1}, \ldots, a_1, a_0 \in \mathcal{A}$ and $a_d \neq 0$.

In 2007, H. Glöckner, L. G. Lucht and Š. Porubský gave a condition which is necessary for existence of solutions $g \in \mathcal{A}$ to equation (1) as follows: if z_0 is a simple zero of the polynomial

$$f(z) = a_d(1)z^d + a_{d-1}(1)z^{d-1} + \dots + a_1(1)z + a_0(1),$$

then there exists a uniquely determined solution $g \in \mathcal{A}$ to the polynomial convolution equation Tg = 0 satisfying $g(1) = z_0$. We investigate the solvability of polynomial convolution equation Tg = 0 where f(z) has no simple zero and of polynomial Q_{α} - convolution equation

$$T_{\alpha}g = a_d \diamond g^{\diamond d} + a_{d-1} \diamond g^{\diamond (d-1)} + \dots + a_1 \diamond g + a_0 = 0.$$

Student's signature

Thesis Advisor's signature

Copyright by Kasetsart University All rights reserved