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Let A denote the set of arithmetic functions. Let α ∈ A be such that
α(n) 6= 0 for all n ∈ N, for f, g ∈ A, we define the Qα− convolution as

(f ⋄ g)(n) =
∑

xy=n

α(n)

α(x)α(y)
f(x)g(y).

In this thesis, we establish some properties of the Qα− convolution ⋄,
connections between the Dirichlet convolution ∗ and Qα− convolution ⋄, charac-
terizations of completely multiplicative functions under the Qα− convolution and
the algebraic independence of arithmetic funtions under the Qα− convolution.

Let g∗k denote the convolution power g ∗ · · · ∗ g with k factor g ∈ A.
Consider the polynomial convolution equation of the form

Tg = ad ∗ g
∗d + ad−1 ∗ g

∗(d−1) + · · ·+ a1 ∗ g + a0 = 0 (1)

with fixed coefficients ad, ad−1, . . . , a1, a0 ∈ A and ad 6= 0.

In 2007, H. Glöckner, L. G. Lucht and S̃. Porubský gave a condition which
is necessary for existence of solutions g ∈ A to equation (1) as follows: if z0 is a
simple zero of the polynomial

f(z) = ad(1)z
d + ad−1(1)z

d−1 + · · ·+ a1(1)z + a0(1),

then there exists a uniquely determined solution g ∈ A to the polynomial con-
volution equation Tg = 0 satisfying g(1) = z0. We investigate the solvability of
polynomial convolution equation Tg = 0 where f(z) has no simple zero and of
polynomial Qα− convolution equation

Tαg = ad ⋄ g
⋄d + ad−1 ⋄ g

⋄(d−1) + · · ·+ a1 ⋄ g + a0 = 0.
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THE Qα− CONVOLUATION OF ARITHMETIC FUNCTIONS

INTRODUCTION

An arithmetic function is a complex-valued function whose domain is the

set of positive integers, N, and whose range is a subset of the set of complex num-

bers, C. A nonzero arithmetic function f is said to be multiplicative if f(1) = 1

and f(mn) = f(m)f(n) whenever gcd(m,n) = 1 and is called completely multi-

plicative if this equality holds for all m,n ∈ N.

Let A be the set of arithmetic functions equipped with addition, usual

multiplication and Dirichlet convolution (or Dirichlet product) defined over N,

respectively, by

(f + g)(n) = f(n) + g(n), fg(n) = f(n)g(n), (f ∗ g)(n) =
∑

xy=n

f(x)g(y).

We write gd = g ·g · · · g and g∗d = g ∗g ∗· · ·∗g (d times). The usual multiplication

identity of A is the unit function u defined by u(n) = 1 for all n ∈ N. The

Dirichlet convolution identity I ∈ A is defined by I(1) = 1 and I(n) = 0 for

n > 1. It is well known that (A,+, ∗) is an integral domain and (A,+, ∗,C) is a

C−algebra.

Let D be the set of formal Dirichlet seriesD(f, s) =
∞∑

n=1

f(n)n−s; f(n) ∈ C.

It is well known that the C−algebra (D,+, ·,C) is isomorphic to (A,+, ∗,C) under

the mapping f 7→ D(f, s). The Riemann zeta function ζ defined by ζ(s) =

D(u, s) =
∞∑

n=1

n−s plays a crucial role in the C−algebra (D,+, ·,C).

In 1968, D. Rearick proved basic properties of arithmetic functions with re-

spect to the Dirichlet convolution; see also (Apostol, 1971; Haukkanen, 2001). In

1966, J. Lambek established characterizations of completely multiplicative func-

tions in terms of the Dirichlet convolution; see also (Langford, 1973; Laohakosol

and Pabhapote, 2004). In 1986, H. N. Shapiro and G. H. Sparer investigated the

algebraic independence in A.
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The binomial convolution of arithmetic functions f and g is defined as

(f ◦ g)(n) =
∑

d|n

(
∏

p

(
νp(n)

νp(d)

))
f(d)g(n/d),

where
(
a

b

)
is the binomial coefficient, and νp(n) is the highest power of p dividing

n. We can also denote f ◦ g as

(f ◦ g)(n) =
∑

xy=n

ξ(n)

ξ(x)ξ(y)
f(x)g(y),

where ξ(n) =
∏

p

νp(n)! for all n ∈ N. This convolution and its basic properties

was first introduced in 1996 by P. Haukkanen; see also (Haukkanen, 2001). In

2009, L. Tóth and P. Haukkanen proved that (A,+, ◦,C) is a C−algebra with

the binomial convolution identity I, and characterized completely multiplicative

functions via distributivity under the binomial convolution.

In this thesis we further extend the binomial convolution to a new convo-

lution denoted by ⋄. Let α ∈ A be such that α(n) 6= 0 for all n ∈ N. For f, g ∈ A,

define

(f ⋄ g)(n) =
∑

xy=n

α(n)

α(x)α(y)
f(x)g(y),

and call it the Qα− convolution of f and g. It is easy to see that (A,+, ⋄) is a

ring with identity αI which is defined by αI(1) = α(1) and αI(n) = 0 for n > 1.

We note that

- if α is a completely multiplicative function, then f ⋄ g = f ∗ g;

- if α = ξ, then f ⋄ g = f ◦ g.

In this thesis, we establish

• basic properties of the Qα− convolution,

• connections between the Dirichlet convolution and Qα− convolution,

• characterizations of completely multiplicative function and
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• the algebraic independence of certain arithmetic functions under the Qα−

convolution.

Furthermore we investigate the solubility of some arithmetic convolution equa-

tions. In 2007, H. Glöckner, L. G. Lucht and S̃. Porubský solved the polynomial

equation

Tg = ad ∗ g
∗d + ad−1 ∗ g

∗(d−1) + · · ·+ a1 ∗ g + a0 = 0 (1)

with fixed coefficients ad, ad−1, . . . , a1, a0 ∈ A and ad 6= 0. They showed that if z0

is a simple zero of the characteristic polynomial

f(z) = ad(1)z
d + ad−1(1)z

d−1 + · · ·+ a1(1)z + a0(1),

then there exists a uniquely determined solution g ∈ A of the polynomial convo-

lution equation Tg = 0 satisfying g(1) = z0. In this thesis, we investigate

• the solubility of polynomial convolution equations Tg = 0 when f(z) has no

simple zero,

• the solubility of the polynomial binomial convolution equation

Tξg = ad ◦ g
◦d + ad−1 ◦ g

◦(d−1) + · · ·+ a1 ◦ g + a0 = 0

and

• the solubility of the polynomial Qα− convolution equation

Tαg = ad ⋄ g
⋄d + ad−1 ⋄ g

⋄(d−1) + · · ·+ a1 ⋄ g + a0 = 0.
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OBJECTIVES

1. To introduce the Qα− extending the binomial convolution.

2. To establish basic properties of arithmetic function under the Qα− con-

volution and compare our results with those of the Dirichlet convolution.

3. To investigate the algebraic independence of certain arithmetic func-

tions under the Qα− convolution.

4. To investigate the solubility of certain polynomial convolution equations

consisting of

4.1 polynomial convolution equations whose characteristic polynomial

has no simple zero,

4.2 polynomial binomial convolution equation,

2.3 polynomial Qα− convolution equation.
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LITERATURE REVIEW

In 1971, T. M. Apostol show a characterizations of completely multiplica-

tive functions with respect to the convolution ∗ as follows.

Let f−1∗ denote the inverse of f under the Dirichlet convolution.

Theorem 1. Assume that f is multiplicative. Then for every squarefree integer

n,

f−1∗(n) = µ(n)f(n).

when µ is the Möbius function defined by

µ(n) =






1, n = 1;

(−1)r, n = p1p2 · · · pr, pidistinct primes

0, otherwise

Moreover, if p is any prime then f−1∗(p2) = f(p)2 − f(p2).

Theorem 2. Assume that f is multiplicative. Then f is completely multiplicative

if and only if f−1∗(pa) = 0 for all primes p and all integers a ≥ 2.

Theorem 3. Assume that f is multiplicative. Then f is completely multiplicative

if and only if f(g ∗ h) = fg ∗ fh, for all arithmetic functions g and h.

Theorem 4. Assume that f is multiplicative. Then f is completely multiplicative

if and only if (fg)−1∗ = fg−1∗, for every arithmetic function g with g(1) 6= 0.

This result is similar to Lembek’s Theorem (see Lembek, 1966).

Theorem 5. The multiplicative function f satisfies f(g ∗ h) = fg ∗ fh, for all

arithmetic functions g and h, if and only if f is completely multiplicative.



6

In 1973, E. Langford established characterizations of completely multi-

plicative functions in terms of the Dirichlet convolution.

Definition 1. For g, h ∈ A, the product k = g ∗ h is said to be discriminative if

the relation

k(n) = g(1)h(n) + g(n)h(1)

holds only when n is prime and is said to be partially discriminative if for every

prime power pi (i ∈ N) the relation

k(pi) = g(1)h(pi) + g(pi)h(1)

implies that i = 1.

Theorem 6. Suppose that f(1) 6= 0. Then f is completely multiplicative if and

only if it distributes over some discrimitive product k = g ∗ h.

Theorem 7. Suppose that f is multiplicative. Then f is completely multiplicative

if and only if it distributes over some partially discrimitive product k = g ∗ h.

In 2010, V. Laohakosol and N. Pabhapote present some properties which

related to completely multiplicative functions.

Let M and C be the set of all multiplicative functions and completely

multiplicative functions, respectively.

Theorem 8. Let f, g ∈ M. Then f ∗ g ∈ C ⇔ either

g(pa) =f−1∗(pa) + (f(p) + g(p))f−1∗(pa−1)

+ · · ·+ (f(p) + g(p))a−1f−1∗(p) + (f(p) + g(p))a

or

f(pa) =g−1∗(pa) + (f(p) + g(p))g−1∗(pa−1)

+ · · ·+ (f(p) + g(p))a−1g−1∗(p) + (f(p) + g(p))a

for all primes p and all a ∈ N.
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Corollary 1. Let f ∈ C and g ∈ M. Then

f ∗ g ∈ C ⇔ g(pa) = g(p)(g(p) + f(p))a−1

for all primes p and all a ∈ N.

Corollary 2. Let f, g ∈ C. Then

f ∗ g ∈ C ⇔ f(p)g(p) = 0

for all primes p.

Definition 2. Let r ∈ R and n =
∏

p prime

pνp(n) be the prime factorization of n.

The generalized Möbius function is defined by

µr(n) =
∏

p|n

(
r

νp(n)

)
(−1)νp(n).

Note that

1. µ1 = µ, the Möbius function,

2. µ0 = I, the Dirichlet convolution identity,

3. µ−1 = u, the unit function,

4. µs+t = µs ∗ µt; s, t ∈ R.

Theorem 9. Let f be a nonzero multiplicative function and r a nonzero real

number. Then f is completely multiplicative if and only if (µrf)
−1∗ = µ−rf .

Rearick’s Logarithm (see Rearick, 1968).

Let P stand for the set of all real valued functions f such that f(1) > 0.

Definition 3. For f ∈ P , let

Lf(1) = log f(1),

Lf(n) =
∑

d|n

f(d)f−1∗(n/d) log d, if n > 1.

Theorem 10. For all f, g ∈ P , L(f ∗ g) = Lf + Lg.
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The algebraic independence in A (see Shapiro and Sparer, 1986).

In 1986, H. N. Shapiro and G. H. Sparer investigated the algebraic inde-

pendence in A.

Definition 4. Let E be a subring of A. For k > 1 we say that f1, f2, . . . , fk ∈ A.

are algebraically dependent over E . If there exist P ∈ E [f1, f2, . . . , fk] \ {0} such

that

P (f1, . . . , fk) =
∑

(i)

ai ∗ f
∗i1

1 ∗ · · · ∗ f
∗ik

k
= 0

and is said to be algebraically independent over E otherwise.

We say that f1 is algebraic over E [f2, . . . , fk] if f1, f2, . . . , fk are alge-

braically dependent over E .

The algebraic independence of arithmetic functions under the Dirichlet

convolution can be considered relative to a given subring R of A. In particular, A

contains the complex numbers via the identification of a c ∈ C with the function

cI(n) of A.

Definition 5. A derivation d over A is a map of A into itself satisfying

d(f ∗ g) = df ∗ g + f ∗ dg, d(c1f + c2g) = c1df + c2dg,

where f, g ∈ A, c1, c2 ∈ C.

Two typical examples of derivation are

(i) the p-basic derivation, p prime, defined by

dp(f) = f(np)νp(np) (∀n ∈ N)

(ii) the log-derivation, defined by

dL(n) = f(n)log(n) (∀n ∈ N).

Lemma 1. Let E be a subring of A, and f a given function of A such that there

exists a derivation d over A which annihilates all of E and d(f) 6= 0. Then f is

not algebraic over E .
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Definition 6. Given f1, f2, . . . , fk in A and derivations d1, d2, . . . , dk over A, the

Jacobian of the fi relative to the di is given by the k × k determinant

J(f1, . . . , fk/d1, . . . , dk) = det(di(fj)),

for i, j ∈ {1, 2, . . . , k} . Clearly a Jacobian is an element of A. In the case where

each d is a basic derivation dpi , corresponding to some prime pi, we shall use the

notation J(f1, . . . , fk/p1, . . . , pk) for the corresponding Jacobian.

Theorem 11. Let f1, . . . , fk be given functions of A and d1, . . . , dk derivations

over A which annihilate all elements of the subring E . Then if J(f1, . . . , fk/d1, . . . , dk) 6=

0, the f1, . . . , fk are algebraically independent over E .

Theorem 12. Let E be a subring A such that, for some set of r distinct primes

p1, . . . , pr, the corresponding basic derivations dpi all annihilate E . Then, for 2s+

1 ≤ r, the functions Ij(n) = nj,−s ≤ j ≤ s, are algebraically independent over E .

Corollary 3. Let E be a subring A such that for infinitely many primes p the basic

derivations dp annihilate all of E . Then the functions Ij(n), j = 0,±1,±2, . . . are

algebraically independent over E .

Theorem 13. Let E be a subring of A such that given any finite subset E∗
⊂ E

there are infinitely many primes p such the derivations dp annihilate all of E∗.

Then given any sequence of complex numbers ri, i = 1, 2, . . . with distinct real

parts, and any sequence of integers sj (not necessarily distinct), the functions

fij(n) = nri(log n)sj

are algebraically independent over E .

Corollary 4. Let ri, i = 1, 2, . . . , L be complex numbers with distinct real parts,

and mi any non-negative integers. Then, the functions

ζ(m1)(s− r1), . . . , ζ
(mL)(s− rL)

are algebraically independent over C.
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Corollary 5. The zeta function does not satisfy any nontrivial algebraic differ-

ential difference equation over C.

The binomial convolution of arithmetic functions.

The works of L. Tóth and P. Haukkanen was presented in 2009. They

introduced a new convolution as follows. Let n =
∏

p

pνp(n) denote the canonical

factorization of n ∈ N. The binomial convolution of arithmetic functions f and g

is defined as

(f ◦ g)(n) =
∑

d|n

(
∏

p

(
νp(n)

νp(d)

))
f(d)g(n/d),

where
(
a

b

)
is the binomial coefficient, νp(n) is the highest power of p dividing n

and I is the binomial convolution identity. Note that f ◦k = f ◦f ◦· · ·◦f (k times).

Theorem 14. The algebras (A,+, ◦,C) and (A,+, ∗,C) are isomorphic under

the mapping f 7→

f

ξ
, where ξ(n) =

∏

p

νp(n)!.

Denote f−1◦ be the inverse of f under the binomial convolution.

Theorem 15. for any f ∈ A with f(1) 6= 0,

f−1◦ = ξ

(
f

ξ

)
−1∗

(2)

and

f−1∗ =
(ξf)−1◦

ξ
. (3)

Theorem 16. If f is multiplicative and f(pa) = 0 for all prime powers pa with

a ≥ 2, then for every n ≥ 1,

f−1◦(n) = (−1)Ω(n)ξ(n)
∏

p

f(p)νp(n) = λ(n)ξ(n)
∏

p

f(p)νp(n) (4)

and

f−1∗(n) = (−1)Ω(n)
∏

p

f(p)νp(n) = λ(n)
∏

p

f(p)νp(n) (5)

where Ω(n) =
∑

p

νp(n) and λ(n) = (−1)Ω(n).
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Theorem 17. Let f be a multiplicative function. Then f is completely multi-

plicative if and only if f(g ◦ h) = fg ◦ fh, for all g, h ∈ A.

Definition 7. An arithmetic function f is said to be semimultiplicative if

f(m)f(n) = f((m,n))f([m,n])

for m,n ∈ N where (m,n) and [m,n] stand for the g.c.d. and l.c.m. of m and

n. Notice that for semimultiplicative functions f and g we have that fg is also a

semimultiplicative function.

Proposition 1. An arithmetic function F (not identically zero) is semimultiplica-

tive if and only if there exists a nonzero constant CF ,a positive integer aF and a

multiplicative function F ′ such that

F (n) = cFF
′(n/aF ), for all n ∈ N

(see section 4 of Tóth and Haukkanen, 2009), where aF is the smallest positive

integer k such that F (k) 6= 0 and cF = F (aF ). Note that an arithmetic function

F ′ possesses the property that F ′(x) = 0 if x /∈ N.

Proposition 2. Semimultiplicative functions form a commutative semigroup with

identity under the Dirichlet convolution and

aF∗G = aFaG, cF∗G = cF cG, (F ∗G)′ = F ′
∗G′,

aF◦G = aFaG, cF◦G = cF cG
ξ(aFaG)

ξ(aF )ξ(aG)
,

(F ◦G)′ =
ξaF aG

ξ(aFaG)ξ

[(
ξ(aF )ξ

ξaF
F ′

)
◦

(
ξ(aG)ξ

ξaG
G′

)]
,

where ξa(n) = ξ(an) for all a, n ∈ N.

Proposition 3. If F is semimultiplicative (not identically zero) and f is multi-

plicative with f(aF ) 6= 0, then

afF = aF , cfF = f(aF )cF , (fF )′ =
faF

f(aF )
F ′,

where fa(n) = f(an) for all a, n ∈ N.
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Definition 8. For an arithmetic function f , exponential Dirichlet series is defined

as

D̃(f, s) = D

(
f

α
, s

)
=

∞∑

n=1

f(n)

ξ(n)ns

.

Theorem 18. The product of exponential Dirichlet series is the exponential Dirich-

let series of the binomial convolution of the corresponding arithmetic functions,

i.e.,

D̃(f, s)D̃(g, s) = D̃(f ◦ g, s).

remark. The algebra (D̃,+, .,C) of exponential Dirichlet series is isomorphic to

the algebra (A,+, ◦,C).

The polynomial convolution equation.

In 2007, H. Glöckner, L. G. Lucht and S̃. Porubský investigated the solu-

bility of polynomial convolution equation of the form

ad ∗ g
∗d + ad−1 ∗ g

∗(d−1) + · · ·+ a1 ∗ g + a0 = 0

with fixed coefficients ad, ad−1, . . . , a1, a0 ∈ A.

Theorem 19. For d ∈ N, let T : A → A be defined by

Tg = ad ∗ g
∗d + ad−1 ∗ g

∗(d−1) + · · ·+ a1 ∗ g + a0 (6)

for g ∈ A with ad, ad−1, . . . , a1, a0 ∈ A and ad 6= 0. If z0 is a simple zero of the

polynomial

f(z) = ad(1)z
d + ad−1(1)z

d−1 + · · ·+ a1(1)z + a0(1), (7)

then there exists a uniquely determined solution g ∈ A to the convolution equation

Tg = 0 satisfying g(1) = z0. If f(z) has no simple zero, then Tg = 0 need not

possess any solution. In any case Tg = 0 has at most d solutions.
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MATERIALS AND METHODS

Let M, C and S denote the set of all multiplicative, completely multi-

plicative functions and semi-multiplicative functions, respectively.

Definition 9. Let α ∈ A be such that α(n) 6= 0 for all n ∈ N. The Qα−

convolution of arithmetic functions f and g is defined as

(f ⋄ g)(n) =
∑

xy=n

α(n)

α(x)α(y)
f(x)g(y).

We denote f ⋄k as f ⋄ f ⋄ · · · ⋄ f (k times).

The Qα− convolution can be expressed in term of the Dirichlet convolution

as follows:

f ⋄ g = α

(
f

α
∗

g

α

)
,

that is

αf ⋄ αg = α

(
αf

α
∗

αg

α

)
.

So

α(f ∗ g) = αf ⋄ αg (8)

or equivalently

f ∗ g =
αf ⋄ αg

α
. (9)

In 2009, L. Tóth and P. Haukkanen showed that (A,+, ∗,C) is isomorphic

to (A,+, ◦,C). They also compared properties of arithmetic functions under the

Dirichlet convolution with binomial convolution. We now show that the algebra

(A,+, ∗,C) is isomorphic to (A,+, ⋄,C) and showed that most basic properties

under Dirichlet convolution are analogous to those under the Qα− convolution.

Theorem 20. The algebras (A,+, ∗,C) and (A,+, ⋄,C) are isomorphic under

the mapping f 7→

f

α
.
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Proof. First, we will show that (A,+, ⋄,C) is a C−algebra. It is easy to see that

(A,+) is a vector space over C. Let f1, f2, f3 ∈ A and c ∈ C, then

1. (f1 ⋄ f2)(n) =
∑

xy=n

α(n)

α(x)α(y)
f1(x)f2(y) ∈ C.

Thus f1 ⋄ f2 ∈ A.

2. (f1 ⋄ (f2 + f3))(n) =
∑

xy=n

α(n)

α(x)α(y)
f1(x)(f2 + f3)(y)

=
∑

xy=n

α(n)

α(x)α(y)
(f1(x)f2(y) + f1(x)f3(y))

= (f1 ⋄ f2)(n) + (f1 ⋄ f3)(n).

Thus f1 ⋄ (f2 + f3) = f1 ⋄ f2 + f1 ⋄ f3.

3. Using expression similar to 2 we obtain (f1 + f2) ⋄ f3 = f1 ⋄ f3 + f2 ⋄ f3.

From 1-3, we obtain (A,+, ⋄) is a ring.

4. c(f1 ⋄ f2)(n) = c
∑

xy=n

α(n)

α(x)α(y)
f1(x)f2(y) =

∑

xy=n

α(n)

α(x)α(y)
cf1(x)f2(y)

= (cf1 ⋄ f2)(n).

Thus c(f1 ⋄ f2) = cf1 ⋄ f2 and similarly c(f1 ⋄ f2) = f1 ⋄ cf2.

From 1-4, we obtain (A,+, ⋄,C) is a C−algebra. We next show that the mapping

f 7→

f

α
is a bijection on A. We let H : A → A be defined by H(f) =

f

α
.

5. Let f, g ∈ A. Then f = g ⇔

f

α
=

g

α
⇔ H(f) = H(g).

Thus H is a 1-1 function.

6. Since f =
αf

α
= H(αf) and αf ∈ A, then

Thus H is an onto function.

From 5-6, we obtain the mapping f 7→

f

α
is a bijection on A.

7. (f ⋄ g)(n) =
∑

xy=n

α(n)

α(x)α(y)
f(x)f(y) = α(n)

(
f

α
∗

g

α

)
(n)

or f ⋄ g = α(
f

α
∗

g

α
), that is

f ⋄ g

α
=

f

α
∗

g

α
. So H(f ⋄ g) = H(f) ∗H(g).

H(f + g) =
f + g

α
=

f

α
+

g

α
= H(f) +H(g),

H(cf) =
cf

α
= c

f

α
= cH(f).

These show that H is an homomorphism. We conclude that (A,+, ∗,C) is iso-

morphic to (A,+, ⋄,C).
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Remark. It is well known that (A,+, ∗) is an integral domain. Consequently,

(A,+, ⋄) is also an integral domain.

We denote by f−1⋄ the inverse of f under the Qα− convolution ⋄. Then

for f ∈ A, f−1∗ and f−1⋄ exist if and only if f(1) 6= 0.

Theorem 21. For any f ∈ A with f(1) 6= 0,

f−1∗ =
(αf)−1⋄

α
(10)

f−1⋄ = α

(
f

α

)
−1∗

(11)

Proof. Since f ∗ f−1∗ = I and from (8) we have αf ⋄ αf−1∗ = αI.

Thus αf−1∗ = (αf)−1⋄ i.e., f−1∗ =
(αf)−1⋄

α
. On the other hand, we have

f ⋄ f−1⋄ = αI that is α

(
f

α
∗

f−1⋄

α

)
= αI, so

(
f

α
∗

f−1⋄

α

)
= I.

Therefore
f−1⋄

α
=

(
f

α

)
−1∗

or that f−1⋄ = α

(
f

α

)
−1∗

.

Example 1. α−1⋄ = α
(α
α

)
−1∗

= αu−1∗ = αµ, so u−1∗ =
α−1⋄

α
=

αµ

α
= µ.

Theorem 22. If f, α ∈ M and f(pa) = 0 for all primes power pa with a ≥ 2

then for every n ∈ N,

f−1⋄(n) = (−1)Ω(n)α(n)
∏

p

f

α
(p)νp(n).

Proof. Since
f

α
∈ M,

f

α
(pa) =

f(pa)

α(pa)
= 0, for all a ≥ 2 and from Theorem 21 we

have f−1⋄ = α

(
f

α

)
−1∗

, hence by Theorem 16 we obtain

f−1⋄(n) = α

(
f

α

)
−1∗

(n) = (−1)Ω(n)α(n)
∏

p

f

α
(p)νp(n).
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Example 2. For α ∈ M we have

µ−1⋄(n) =






1, n = 1;

α(n)∏

p

α(p)νp(n)
, n > 1.

To prove this identity, we first find the Qα− convolution inverse of Möbius

function, µ−1⋄. Since

α

(
µ

α
∗

µ−1⋄

α

)
= µ ⋄ µ−1⋄ = αI,

then
µ

α
∗

µ−1⋄

α
= I.

It follows that µ

α
(1)µ

−1⋄

α
(1) = I(1) = 1. For n > 1,

α(n)

(
µ

α
∗

µ−1⋄

α

)
(n) = αI(n).

That is
µ

α
(1)

µ−1⋄

α
(n) +

∑

xy=n

y<n

µ

α
(x)

µ−1⋄

α
(y) = 0.

Thus,

µ−1⋄(n) = −α(n)
∑

xy=n

y<n

µ

α
(x)

µ−1⋄

α
(y).

Therefore

µ−1⋄(n) =






1, n = 1;

−α(n)
∑

xy=n

y<n

µ

α
(x)

µ−1⋄

α
(y), n > 1,
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Let n ≥ 2 and assume that µ−1⋄(m) =
α(m)∏

p

α(p)νp(m)
for m < n, then we obtain

µ−1⋄(n) = −α(n)
∑

xy=n

y<n

µ

α
(x)

µ−1⋄

α
(y)

= −α(n)
∑

xy=n

y<n

µ(x)α(y)

α(x)α(y)
∏

p

α(p)νp(y)
(by inductive assumption)

= −α(n)
∑

xy=n

y<n

µ(x)∏

p

α(p)νp(x)α(p)νp(y)
(x = p1 · · · pr, pi distinct)

= −

α(n)∏

p

α(p)νp(n)

∑

xy=n

y<n

µ(x)u(y)

= −

α(n)∏

p

α(p)νp(n)

(
∑

xy=n

µ(x)u(y)− µ(1)u(n)

)

= −

α(n)∏

p

α(p)νp(n)
(−1)

=
α(n)∏

p

α(p)νp(n)
.

We give here another proof. From Theorem 22 we have

µ−1⋄(n) = (−1)Ω(n)α(n)
∏

p

µ

α
(p)νp(n)

= (−1)Ω(n)α(n)
∏

p

(−1)νp(n)

α(p)νp(n)

= (−1)Ω(n)α(n)
(−1)Ω(n)

∏

p

α(p)νp(n)

=
α(n)∏

p

α(p)νp(n)
.



18

Various characterizations of completely multiplicative functions have been

discovered by J. Lambek (Lambek, 1966), E. Langford (Langford, 1973), P. Haukka-

nen (Haukkanen, 2001), N. Pabhapote and V. Laohakosol (Pabhapote and Lao-

hakosol, 2004).

In 2009, L. Tóth and P. Haukkanen (see section 3 of Tóth and Haukkanen,

2009) proved a characterization of completely multiplicative functions using the

notion of distributivity with respect to the binomial convolution. We now extend

some of these characterizations of completely multiplicative function through the

use of the Qα− convolution.

Theorem 23. Let f ∈ M. Then f ∈ C if and only if f(g ⋄ h) = fg ⋄ fh for all

g, h ∈ A.

Proof. Assume that f ∈ C. Let g, h ∈ A. Then

f(g ⋄ h) = fα(
g

α
∗

h

α
) = α(

fg

α
∗

fh

α
) = fg ⋄ fh.

Conversely, assume that f(g ⋄ h) = fg ⋄ fh for all g, h ∈ A. Then

αf(g ∗ h) = f(αg ⋄ αh) = αfg ⋄ αfh = α(
αfg

α
∗

αfh

α
) = α(fg ∗ fh)

so, f(g ∗ h) = fg ∗ fh and so by Theorem 3, f is a completely multiplicative.

Location and Duration of Research

Location, Department of Mathematics, Kasetsart University.

Duration of Research, July 2011- Fabuary 2012.
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RESULTS AND DISCUSSION

1. The properties of the Qα− convolution.

In 1973, E. Langford characterized completely multiplicative functions us-

ing a distributivity property with respect to the Dirichlet convolution. We extend

some of these characterizations of completely multiplicative functions through the

Qα− convolution.

Definition 10. For g, h ∈ A, the product k = g⋄h is said to beQα−discriminative,

if the relation

α(1)k(n) = g(1)h(n) + g(n)h(1) (12)

holds only when n is prime, is said to be Qα − partially discriminative, if for

every prime power pi (i ∈ N) the relation

α(1)k(pi) = g(1)h(pi) + g(pi)h(1) (13)

implies that i = 1 and is said to be Qα − semi− discriminative, if the relation

α(1)k(n) = g(1)h(n) + g(n)h(1) (14)

holds only when n = 1 or n is prime.

Theorem 24. Suppose that f(1) 6= 0. Then f ∈ C if and only if it distributes

over a Qα − discriminative product.

Proof. Let f ∈ C, then by Theorem 23 we obtain f(g ⋄ h) = fg ⋄ fh for all

g, h ∈ A. Now we prove the conversely. Assume that f distributes over a Qα−

discriminative product k = g ⋄ h where g, h ∈ A. First we show that f(1)=1. If

k(1) = 0 then 0 = k(1) =
g(1)h(1)

α(1)
, so we get

g(1)h(1)

α(1)
+

g(1)h(1)

α(1)
= 0 = k(1).

That is, α(1)k(1) = g(1)h(1)+ g(1)h(1). This equation express (12) holds for n is

not prime which is a contradiction, hence k(1) 6= 0.

Since f(1)k(1) = fk(1) = α(1)
fg

α
(1)

fh

α
(1) = f(1)2α(1)

g

α
(1)

h

α
(1) = f(1)2k(1), it

follows that f(1)2k(1)−f(1)k(1) = 0. But f(1)k(1) 6= 0, thus we obtain f(1) = 1.

Next, we show that for all prime p1, . . . , pm (not necessary distinct),

f(p1 · · · pm) = f(p1) · · · f(pm) (15)
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We now show it by induction on m. Equation (15) is trivial if m = 1.

Let m ≥ 2 and assume that f(pi1 · · · pij) = f(pi1) · · · f(pij) for 1 ≤ j < m,

pi1 , . . . , pij ∈ {p1, . . . , pm}. Then by distributive property f(g ⋄ h) = fg ⋄ fh we

get that

α(pi1 · · · pim)f(pi1 · · · pim)
m∑

j=0

g

α
(pi1 · · · pim)

h

α
(pi1 · · · pim)

=α(pi1 · · · pim)
m∑

j=0

fg

α
(pi1 · · · pim)

fh

α
(pi1 · · · pim),

f(pi1 · · · pim)[
g

α
(1)

h

α
(pi1 · · · pim) +

g

α
(pi1 · · · pim)

h

α
(1)

+
m−1∑

j=1

g

α
(pi1 · · · pim)

h

α
(pi1 · · · pim)]

=
fg

α
(1)

fh

α
(pi1 · · · pim) +

fg

α
(pi1 · · · pim)

fh

α
(1)

+
m−1∑

j=1

fg

α
(pi1 · · · pim)

fh

α
(pi1 · · · pim),

f(pi1 · · · pim)
m−1∑

j=1

g

α
(pi1 · · · pim)

h

α
(pi1 · · · pim)

=
m−1∑

j=1

fg

α
(pi1 · · · pim)

fh

α
(pi1 · · · pim).

Since,
∑

xy=n

x,y<n

g

α
(x)

h

α
(y) =

∑

xy=n

g

α
(x)

h

α
(y)−

g

α
(1)

h

α
(n)−

g

α
(n)

h

α
(1)

and k = g ⋄ h is Qα−discriminative product, it follows that
∑

xy=n

x,y<n

g

α
(x)

h

α
(y) 6= 0.

Thus f(p1 · · · pm) = f(p1) · · · f(pm). The proof is complete.

Theorem 25. Let f ∈ M. Then f ∈ C if and only if it distributes over a

Qα−partially discriminative product k = g ⋄ h.

Proof. If f ∈ C then Theorem 23 show that f(g ⋄ h) = fg ⋄ fh for all g, h ∈ A.

Conversely, assume that f distributes over a Qα−partially discriminative product

k = g ⋄ h. We will show that for all primes p, f(pm) = f(p)m; for all m ∈ N.
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If m = 1, obvious. Let m ≥ 2 and assume that f(pr) = f(p)r for 1 ≤ r < m.

Since f(g ⋄ h) = fg ⋄ fh, we obtain

α(pm)f(pm)
m∑

i=0

g

α
(pi)

h

α
(pm−i) = α(pm)

m∑

i=0

fg

α
(pi)

fh

α
(pm−i),

f(pm)

(
g

α
(1)

h

α
(pm) +

g

α
(pm)

h

α
(1) +

m−1∑

i=1

g

α
(pi)

h

α
(pm−i)

)

=
fg

α
(1)

fh

α
(pm) +

fg

α
(pm)

fh

α
(1) +

m−1∑

i=1

fg

α
(pi)

fh

α
(pm−i),

f(pm)
m−1∑

i=1

g

α
(pi)

h

α
(pm−i) =

m−1∑

i=1

fg

α
(pi)

fh

α
(pm−i).

By induction hypothesis, f(pm)
m−1∑

i=1

g

α
(pi)

h

α
(pm−i) = f(p)m

m−1∑

i=1

g

α
(pi)

h

α
(pm−i).

It follows from g ⋄ h is Qα−partially discriminative product that

m−1∑

i=1

g

α
(pi)

h

α
(pm−i) =

m∑

i=0

g

α
(pi)

h

α
(pm−i)−

g

α
(1)

h

α
(pm)−

g

α
(pm)

h

α
(1) 6= 0.

Therefore f(pm) = f(p)m. We conclude that f ∈ C.

Theorem 26. Suppose that f(1) = 1. Then f ∈ C if and only if it distributes

over a Qα − semi− discriminative product.

Proof. If f ∈ C then Theorem 23 show that f(g⋄h) = fg⋄fh for all g, h ∈ A. The

conversely follows through the same proof as in the last half of Theorem 24.

Definition 11. Let r ∈ N, r > 2 and let g1, g2, . . . , gr ∈ A\ {0}. We say that

the product k = g1 ⋄ g2 ⋄ · · · ⋄ gr is

• Qα − r fold discriminative, or “⋄− r. d.” for notation, if the relation

α(1)r−1k(n) =
r∑

j=1

g1(1) · · · gj−1(1)gj(n)gj+1(1) · · · gr(1) (16)

holds only when n is prime;
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• Qα − r fold partially discriminative, or “⋄− r. p. d.” for notation, if the

relation

α(1)r−1k(pi) =
r∑

j=1

g1(1) · · · gj−1(1)gj(p
i)gj+1(1) · · · gr(1) (17)

implies that i = 1;

• Qα − r fold semi − discriminative, or “⋄− r. s. d.” for notation, if the

relation

α(1)r−1k(n) =
r∑

j=1

g1(1) · · · gj−1(1)gj(n)gj+1(1) · · · gr(1) (18)

holds only when n = 1 or n is prime.

Theorem 27. Suppose that f(1) 6= 0. Then f ∈ C if and only if it distributes

over a ⋄− r. d. product.

Proof. Let f ∈ C, then by Theorem 23 we obtain f(g⋄h) = fg⋄fh for all g, h ∈ A.

Conversely, assume that f distributes over a ⋄− r. d. product k = g1 ⋄g2 ⋄ · · · ⋄gr.

First we show that f(1)=1. So we get

1

α(1)r−1

r∑

j=1

g1(1) · · · gj−1(1)g(1)gj+1(1) · · · gr(1) = 0 = k(1), i.e.

α(1)r−1k(1) =
r∑

j=1

g1(1) · · · gj−1(1)gj(1)gj+1(1) · · · gr(1), so the equation (16) holds

for n = 1 which is a contradiction. Thus k(1) 6= 0. Since

fk = f(g1 ⋄ g2 ⋄ · · · ⋄ gr) = fg1 ⋄ fg2 ⋄ · · · ⋄ fgr,

we get

f(1)k(1) = α(1)
fg1

α
(1)

fg2

α
(1) · · ·

fgr

α
(1)

= f(1)r
(
g1(1)g2(1) · · · gr(1)

α(1)r−1

)

= f(1)rk(1).

It follows from f(1)k(1) 6= 0 that f(1)r−1 = 1. Next we show that for all prime

p1, . . . , pm (not necessary distinct),

f(p1 · · · pm) = f(p1) · · · f(pm). (19)
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We proceed by induction on m. This is trivial if m = 1, so assume that

n = p1 · · · pm ;m ≥ 2 and that (19) is true for all integers which the number of

prime factor (not necessary distinct) is less then m. Since

f(g1 ⋄ g2 ⋄ · · · ⋄ gr) = fg1 ⋄ fg2 ⋄ · · · ⋄ fgr.

Then

f(p1 · · · pm)α(p1 · · · pm)
∑

d1···dr=p1···pm

g1

α
(d1) · · ·

gr

α
(dr)

= α(p1 · · · pm)
∑

d1···dr=p1···pm

fg1

α
(d1) · · ·

fgr

α
(dr).

Using the induction hypothesis, we get

f(p1 · · · pm)
∑

d1···dr=p1···pm

dj 6=p1···pmfor all j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr)

+ f(p1 · · · pm)
∑

d1···dr=p1···pm

dj=p1···pmfor some j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr)

=f(p1) · · · f(pm)
∑

d1···dr=p1···pm

dj 6=p1···pmfor all j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr)

+ f(p1 · · · pm)f(1)
r−1

∑

d1···dr=p1···pm

dj=p1···pmfor some j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr).

But f(1)r−1 = 1. Hence

[f(p1 · · · pm)− f(p1) · · · f(pm)]
∑

d1···dr=p1···pm

dj 6=p1···pmfor all j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr) = 0.

Since
∑

d1···dr=p1···pm

dj 6=p1···pmfor all j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr)

= k(p1 · · · pm)−
∑

d1···dr=p1···pm

dj=p1···pmfor some j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr)

and k is ⋄− r. d. product, it follows that
∑

d1···dr=p1···pm

dj 6=p1···pmfor all j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr) 6= 0. Thus f(p1 · · · pm) = f(p1) · · · f(pm).

This show that f ∈ C.
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Theorem 28. Suppose that f(1) ∈ M. Then f ∈ C if and only if it distributes

over a ⋄− r. p. d. product.

Proof. If f ∈ C then Theorem 23 show that f(g ⋄ h) = fg ⋄ fh for all g, h ∈ A.

Conversely, assume that f distributes over a ⋄− r. p. d. product k = g1⋄g2⋄· · ·⋄gr.

Since f ∈ M. Thus it suffices to show that for all primes p, f(pm) = f(p)m; for

all m ∈ N. The case m = 1 being trivial, so assume that m ≥ 2 and f(pt) = f(p)t

holds for t < m. Using distributive property and induction hypothesis, we get

f(g1 ⋄ g2 ⋄ · · · ⋄ gr)(p
m) = (fg1 ⋄ fg2 ⋄ · · · ⋄ fgr)(p

m)

f(pm)
∑

d1···dr=p
m

dj 6=p
mfor all j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr)

+ f(pm)
∑

d1···dr=p
m

dj=p
mfor some j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr)

=f(p)m
∑

d1···dr=p
m

dj 6=p
mfor all j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr)

+ f(pm)f(1)r−1
∑

d1···dr=p
m

dj=p
mfor some j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr).

But f(1)r−1 = 1. Hence

[f(pm)− f(p)m]
∑

d1···dr=p
m

dj 6=p
mfor all j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr) = 0.

Since
∑

d1···dr=p
m

dj 6=p
mfor all j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr)

= k(pm)−
∑

d1···dr=p
m

dj=p
mfor some j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr)

and k is ⋄− r. p. d. product, it follows that

∑

d1···dr=p
m

dj 6=p
mfor all j∈{1,...,r}

g1

α
(d1) · · ·

g1

α
(dr) 6= 0. Thus f(pm) = f(p)m.
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Theorem 29. Suppose that f(1) = 1. Then f ∈ C if and only if it distributes

over a ⋄− r. s. d. product.

Proof. If f ∈ C then Theorem 23 show that f(g⋄h) = fg⋄fh for all g, h ∈ A. The

conversely follows through the same proof as in the last half of Theorem 27.

Theorem 30. Let f ∈ M. Then f ∈ C if and only if (fg)−1⋄ = fg−1⋄ for all

g ∈ A with g(1) 6= 0.

Proof. Since f ∈ C and we have fαI = f(g ⋄ g−1⋄), so by Theorem 23,

αI = fαI = fg ⋄ fg−1⋄. That is (fg)−1⋄ = fg−1⋄.

Conversely, assume that (fg)−1⋄ = fg−1⋄ for all g ∈ A with g(1) 6= 0, then

(fα)−1⋄ = fα−1⋄, i.e., α

(
fα

α

)
−1∗

= fαµ. So f−1∗ = fµ. By Theorem 4 we get

that f ∈ C.

Theorem 31. Let f ∈ M. Then f ∈ C if and only if (αf)−1⋄ = µαf.

Proof. If f ∈ C then by Theorem 30, (αf)−1⋄ = α−1⋄f = µαf.

Conversely, assume that (αf)−1⋄ = µαf. Then we get

αf ⋄ µαf = αI

α

(
αf

α
∗

µαf

α

)
= αI,

f ∗ µf = I,

f−1∗ = µf.

By Theorem 4 we conclude that f ∈ C.

Recall that µr(n) =
∏

p|n

(
r

νp(n)

)
(−1)νp(n); r ∈ R.

Theorem 32. Let f ∈ M and r ∈ R− {0}. Then f ∈ C if and only if

(µrαf)
−1⋄ = µ−rαf.
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Proof. Let f ∈ C, then

αI =fαI

=fαµ0

=fα(µr ∗ µ−r)

=fα
(αµr ⋄ αµ−r

α

)

=fαµr ⋄ fαµ−r,

i.e., (µrαf)
−1⋄ = µ−rαf.

Conversely, let (µrαf)
−1⋄ = µ−rαf , we have α

(
µrαf

α

)
−1∗

= µ−rαf .

So (µrf)
−1∗ = µ−rf . Theorem 9 implies that f ∈ C.

Remark. Let f ∈ M. Then f ∈ C if and only if (µαf)−1⋄ = µ−1αf.

Theorem 33. Let f ∈ M. Then f ∈ C if and only if (fα)−1⋄(pa) = 0 for all

prime p and all a ≥ 2.

Proof. If f ∈ C then by Theorem 30, (fα)−1⋄ = fα−1⋄.

Hence (fα)−1⋄(pa) = fα−1⋄(pa) = fαµ(pa) = 0.

Conversely, assume that for all primes p and all a ≥ 2, (fα)−1⋄(pa) = 0.

From Theorem 21 we have (αf)−1⋄ = αf−1∗, so that 0 = (αf)−1⋄(pa) = αf−1∗(pa)

i.e.,f−1∗(pa) = 0. Theorem 2 implies that f ∈ C.

Proposition 4. For f ∈ M, f−1⋄(p) = −α(1)2f(p) for all primes p.

Proof. From (f ⋄ f−1⋄)(p) = (αI)(p), we get

α(p)

(
f

α
(1)

f−1⋄

α
(p) +

f

α
(p)

f−1⋄

α
(1)

)
= 0

f

α
(1)

f−1⋄

α
(p) +

f

α
(p)

α(1)2

α(1)
= 0

f−1⋄(p) = −α(1)2f(p).
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Remark. If α(1) = 1 then f−1⋄(p) = −f(p) for all f ∈ M.

Theorem 34. Let f, g ∈ M. Then f ⋄ g ∈ C ⇔ either

g(pa) =
f−1⋄(pa)

α(1)
+ α(pa)

[
f−1⋄(pa−1)(f(p) + g(p))

α(1)α(pa−1)α(p)
+ · · ·+

f−1⋄(p)(f(p) + g(p))a−1

α(1)a−1α(p)α(pa−1)

]

+
(f(p) + g(p))a

α(1)a−1
(20)

or

f(pa) =
g−1⋄(pa)

α(1)
+ α(pa)

[
g−1⋄(pa−1)(f(p) + g(p))

α(1)α(pa−1)α(p)
+ · · ·+

g−1⋄(p)(f(p) + g(p))a−1

α(1)a−1α(p)α(pa−1)

]

+
(f(p) + g(p))a

α(1)a−1
(21)

for all prime p and all a ∈ N.

Proof. Assume that f ⋄ g ∈ C. Let p be a prime and a ∈ N, then g(pa) =

(f ⋄ g) ⋄ f−1⋄(pa).

g(pa) = α(pa)

[
a∑

i=0

f−1⋄

α
(pa−1)

f ⋄ g

α
(pi)

]

= α(pa)

[
f−1⋄(pa)(f ⋄ g)(1)

α(pa)α(1)
+ · · ·+

f−1⋄(1)(f ⋄ g)(pa)

α(1)α(pa)

]
(22)

Since f ⋄ g ∈ C, thus

(f ⋄ g)(pi) = (f ⋄ g)(p)i =

[
α(pa)

(
f(p) + g(p)

α(1)α(p)

)]
i

=
(f(p) + g(p))i

α(1)i
for i ≥ 1.

We get

g(pa) =
f−1⋄(pa)

α(1)
+ α(pa)

[
f−1⋄(pa−1)(f(p) + g(p))

α(1)α(pa−1)α(p)
+ · · ·+

f−1⋄(p)(f(p) + g(p))a−1

α(1)a−1α(p)α(pa−1)

]

+
(f(p) + g(p))a

α(1)a−1
.

Similarly, we can prove the equation (21) by interchanging f and g.

Conversely, Assume that the equation (20) holds.

We obtain (f ⋄ g)(pi) =
(f(p) + g(p))i

α(1)i
by comparing (20) and (22) for successive

values of i ∈ N.

But (f ⋄ g)(p)i =

[
α(p)

(
f(p) + g(p)

α(1)α(p)

)]
i

=
(f(p) + g(p))i

α(1)i
(∀i ∈ N).

Hence (f ⋄ g)(pi) = (f ⋄ g)(p)i (∀i ∈ N), that is f ⋄ g ∈ C. The same result holds

similarly for the equation (21).
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In 2009, Tóth and Haukkanen (see section 4 of Tóth and Haukkanen,

2009) proved some properties of semi-multiplicative functions with respect to the

binomial convolution. Similar results can also be derived for the Qα− convolution.

Proposition 5. If f ∈ M then f ∈ S.

Proof. Let m,n ∈ N, (m,n) = d and we get that m = dk and n = dl with

(d, k) = 1, (d, l) = 1 and (k, l) = 1. It follows that

f(mn) = f(dk)f(dl) = f(d)f(k)f(d)F (l) = f(d)f(kdl)

= f((m,n))f(mn/d) = f((m,n))f([m,n]).

Thus f ∈ S.

Theorem 35. Let α ∈ M, then S is a commutative semigroup with identity

under the Qα− convolution.

Proof. It is known that semimultiplicative functions form a commutative semi-

group with identity under the Dirichlet convolution (see section 4 of Tóth and

Haukkanen, 2009). Since f ⋄ g = α(
f

α
∗

g

α
), hence it is suffices to show that for

all f ∈ S,
f

α
∈ S and αI ∈ S. Let f ∈ S. Then for m,n ∈ N,

f

α
(m)

f

α
(n) =

f(m)f(n)

α(m)α(n)

=
f((m,n))f([m,n])

α((m,n))α([m,n])

=
f

α
((m,n))

f

α
([m,n]).

Thus
f

α
∈ S. Therefore for all f, g ∈ S, f ⋄ g = α(

f

α
∗

g

α
) ∈ S.

Since α, I ∈ M thus by proposition 5, we get α, I ∈ S, so that αI ∈ S.

We conclude that S is a commutive semigroup with identity under the Qα− con-

volution.

Adopting notations of Proposition 1, we get:
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Theorem 36. Let α ∈ M and f, g ∈ S, then

(i) af⋄g = afag.

(ii) cf⋄g =
α(afag)

α(af )α(ag)
cfcg.

(iii) (f ⋄ g)′ =
αafag

α(af )α(ag)

αα(afag)

(
αf ′

αaf

⋄

αg′

αag

)
.

Proof. (i) Since f ⋄ g = α(
f

α
∗

g

α
), thus

af⋄g = a
α( f

α
∗
g

α
)

= a f

α
∗
g

α

(by Proposition 3)

= a f

α

a g

α
(by Proposition 2)

= afag ( by Proposition 3 and
u

α
∈ M).

(ii) cf⋄g = (f ⋄ g)(af⋄g) = (f ⋄ g)(afag) = α(afag)(
f

α
∗

g

α
)(afag).

Consider

(
f

α
∗

g

α

)
(afag) =

∑

rs=afag

f

α
(r)

g

α
(s)

=
∑

rs=afag

r<af
s>ag

f

α
(r)

g

α
(s) +

f

α
(af )

g

α
(ag) +

∑

rs=afag

r>af
s<ag

f

α
(r)

g

α
(s)

=
f

α
(af )

g

α
(ag)

=
cfcg

α(af )α(ag)
,

hence cf⋄g =
α(afag)

α(af )α(ag)
cfcg.
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(iii) Since f ⋄ g = α(
f

α
∗

g

α
), thus

(f ⋄ g)′ =

(
α

(
f

α
∗

g

α

))
′

=
αafag

α(afag)

(
f

α
∗

g

α

)
′

(by proposition 3)

=
αafag

α(afag)

((
f

α

)
′

∗

( g
α

)
′

)
(by proposition 2)

=
αafag

α(afag)

(
α(af )

αaf

f ′
∗

α(ag)

αag

g′
)

(by proposition 3 and
u

α
∈ M)

=
αafag

α(afag)α

[(
α(af )α

αaf

f ′

)
⋄

(
α(ag)α

αag

g′
)]

=
αafag

α(af )α(ag)

α(afag)α

(
αf ′

αaf

⋄

αg′

αag

)
.

Since Dirichlet series is one of the most fundamental concepts in ana-

lytic number theory which has been investigated widely in the literatures (see

McCarthy, 1985; Shapiro, 1983), generalizations of this concept is naturally of in-

terest. In 2009, Tóth and Huakkanen proposed a generalization of Dirichlet series

by exponential Dirichlet series. A similar result in term of α− Dirichlet series is

presented as follows:

Definition 12. For arithmetic function f we define the α-Dirichlet series by

D̂(f, s) = D(
f

α
, s) =

∞∑

n=1

f(n)

α(n)ns

, f(n) ∈ C.

Notice that

(1) if α = ξ then D̂(f, s) = D̃(f, s) where D̃(f, s) is the exponential Dirichlet

series (see section 5 of Tóth and Huakkanen, 2009);

(2) D̂(α, s) = ζ(s) where ζ(s) is the arithmetic zeta function (see also section 5

of Tóth and Huakkanen, 2009).

Let D̂ denote the set of all α−Dirichlet series. We will show that D̂ is a

C−algebra under the usual addition and multiplication of series and isomorphic

to (A,+, ⋄,C).
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Proposition 6. (D̂,+, ·,C) is a C− algebra.

Proof. It is easy to see that D̂ is a vector space over field C.

Let F1(s), F2(s), F3(s) ∈ D̂. Then Fk(s) = D̂(fk, s) =
∞∑

n=1

fk(n)

α(n)ns

, fk(n) ∈ A,

k = 1, 2, 3

1. F1(s)F2(s) =
∞∑

n=1

f1(n)

α(n)ns

∞∑

n=1

f2(n)

α(n)ns

=
∞∑

n=1

1

ns

(
∑

xy=n

f1

α
(x)

f2

α
(y)

)

=
∞∑

n=1

1

ns

(
f1

α
∗

f2

α

)
(n) =

∞∑

n=1

(f1 ⋄ f2)(n)

α(n)ns

.

Thus F1(s)F2(s) ∈ D̂.

2. F1(s)(F2(s) + F3(s)) =
∞∑

n=1

f1(n)

α(n)ns

(
∞∑

n=1

f2(n)

α(n)ns

+
∞∑

n=1

f3(n)

α(n)ns

)

=
∞∑

n=1

1

ns

(
∑

xy=n

f1

α
(x)

f2

α
(y) +

∑

xy=n

f1

α
(x)

f3

α
(y)

)

=
∞∑

n=1

1

ns

(
f1

α
∗

f2

α
+

f1

α
∗

f3

α

)
(n)

= (F1)(s)(F2)(s) + (F1)(s)(F3)(s).

Thus F1(s)(F2(s) + F3(s)) = F1(s)F2(s) + F1(s)F3(s).

3. Using expression similar to 2.

Thus (F1(s) + F2(s))F3(s) = F1(s)F3(s) + F2(s)F3(s).

4. c(F1(s)F2(s)) = c

∞∑

n=1

(f1 ⋄ f2)(n)

α(n)ns

.

(cF1)(s)F2(s) =
∞∑

n=1

(cf1 ⋄ f2)(n)

α(n)ns

= c

∞∑

n=1

(f1 ⋄ f2)(n)

α(n)ns

F1(s)(cF2)(s) =
∞∑

n=1

(f1 ⋄ cf2)(n)

α(n)ns

= c

∞∑

n=1

(f1 ⋄ f2)(n)

α(n)ns

.

Thus c(F1(s)F2(s)) = (cF1(s))F2(s) = F1(s)(cF2(s)).

From 1-4 we conclude that (D̂,+, ·,C) is a C-algebra.

Theorem 37. The algebras (A,+, ⋄,C) and (D̂,+, ·,C) are isomorphic.

Proof. It is easy to see that the mapping f 7→ D̂(f, s) is a bijection on D̂.

Moreover f + g 7→ D̂(f + g, s) = D̂(f, s) + D̂(g, s) and cf 7→ D̂(cf, s) = cD̂(f, s)
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and we can express that

D̂(f ⋄ g, s) = D̂

(
α

(
f

α
∗

g

α

)
, s

)

= D

(
f

α
∗

g

α
, s

)

= D

(
f

α
, s

)
D
( g
α
, s
)

= D̂(f, s)D̂(g, s).

This prove is complete.

We proceed to derive further properties of Qα− convolution. Properties

involving the Rearick’s logarithm and p−basic derivation with respect to the

Dirichlet convolution are well known in number theory. These properties have

been published in the literature (see Laohakol et al, 2002; Raerick, 1968; Shapiro,

1983). We now show that these properties have analogues with respect to the

Qα− convolution.

Proposition 7. For f, g ∈ A, n ∈ N, let dLf : A → A be defined by

dLf = f(n)log n,

let d̃pf : A → A be defined by

d̃pf = α(n)
f

α
(np)νp(np),

or equivalently

d̃pf = α(n)d̃p

(
f

α

)
(n).

Then dL and d̃p are derivations on (A,+, ⋄).

Proof. We will show that

(i) dL(c1f + c2g) = c1dLf + c2dLg, dL(f ⋄ g) = f ⋄ dLg + g ⋄ dLf .

(ii) d̃p(c1f + c2g) = c1d̃f + c2d̃g, d̃p(f ⋄ g) = f ⋄ d̃pg + g ⋄ d̃pf .
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Let n ∈ N. Then

dL(c1f + c2g)(n) = (c1f + c2g)(n)log n

= [(c1f)(n) + (c2g)(n)] log n

= c1f(n)log n+ c2g(n)log n

= c1dLf(n) + c2dLg(n).

dL(f ⋄ g) = (f ⋄ g)(n)log n

=

(
∑

xy=n

α(n)

α(x)α(y)
f(x)g(y)

)
log n

= α(n)

(
∑

xy=n

f

α
(x)

g

α
(y)logx+

∑

xy=n

f

α
(x)

g

α
(y)logy

)

= α(n)

(
dLf

α
∗

g

α
+

dLg

α
∗

f

α

)
(n)

= (f ⋄ dLg)(n) + (g ⋄ dLf)(n).

d̃p(c1f + c2g)(n) = α(n)

(
c1f + c2g

α

)
(n)νp(np)

= α(n)

(
c1f

α

)
(n)νp(np) + α(n)

(c2g
α

)
(n)νp(np)

= c1α(n)

(
f

α

)
(n)νp(np) + c2α(n)

( g
α

)
(n)νp(np)

= c1d̃f + c2d̃g.

d̃p(f ⋄ g) = α(n)

(
f ⋄ g

α

)
(np)νp(np)

= α(n)

[
α(np)

(
f

α
∗

g

α

)
(np)

α(np)

]
νp(np)

= α(n)

(
f

α
∗

g

α

)
(np)νp(np)

= α(n)dp

(
f

α
∗

g

α

)
(n)

= α(n)

(
f

α
∗ dp

g

α
+

g

α
∗ dp

f

α

)
(n)

= α(n)

[
f

α
∗

α

α

(
dp

g

α

)]
(n) + α(n)

[
g

α
∗

α

α

(
dp

f

α

)]
(n)

= α(n)

[
f

α
∗

d̃pg

α

]
(n) + α(n)

[
g

α
∗

d̃pf

α

]
(n)

= f ⋄ d̃pg + g ⋄ d̃pf.
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Hence dL and d̃p are derivations on (A,+, ⋄).

Definition 13. For f ∈ P , let

Lαf(1) = log f(1) and

Lαf(n) = α(n)
∑

d|n

f

α
(d)

f−1⋄

α
(n/d) log d, if n > 1.

(we recall that P is the set of all real valued functions f such that f(1) > 0.)

Proposition 8. For any f, g ∈ A with f(1) 6= 0, g(1) 6= 0,

(f ⋄ g)−1⋄ = f−1⋄
⋄ g−1⋄.

Proof. (f ⋄ g) ⋄ (f−1⋄
⋄ g−1⋄) = f ⋄ g ⋄ g−1⋄

⋄ f−1⋄ = f ⋄ f−1⋄ = αI.

That is (f ⋄ g)−1⋄ = f−1⋄
⋄ g−1⋄.

Theorem 38. For all f, g ∈ P ,

Lα(f ⋄ g)(1) =
1

α(1)
(Lαf(1) + Lαg(1)) and

Lα(f ⋄ g)(n) = Lαf(n) + Lαg(n) when n > 1.

Proof. For n = 1, we get that

Lα(f ⋄ g)(1) = log((f ⋄ g)(1))

= log

(
α(1)

(
f

α
∗

g

α

)
(1)

)

=
1

α(1)
logf(1)g(1)

=
1

α(1)
(logf(1) + logg(1))

=
1

α(1)
(Lαf(1) + Lαg(1)).
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For n > 1, Lαf(n) can be expressed using dLf as follow:

Lαf(n) = α(n)
∑

d|n

f

α
(d)

f−1⋄

α
(n/d) log d

= α(n)

(
f−1⋄

α
∗

dLf

α

)
(n)

= (f−1⋄
⋄ dLf)(n),

Lα(f ⋄ g)(n) =
[
(f ⋄ g)−1⋄

⋄ dL(f ⋄ g)
]
(n)

=
[
(f ⋄ g)−1⋄

⋄ (g ⋄ dLf + f ⋄ dLg)
]
(n)

=
[
(f ⋄ g)−1⋄

⋄ (g ⋄ dLf)(n)
]
+
[
(f ⋄ g)−1⋄

⋄ (g ⋄ dLg)(n)
]

=
(
f−1⋄

⋄ g−1⋄
⋄ g ⋄ dLf

)
(n) +

(
f−1⋄

⋄ g−1⋄
⋄ g ⋄ dLg

)
(n)

= (f−1⋄
⋄ dLf)(n) + (g−1⋄

⋄ dLg)(n)

= Lαf(n) + Lαg(n).

Remark. If α(1) = 1 then Lα(f ⋄ g)(n) = Lαf(n) + Lαg(n) for all n ∈ N.

2. ⋄− algebraic independence over subrings of A.

The ⋄− algebraic independence of arithmetic functions can be considered

relative to a given subring R of A. In particular, (A,+, ⋄) contains the complex

numbers via the identification of a c · αI(n) of A.

Definition 14. Let E be a subring of A. For k > 1 we say that f1, f2, . . . , fk ∈ A.

are ⋄ − algebraically dependent over E , if there exist P ∈ E [f1, f2, . . . , fk] \ {0}

such that

P (f1, . . . , fk) =
∑

(i)

ai ⋄ f
⋄i1

1 ⋄ · · · ⋄ f
⋄ik

k
= 0

and is said to be ⋄ − algebraically independent over E otherwise.

We say that f1 is ⋄− algebraic over E [f2, . . . , fk] if f1, f2, . . . , fk are ⋄−

algebraically dependent over E .
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Definition 15. Given f1, f2, . . . , fk in A and derivations d̃1, d̃2, . . . , d̃k over A, the

⋄−Jacobian of the fi relative to the d̃i is given by the k × k determinant

J̃(f1, . . . , fk/d̃1, . . . , d̃k) = det(d̃i(fi)).

We use multiplication in the determinant by Qα− convolution. Clearly a Jacobian

is an element of A. In the case where each d̃ is a basic derivation d̃pi , correspond-

ing to some prime pi, we shall use the relation J̃(f1, . . . , fk/p1, . . . , pk) for the

corresponding Jacobian.

Theorem 39. Let E be a subring of A, and f a given function of A such that

there exist a derivation d̃ over A which annihiletes all of E and d̃f 6= 0. Then f

is not ⋄− algebraic over E .

Proof. Suppose that f is ⋄− algebraic over E . Then there exist gi ∈ E such that

m∑

i=0

gi ⋄ f
⋄i = 0 (23)

with gm 6= 0 and gi ∈ E is of smallest possible degree m.

Taking the derivation d̃ to the equation (23), we obtain

0 =
m∑

i=0

(gi ⋄ d̃(f
⋄i) + f ⋄i

⋄ d̃gi)

=
m∑

i=1

(gi ⋄ (f
⋄(i−1)

⋄ d̃f))

=
m∑

i=1

((gi ⋄ if
⋄(i−1)) ⋄ d̃f) (by associative law)

=

(
m∑

i=1

(gi ⋄ if
⋄(i−1))

)
⋄ d̃f (by distributive law).

Since d̃f 6= 0 and (A, ⋄,+) is an integral domain, it follows that
m∑

i=1

gi ⋄ if
⋄(i−1) =

m∑

i=1

igi ⋄ f
⋄(i−1) = 0 with igi ∈ E which is a contradiction.

We conclude that f is not ⋄− algebraic over E .

Theorem 40. Let f1, . . . , fk be given functions of A and d̃1, . . . , d̃k derivations

over A which annihilate all elements of the subring E . Then if J̃(f1, . . . , fk/d̃1, . . . , d̃k) 6=

0, the f1, . . . , fk are ⋄− algebraically independent over E .
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Proof. We define a linear map d̃ : A → A by d̃(g) = J̃(g, f2, . . . , fk/d̃1, . . . , d̃k)

for g ∈ A. Clearly, d̃ is a linear combination of the derivations d̃1, . . . , d̃k and d̃

is also a derivation. For 1 < i ≤ m, we obtain d̃(fi) = 0. That is d̃ annihilates

all elements of the ring E [f2, . . . , fk]. But d̃(f1) 6= 0. Thus by Theorem 39 we get

f1 is not ⋄− algebraic over E [f2, . . . , fk] . By symmetry implies that the fi are ⋄−

algebraically independent over E .

Example 3. The functions Ik(n) = nk, k ∈ N ∪ {0} are ⋄− algebraically inde-

pendent over C.

Let k ∈ N ∪ {0} and p0, . . . , pk be distinct primes.

Using the Jacobian J̃ at n = 1,

J̃(I0, . . . , Ik/p0, . . . , pk)(1) =

∣∣∣∣∣∣∣∣∣∣∣∣

d̃p0I0 d̃p0I1 · · · d̃p0Ik

d̃p1I0 d̃p1I1 · · · d̃p1Ik
...

...
. . .

...

d̃pkI0 d̃pkI1 · · · d̃pkIk

∣∣∣∣∣∣∣∣∣∣∣∣

(1)

=
α(1)k+1

α(1)k

∣∣∣∣∣∣∣∣∣∣∣∣

I0(p0)
α(p0)

I1(p0)
α(p0)

· · ·

Ik(p0)
α(p0)

I0(p1)
α(p1)

I1(p1)
α(p1)

· · ·

Ik(p1)
α(p1)

...
...

. . .
...

I0(pk)
α(pk)

I1(pk)
α(pk)

· · ·

Ik(pk)
α(pk)

∣∣∣∣∣∣∣∣∣∣∣∣

=
α(1)

α(p0) · · ·α(pk)

∣∣∣∣∣∣∣∣∣∣∣∣

I0(p0) I1(p0) · · · Ik(p0)

I0(p1) I1(p1) · · · Ik(p1)
...

...
. . .

...

I0(pk) I1(pk) · · · Ik(pk)

∣∣∣∣∣∣∣∣∣∣∣∣

=
α(1)

α(p0) · · ·α(pk)

∣∣∣∣∣∣∣∣∣∣∣∣

p00 p0 · · · pk0

p01 p1 · · · pk1
...

...
. . .

...

p0
k

pk · · · pk
k

∣∣∣∣∣∣∣∣∣∣∣∣
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J̃(I0, . . . , Ik/p0, . . . , pk)(1) =
α(1)

α(p0) · · ·α(pk)

∣∣∣∣∣∣∣∣∣∣∣∣

1 p0 · · · pk0

1 p1 · · · pk1
...

...
. . .

...

1 pk · · · pk
k

∣∣∣∣∣∣∣∣∣∣∣∣

=
α(1)

α(p0) · · ·α(pk)

∏

i>j

(pi − pj)

6= 0.

Therefore Ik(n) = nk, k ∈ N ∪ {0} are ⋄− algebraically independent over C.

Example 4. The functions µ and Ik(n) = nk, k ∈ N are ⋄− algebraically inde-

pendent over C.

Let k ∈ N and p0, . . . , pk be distinct primes.

Putting n = 1 into the Jacobian J̃ ,

J̃(I0, . . . , Ik/p0, . . . , pk)(1) =

∣∣∣∣∣∣∣∣∣∣∣∣

d̃p0µ d̃p0I1 · · · d̃p0Ik

d̃p1µ d̃p1I1 · · · d̃p1Ik
...

...
. . .

...

d̃pkµ d̃pkI1 · · · d̃pkIk

∣∣∣∣∣∣∣∣∣∣∣∣

(1)

=
α(1)k+1

α(1)k

∣∣∣∣∣∣∣∣∣∣∣∣

µ(p0)
α(p0)

I1(p0)
α(p0)

· · ·

Ik(p0)
α(p0)

µ(p1)
α(p1)

I1(p1)
α(p1)

· · ·

Ik(p1)
α(p1)

...
...

. . .
...

µ(pk)
α(pk)

I1(pk)
α(pk)

· · ·

Ik(pk)
α(pk)

∣∣∣∣∣∣∣∣∣∣∣∣

=
α(1)

α(p0) · · ·α(pk)

∣∣∣∣∣∣∣∣∣∣∣∣

−1 p0 · · · pk0

−1 p1 · · · pk1
...

...
. . .

...

−1 pk · · · pk
k

∣∣∣∣∣∣∣∣∣∣∣∣
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J̃(I0, . . . , Ik/p0, . . . , pk)(1) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 p0 · · · pk0

1 p1 · · · pk1
...

...
. . .

...

1 pk · · · pk
k

∣∣∣∣∣∣∣∣∣∣∣∣

= −

α(1)

α(p0) · · ·α(pk)

∏

i>j

(pi − pj)

6= 0.

Hence the functions µ and Ik(n) = nk, k ∈ N are ⋄− algebraically independent

over C.

Theorem 41. Let E be a subring of A such that for some set of r distinct primes

p1, . . . , pr, the corresponding p-basic derivations d̃pi all annihilate E . Then, for

2s+1 ≤ r, the functions Ij(n),−s ≤ j ≤ s, are ⋄− algebraically independent over

E .

Proof. Let p0, . . . , p2s+1 be distinct primes and 2s + 1 ≤ r then, for n = 1, we

obtain

J̃(I−s, . . . , Is/p1, . . . , p2s+1)(1) =

∣∣∣∣∣∣∣∣∣∣∣∣

d̃p1I−s d̃p1I−s+1 · · · d̃p1Is

d̃p2I−s d̃p2I−s+1 · · · d̃p2Is
...

...
. . .

...

d̃p2s+1
I−s d̃p2s+1

I−s+1 · · · d̃p2s+1
Is

∣∣∣∣∣∣∣∣∣∣∣∣

(1)

=
α(1)k+1

α(1)k

∣∣∣∣∣∣∣∣∣∣∣∣

I−s(p1)
α(p1)

I−s+1(p1)
α(p1)

· · ·

Is(p1)
α(p1)

I−s(p2)
α(p2)

I−s+1(p2)
α(p2)

· · ·

Is(p2)
α(p2)

...
...

. . .
...

I−s(p2s+1)
α(p2s+1)

I−s+1(p2s+1)
α(p2s+1)

· · ·

Is(p2s+1)
α(p2s+1)

∣∣∣∣∣∣∣∣∣∣∣∣

=
α(1)

α(p1) · · ·α(p2s+1)

∣∣∣∣∣∣∣∣∣∣∣∣

p−s

1 p−s+1
1 · · · ps1

p−s

2 p−s+1
2 · · · ps2

...
...

. . .
...

p−s

2s+1 p−s+1
2s+1 · · · ps2s+1

∣∣∣∣∣∣∣∣∣∣∣∣
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J̃(I−s, . . . , Is/p1, . . . , p2s+1)(1) =
α(1)p−s

1 . . . p−s

2s+1

α(p1) . . . α(p2s+1)

∣∣∣∣∣∣∣∣∣∣∣∣

1 p1 · · · p2s1

1 p2 · · · p2s2
...

...
. . .

...

1 p2s+1 · · · p2s2s+1

∣∣∣∣∣∣∣∣∣∣∣∣

=
α(1)p−s

1 · · · p−s

2s+1

α(p1) · · ·α(p2s+1)

∏

i>j

(pi − pj)

6= 0.

Theorem 40 implies that the functions Ij(n),−s ≤ j ≤ s, are ⋄− algebraically

independent over E .

Corollary 6. Let E be a subring A such that for infinitely many primes p the basic

derivations d̃p annihilate all of E . Then the functions Ij(n), j = 0,±1,±2, . . . are

⋄− algebraically independent over E .

Example 5. The functions µ, I, φ are ∗− algebraically dependent over C but they

are ⋄− algebraically independent over C.

Since µ ∗ I1 = φ, we have the ∗ relation µ ∗ I − φ = 0, that is µ, I1, φ are

∗− algebraically independent over C. Consider J̃(µ, I1, φ/p, q, r) with p, q, r are

distinct primes.

J̃(µ, I1, φ/p, q, r) =

∣∣∣∣∣∣∣∣∣

d̃pµ d̃pI1 d̃pφ

d̃qµ d̃qI1 d̃qφ

d̃rµ d̃rI1 d̃rφ

∣∣∣∣∣∣∣∣∣

=d̃pµ ⋄ d̃qI1 ⋄ d̃rφ+ d̃pI1 ⋄ d̃qφ ⋄ d̃rµ+ d̃pφ ⋄ d̃qµ ⋄ d̃rI1

− d̃pφ ⋄ d̃qI1 ⋄ d̃rµ− d̃pµ ⋄ d̃qφ ⋄ d̃rI1 − d̃pI1 ⋄ d̃qµ ⋄ d̃rφ.

Then,

J̃(µ,I1, φ/p, q, r)(p)

=
µ(p2)νp(p

2)I1(q)νq(q)φ(r)νr(r)

α(p2)α(q)α(r)
+

I1(p
2)νp(p

2)φ(q)νq(q)µ(r)νr(r)

α(p2)α(q)α(r)

+
φ(p2)νp(p

2)µ(q)νq(q)I1(r)νr(r)

α(p2)α(q)α(r)
−

φ(p2)νp(p
2)I1(q)νq(q)µ(r)νr(r)

α(p2)α(q)α(r)
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−

µ(p2)νp(p
2)φ(q)νq(q)I1(r)νr(r)

α(p2)α(q)α(r)
−

I1(p
2)νp(p

2)µ(q)νq(q)φ(r)νr(r)

α(p2)α(q)α(r)

+
µ(p)νp(p)I1(pq)νq(pq)φ(r)νr(r)

α(p)α(pq)α(r)
+

I1(p)νp(p)φ(pq)νq(pq)µ(r)νr(r)

α(p)α(pq)α(r)

+
φ(p)νp(p)µ(pq)νq(pq)I1(r)νr(r)

α(p)α(pq)α(r)
−

φ(p)νp(p)I1(pq)νq(pq)µ(r)νr(r)

α(p)α(pq)α(r)

−

µ(p)νp(p)φ(pq)νq(pq)I1(r)νr(r)

α(p)α(pq)α(r)
−

I1(p)νp(p)µ(pq)νq(pq)φ(r)νr(r)

α(p)α(pq)α(r)

+
µ(p)νp(p)I1(q)νq(q)φ(pr)νr(pr)

α(p)α(q)α(pr)
+

I1(p)νp(p)φ(q)νq(q)µ(pr)νr(pr)

α(p)α(pq)α(r)

+
φ(p)νp(p)µ(q)νq(q)I1(pr)νr(pr)

α(p)α(q)α(pr)
−

φ(p)νp(p)I1(q)νq(q)µ(pr)νr(pr)

α(p)α(pq)α(r)

−

µ(p)νp(p)φ(q)νq(q)I1(pr)νr(pr)

α(p)α(q)α(pr)
−

I1(p)νp(p)µ(q)νq(q)φ(pr)νr(pr)

α(p)α(q)α(pr)

=
2p(r − q)

α(p2)α(q)α(r)
+

(p− r)(p+ q)

α(p)α(pq)α(r)
+

(q − p)(p+ r)

α(p)α(q)α(pr)

Choosing

α(n) =





1, n is a squarefree;

−1, else,

thus

J̃(µ, I1, φ/p, q, r)(p) =− 2pr + 2pq + p2 + pq − pr − qr + pq + qr − p2 − pr

=4pq − 4pr

=4p(q − r)

6=0.

It follows that the functions µ, I, φ are ⋄− algebraically independent over C.

This example shows that the functions µ, I, φ are ⋄− algebraically inde-

pendent but they are not ∗− algebraically independent over C. Therefore, the

∗− algebraic independence may not be related to the ⋄− algebraic independence

over subring of A.
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Theorem 42. Let E be a subring of A such that given any finite subset E∗
⊂ E

there are infinitely many primes p such the derivations d̃p annihilate all of E∗.

Then given any sequence of complex numbers ri, i = 1, 2, . . . , with distinct real

parts, and any sequence of integers sj (not necessarily distinct), the functions

fij(n) = α(n)nri(log n)sj

are ⋄− algebraically independent over E .

Proof. Assume that there is a finite subset of {fij} which are ⋄− algebraically

dependent over E and this set is {f11, . . . , fkl} . Let E

∗ (⊂ E) be the finite set

of all coeffients in this ⋄− algebraic relationship. Then, for all sufficiently large

primes p such that d̃p annihiletes the set E

∗ and the subring 〈E

∗
〉, we get that

f11, . . . , fkl are ⋄− algebraically dependent over 〈E∗
〉. If we can choose primes pij

among these so that

J̃(f11, . . . , fkl/p11, . . . , pkl) 6= 0,

by Theorem 40 we have f11, . . . , fkl are ⋄− algebraically independent over 〈E

∗
〉,

which is a contradiction.

Without loss of generality, assume that tj (−s ≤ tj ≤ s for all j ∈ {1, . . . , l}

and s is a fixed positive integer) is an integers. We instead the set {f11, . . . , fkl}

by the set {fij|i ∈ {1, . . . , k} , j ∈ {−s, . . . , s}}. Let T = (2s + 1)k, then for any

sequence of sufficiently large primes, p1, . . . , pT , we get

J̃(f1,−s, . . . , f1,s, . . . , fk,−s, . . . , fk,s/p1, . . . , pT )(n) = det(d̃pa(fij))(n)

= det(α(n)
fij

α
(npa)νpa(npa))

= det

(
α(n)

α(npa)(npa)
ri(log npa)

j

α(npa)
νpa(npa)

)

= det
(
α(n)(npa)

ri(log npa)
jνpa(npa)

)

where a = 1, . . . , T ; i ∈ {1, . . . , k}; j ∈ {−s, . . . , s}. That is

J̃(f1,−s, . . . , f1,s, . . . , fk,−s, . . . , fk,s/p1, . . . , pT )(1) = det(α(1)(pa)
ri(log pa)

j)

= α(1)Tdet(pa
ri(log pa)

j)

= α(1)TJ ′
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(Note that J ′ = det(pa
ri(log pa)

j).)

Let t(~p, ~r,~j) := {1, . . . , k} ; j1, . . . , jT ∈ {−s, . . . , s} be a typical term in

the expansion of the determinant defining J ′. We may assume that

Re(r1) >Re(r2) >. . . >Re(rk). We consider the first row, the column which has

the unique largest absolute value is pr11 (log p1)
s, so we shall exchange the first

column with this column. We next consider the second row, the column which

has the next unique largest absolute value (after the first column), similarly we

exchange the second column with this column. Afterwards we will continue this

process. We assume that in the final determinant, by choosing p1 > p2 > · · · > pT

sufficiently large the term with largest absolute value is the main diagonal term

Y := a11a22 · · · aTT = pr11 (log p1)
sp

(r)2
2 (log p2)

(s)2
· · · p

(r)T
T

(log pT )
(s)T ,

where (r)i, (s)i denote the diagonal exponents. Let

aj∗ := a1j1 · · · aTjT
= pα1

1 (log p1)
β1
· · · p

αT

T
(log pT )

βT

be any term in the determinant expansions. There are three possibilities.

(i) If r1 6= α1 (Re(r1)>Re(α1)), then choosing p1 sufficiently large in comparison

with other pi
′s, we see that pr11 >> pα1

1 which leads to |Y | > |aj∗|.

(ii) If r1 = α1, s > β1, then as in (i), (log p1)
s >> (log p1)

β1 and |Y | > |aj∗ |.

(iii) If r1 = α1, s = β1(i.e. both terms arise from the expansion of the (1, 1)

term), repeating the same arguments as above we see that the next largest term

must come from the main diagonal.

Moreover, we can even choose the primes p1 > · · · > pT so large that
∣∣∣∣∣
t(~p, ~r,~j)

Y

∣∣∣∣∣ <
1

T !
for each t(~p, ~r,~j) 6= Y .

Thus J ′ = 1+((T !−1) terms each with absolute value < 1
T !
) 6= 0. This show that

there are sets of primes p such that J ′
6= 0, yielding J̃(1) 6= 0, as required.

In 1986, H. N. Shapiro and G. H. Sparer discovered relations between

the Riemanm zeta function and its algebraic independence with respect to the

Dirichlet convolution. We now establish this relation with respect to the Qα−

convolution.
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Corollary 7. Let ri, i = 1, 2, . . . , L be complex numbers with distinct real parts,

and mi any non-negative integers. Then, the functions

ζ(m1)(s− r1), . . . , ζ
(mL)(s− rL)

are ⋄− algebraically independent over C.

Proof. Let E∗ be a subring of C and c ∈ C. Since c = cI, thus for all primes p we

obtain d̃p(c)(n) = d̃p(cI)(n) = cd̃p(I)(n) = α(n)
I

α
(np)νp(np) = 0.

From ζ(s) =
∑

n∈N

n−s; s ∈ C and d̃p(n
−s) = 0. Hence there exist infinite many

prime p such that d̃pζ = 0. It follows from Theorem 39 that the functions

ζ(m1)(s− r1), . . . , ζ
(mL)(s− rL)

are ⋄− algebraically independent over C.

Corollary 8. The zeta function does not satisfy any nontrivial algebraic differ-

ential difference equation over C.

Proof. We will show that there is no polynomial F (s, z1, . . . , zL) over C, not iden-

tically 0, such that for all s ∈ C

F (ζ(m1)(s− r1), . . . , ζ
(mL)(s− rL)) = 0 (24)

where the mi and ri are fixed integers (mi ≥ 0) and the pairs (mi, ri) are distinct.

If relation (24) existed there would be a similar one in which the explicit presence

of the variable s is missing from the polymial, then by Theorem 42 we have a

contradiction.

3. Solutions to arithmetic convolution equations.

In 2007, H. Glöckner, L. G. Lucht and S̃. Porubský solved the polynomial

convolution equation

Tg = ad ∗ g
∗d + ad−1 ∗ g

∗(d−1) + · · ·+ a1 ∗ g + a0 = 0 (25)
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with fixed coefficients ad, ad−1, . . . , a1, a0 ∈ A and ad 6= 0 by showing that it has

a solution g ∈ A satisfying g(1) = zo, if z0 is a simple zero of the polynomial

f(z) = ad(1)z
d + ad−1(1)z

d−1 + · · ·+ a1(1)z + a0(1).

In the next theorem, we show that the polynomial binomial convolution equation

Tξg = ad ◦ g◦d + ad−1 ◦ g◦(d−1) + · · · + a1 ◦ g + a0 = 0 and the polynomial Qα−

convolution equation Tαg = ad ⋄ g
⋄d + ad−1 ⋄ g

⋄(d−1) + · · · + a1 ⋄ g + a0 = 0 both

have solutions g ∈ A under similar conditions.

Theorem 43. For d ∈ N, let Tξ : A → A be defined by

Tξg = ad ◦ g
◦d + ad−1 ◦ g

◦(d−1) + · · ·+ a1 ◦ g + a0 (26)

for g ∈ A with ad, ad−1, . . . , a1, a0 ∈ A and ad 6= 0. If z0 is a simple zero of the

polynomial

fξ(z) =
ad

ξ
(1)zd +

ad−1

ξ
(1)zd−1 + · · ·+

a1

ξ
(1)z +

a0

ξ
(1), (27)

then there exists a uniquely determined solution g ∈ A to the convolution equation

Tξg = 0 satisfying g(1) = zo.

Proof. Assume that z0 is a simple zero of fξ(z). From the relation

g ◦ h = ξ

(
g

ξ
∗

h

ξ

)
, we obtain that

Tξg = ad ◦ g
◦d + ad−1 ◦ g

◦(d−1) + · · ·+ a1 ◦ g + a0

= ξ

(
ad

ξ
∗

(
g

ξ

)
∗d

+
ad−1

ξ
∗

(
g

ξ

)
∗(d−1)

+ · · ·+
a1

ξ
∗

g

ξ
+

a0

ξ

)
.

Let T : A → A be defined by

Th =
ad

ξ
∗ h∗d +

ad−1

ξ
∗ h∗(d−1) + · · ·+

a1

ξ
∗ h+

a0

ξ
(∀h ∈ A)

and

fξ(z) =
ad

ξ
(1)zd +

ad−1

ξ
(1)zd−1 + · · ·+

a1

ξ
(1)z +

a0

ξ
(1).

Since ξ(1) = 1, we have that fξ(z) = f(z) and z0 is also simple zero of f(z).

By Theorem 19, T has a solution h ∈ A such that h(1) = z0. Let g = hξ
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then Tξ(g) = Tξ(hξ) = ξ

(
ad

ξ
∗ h∗d +

ad−1

ξ
∗ h∗(d−1) + · · ·+

a1

ξ
∗ h+

a0

ξ

)
= 0

and g(1) = h(1)ξ(1) = z0.

Example 6. Let Tξg = a3 ◦ g
◦3 + a2 ◦ g

◦2 + a1 ◦ g + a0 and

a3(n) =





1, n < 3;

0, else,

a2(n) =





2, n < 3;

0, else,

a1(n) =





−1, n < 3;

1, else,

a0(n) =





−2n, n < 3;

n, else.

Consider fξ(z) =
a3

ξ
(1)z3 +

a2

ξ
(1)z2 +

a1

ξ
(1)z +

a0

ξ
(1), we get that

fξ(z) = z3 + 2z2 − z − 2

= (z + 1)(z + 2)(z − 1)

Thus z0 = −1,−2, 1 are simple zero of fξ(z).

If g ∈ A be such that Tξg = 0 then 0 = Tξg(1) = fξ(g(1)). Hence we can

determine a solution g ∈ A of Tξ = 0, e.g. if g(1) = 1 = z0, then

g(2) = −

1

6

[
a0

ξ
(2) +

a1

ξ
(2)

g

ξ
(1) +

a2

ξ
(2)

g

ξ
(1)2 +

a3

ξ
(2)

g

ξ
(1)3

]
=

1

3
,

g(n) = −

1

6

∑

1≤j≤3




∑

lm1...mj=n

m1...mj<n

aj

ξ
(l)

g

ξ
(m1) . . .

g

ξ
(mj)



+
a0

ξ
(n) for n > 2.

Theorem 44. For d ∈ N let Tα : A → A be defined by

Tαg = ad ⋄ g
⋄d + ad−1 ⋄ g

⋄(d−1) + · · ·+ a1 ⋄ g + a0 (28)
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for g ∈ A with ad, ad−1, . . . , a1, a0 ∈ A and ad 6= 0. If z0 is a simple zero of the

polynomial

fα(z) =
ad

α
(1)zd +

ad−1

α
(1)zd−1 + · · ·+

a1

α
(1)z +

a0

α
(1), (29)

then there exists a uniquely determined solution g ∈ A to the convolution equation

Tαg = 0 satisfying g(1) = α(1)zo.

Proof. Assume that z0 is a simple zero of fα(z). Since g ⋄ h = α

(
g

α
∗

h

α

)
,thus

we get that

Tαg = ad ⋄ g
◦d + ad−1 ⋄ g

⋄(d−1) + · · ·+ a1 ⋄ g + a0

= α

(
ad

α
∗

( g
α

)
∗d

+
ad−1

α
∗

( g
α

)
∗(d−1)

+ · · ·+
a1

α
∗

g

α
+

a0

α

)
.

Let T : A → A be defined by

Th =
ad

α
∗ h∗d +

ad−1

α
∗ h∗(d−1) + · · ·+

a1

α
∗ h+

a0

ξ
(∀h ∈ A)

and

fα(z) =
ad

α
(1)zd +

ad−1

α
(1)zd−1 + · · ·+

a1

α
(1)z +

a0

α
(1).

Since α(1)fα(z) = f(z). Therefore z0 be a simple zero of f(z).

By Theorem 19, T has a solution h ∈ A such that h(1) = z0. Let g = hα then

Tα(g) = Tα(hα) = α
(ad
α

∗ h∗d +
ad−1

α
∗ h∗(d−1) + · · ·+

a1

α
∗ h+

a0

α

)
= 0

and g(1) = h(1)α(1) = α(1)z0.
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Example 7. Let Tαg = a3 ⋄ g
⋄3 + a2 ⋄ g

⋄2 + a1 ⋄ g + a0 and

α(n) =





1, n is a prime p;

−1, else,

a3(n) =





1, n < 3;

0, else,

a2(n) =





2, n < 3;

0, else,

a1(n) =





−1, n < 3;

1, else,

a0(n) =





−2n, n < 3;

n, else.

Consider fα(z) =
a3

α
(1)z3 +

a2

α
(1)z+

a1

α
(1)z +

a0

α
(1), we get that

fα(z) = −(z3 + 2z2 − z − 2)

= (z + 1)(z + 2)(1− z).

Thus z0 = −1,−2, 1 are simple zero of fα(z).

If g ∈ A be such that Tαg = 0 then 0 = Tαg(1) = fα(−g(1)). Hence we can

determine a solution g ∈ A of Tα = 0, e.g. if g(1) = −1 = z0, then

g(2) =
1

6

[a0
α
(2) +

a1

α
(2)

g

α
(1) +

a2

α
(2)g(1)2 +

a3

α
(2)g(1)3

]
= 1,

g(n) =
1

6

∑

1≤j≤3




∑

lm1...mj=n

m1...mj<n

aj

α
(l)

g

α
(m1) . . .

g

α
(mj)



+
a0

α
(n) for n > 2.

Some cases of polynomial convolution equation with no simple zero were

also considered by H. Glöckner, L. G. Lucht and S̃. Porubský (see section 3

of Glöckner et al., 2007). They examplarily derived some conditions which are

necessary for the existence of the g ∈ A to Tg = 0. More precisely, if Tg = 0 has

a solution g ∈ A, then the coefficient functions aj ∈ A of Tg must be subject to

some severe restrictions. Now we will elaborate further on these conditions.
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For k ∈ N we introduce the polynomials fk(z) ∈ C[z] by

fk(z) = ad(k)z
d + · · ·+ a1(k)z + a0(k).

Obviously, f1(z) = f(z). Suppose that g is a solution of Tg = 0 satisfying

g(1) = z0. Let n = pn1

1 · · · pnr
r

then

Tg(n) = (ad ∗ g
∗d + ad−1 ∗ g

∗(d−1) + · · ·+ a1 ∗ g + a0)(n)

=
∑

1≤i≤d

ai ∗ g
∗i(n) + a0(n)

=
∑

1≤i≤d

[
∑

m0m1···mi=n

ai(m0)g(m1) · · · g(mi)

]
+ a0(n)

=
∑

1≤i≤d




∑

m0m1···mi=n

m0<n

ai(m0)g(m1) · · · g(mi) + ai(n)g(1)
i



+ a0(n)

=
∑

1≤i≤d




i∑

j=1

∑

m0m1···mj=n

m1···mj>1

(
i

j

)
ai(m0)g(m1) · · · g(mj)g(1)

i−j





+
∑

1≤i≤d

ai(n)g(1)
i + a0(n)

=
∑

1≤i≤d

∑

m0m1···mj=n

m1···mj>1

1

j!
g(m1) · · · g(mj)f

(j)
m0

(g(1)) + fn(g(1)).

For example, let Tg = g∗d − a with a ∈ A, a(1) = 0 then f(z) = zd.

It follows that z0 = 0 is a multiple zero of f(z) i.e. f ′(0) = · · · = f (d−1)(0) = 0,

f (d)(0) = d!. Since fk(z) = zd − a(k) thus we get

f
(j)
k

(z) = d(d− 1) · · · (d− j − 1)zd−j , j = 1, . . . , d. It follows that

f ′

k
(0) = · · · = f

(d−1)
k

(0) = 0 and f
(d)
k

(0) = d!. Hence for n ∈ N s.t. Ω(n) < d,

0 = Tg(n) =
∑

m0m1···md=n

m1···md>1

1

d!
g(m1) · · · g(md)f

(d)
m0

(0) + fn(0) = a(n)
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i.e. a(n) = 0, and for n = pn1

1 · · · pnr
r
, Ω(n) = d,

0 = Tg(n)

= g(p1)
n1
· · · g(pr)

nrf
Ω(n)
1 (g(1)) + fn(g(1))

=

(
1

d!

)
(g(p1)

n1
· · · g(pr)

nr) d!− a(pn1

1 · · · pnr

r
)

= g(p1)
n1
· · · g(pr)

nr
− a(pn1

1 · · · pnr

r
)

i.e. g(p1)
n1
· · · g(pr)

nr = a(pn1

1 · · · pnr
r
) for all prime pi.

Therefore g(p)d = a(pd) for all prime p. It follows that

a(pn1

1 · · · pnr
r
)d = (g(p1)

n1
· · · g(pr)

nr)d = an1(pd1) · · · a
nr(pd

r
) for all prime pi.
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CONCLUSION

In this thesis, the following results have either been derived or proved.

1. Basic properties of the Qα− convolution,

2. Characterizations of completely multiplicative functions with respect

to the Qα− convolution.

3. Connections between the binomial convolution and Qα− convolution,

4. Criteria for ⋄− Algebraic independence over a subring R of A.

5. The solubility of polynomial convolution equation whose characteristic

polynomial has no simple zero.

6. The solubility of polynomial binomial convolution equations and the

polynomial Qα− convolution equations.
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