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Let A denote the set of arithmetic functions. Let o € A be such that
a(n) # 0 for all n € N, for f,g € A, we define the Q,— convolution as

In this thesis, we establish some properties of the Q,— convolution o,
connections between the Dirichlet convolution x and Q,— convolution ¢, charac-
terizations of completely multiplicative functions under the Q,— convolution and
the algebraic independence of arithmetic funtions under the Q,— convolution.

Let ¢** denote the convolution power ¢ * --- * ¢ with k factor g € A.
Consider the polynomial convolution equation of the form

Tg=aq* g +as1%g" "V + - +arxg+a =0 (1)

with fixed coefficients ag,aq_1,...,a1,a9 € A and aq # 0.

In 2007, H. Glockner, L. G. Lucht and S. Porubsky gave a condition which
is necessary for existence of solutions g € A to equation (1) as follows: if z; is a
simple zero of the polynomial

f(2) = ag()z? + ag_1 (124 + -+ a1 (1)z + ao(1),

then there exists a uniquely determined solution g € A to the polynomial con-
volution equation T'g = 0 satisfying g(1) = z;. We investigate the solvability of
polynomial convolution equation T'g = 0 where f(z) has no simple zero and of
polynomial Q,— convolution equation

Tag:ad<>g°d+ad_1<>g°(d_1)—|—---—|—a1<>g+a0:O.
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THE Q,— CONVOLUATION OF ARITHMETIC FUNCTIONS
INTRODUCTION

An arithmetic function is a complex-valued function whose domain is the
set of positive integers, N, and whose range is a subset of the set of complex num-
bers, C. A nonzero arithmetic function f is said to be multiplicative if f(1) =1
and f(mn) = f(m)f(n) whenever ged(m,n) = 1 and is called completely multi-
plicative if this equality holds for all m,n € N.

Let A be the set of arithmetic functions equipped with addition, usual
multiplication and Dirichlet convolution (or Dirichlet product) defined over N,
respectively, by

(f +9)(n) = f(n) +g(n), fg(n)=f(n)g(n), (f*g)(n)=">_ f(x)g(y)
TYy=n
We write g? = g-g---gand g*¢ = gxg*---*g (d times). The usual multiplication
identity of A is the unit function u defined by u(n) = 1 for all n € N. The
Dirichlet convolution identity I € A is defined by I(1) = 1 and I(n) = 0 for
n > 1. It is well known that (A, +, %) is an integral domain and (A, +,*,C) is a

C—algebra.

Let D be the set of formal Dirichlet series D(f, s Z f(n ) e C.

It is well known that the C—algebra (D, +, -, C) is isomorphic to (A, +, %, C) under
the mapping f — D(f,s). The Riemann zeta function ¢ defined by ((s) =

D(u,s) = Z n~° plays a crucial role in the C—algebra (D, +, -, C).

n=1

In 1968, D. Rearick proved basic properties of arithmetic functions with re-
spect to the Dirichlet convolution; see also (Apostol, 1971; Haukkanen, 2001). In
1966, J. Lambek established characterizations of completely multiplicative func-
tions in terms of the Dirichlet convolution; see also (Langford, 1973; Laohakosol
and Pabhapote, 2004). In 1986, H. N. Shapiro and G. H. Sparer investigated the

algebraic independence in A.



The binomial convolution of arithmetic functions f and ¢ is defined as

(Fogm =3 (H (EZD) F(@(n/a)

dln D

where (}) is the binomial coefficient, and 1,(n) is the highest power of p dividing

b

n. We can also denote f o g as

Jogm =3 %ﬂx)g(w,

TYy=n
where £(n) = H vp(n)! for all n € N. This convolution and its basic properties

P
was first introduced in 1996 by P. Haukkanen; see also (Haukkanen, 2001). In
2009, L. Téth and P. Haukkanen proved that (A, +,0,C) is a C—algebra with
the binomial convolution identity I, and characterized completely multiplicative

functions via distributivity under the binomial convolution.

In this thesis we further extend the binomial convolution to a new convo-
lution denoted by ¢. Let @ € A be such that a(n) # 0 for all n € N. For f,g € A,

define
a(n)

mf(x)g(y),

(fog)m) =3

TYy=n

and call it the Q,— convolution of f and g. It is easy to see that (A, +,0) is a
ring with identity o/ which is defined by aI(1) = (1) and al(n) = 0 for n > 1.
We note that

- if v is a completely multiplicative function, then fo g = f * g;
-ifa=¢ then fog= fog.
In this thesis, we establish
e basic properties of the Q,— convolution,
e connections between the Dirichlet convolution and Q,— convolution,

e characterizations of completely multiplicative function and



e the algebraic independence of certain arithmetic functions under the Q,—

convolution.

Furthermore we investigate the solubility of some arithmetic convolution equa-
tions. In 2007, H. Glockner, L. G. Lucht and S. Porubsky solved the polynomial
equation

Tg:ad*g*d—l—ad_l*g*(d_l)-i-"'-i-al*g—f—aozo (1)

with fixed coefficients a4, aq_1,...,a1,a9 € A and ag # 0. They showed that if z

is a simple zero of the characteristic polynomial
f(2) = ag(D)2? + ag_1 ()24 + -+ ay(1)z + ao(1),

then there exists a uniquely determined solution g € A of the polynomial convo-

lution equation T'g = 0 satisfying g(1) = zo. In this thesis, we investigate

e the solubility of polynomial convolution equations T'g = 0 when f(z) has no

simple zero,
e the solubility of the polynomial binomial convolution equation
Teg=aqo g™ +as10g° "V +---+a0g+ay=0
and

e the solubility of the polynomial Q,— convolution equation

Tag:adog°d+ad,1<>g°(d_l)—|—---+a1<>g—|—a0:O.



OBJECTIVES

1. To introduce the Q,— extending the binomial convolution.

2. To establish basic properties of arithmetic function under the Q,— con-

volution and compare our results with those of the Dirichlet convolution.

3. To investigate the algebraic independence of certain arithmetic func-

tions under the Q,— convolution.

4. To investigate the solubility of certain polynomial convolution equations
consisting of
4.1 polynomial convolution equations whose characteristic polynomial
has no simple zero,
4.2 polynomial binomial convolution equation,

2.3 polynomial Q,— convolution equation.



LITERATURE REVIEW

In 1971, T. M. Apostol show a characterizations of completely multiplica-

tive functions with respect to the convolution * as follows.
Let f~'* denote the inverse of f under the Dirichlet convolution.

Theorem 1. Assume that f is multiplicative. Then for every squarefree integer
n7

f7(n) = p(n) f(n).

when 1 is the Mobius function defined by

2 id sk
p(n) = (=1)", n=pps---pr, pidistinct primes
0, otherwise

Moreover, if p is any prime then f~1*(p?) = f(p)* — f(p?).

Theorem 2. Assume that f is multiplicative. Then f is completely multiplicative

if and only if f~*(p®) =0 for all primes p and all integers a > 2.

Theorem 3. Assume that f is multiplicative. Then f is completely multiplicative

if and only if f(g*h) = fg* fh, for all arithmetic functions g and h.

Theorem 4. Assume that f is multiplicative. Then f is completely multiplicative

if and only if (fg)™'* = fg=1*, for every arithmetic function g with g(1) # 0.

This result is similar to Lembek’s Theorem (see Lembek, 1966).

Theorem 5. The multiplicative function f satisfies f(g * h) = fg* fh, for all

arithmetic functions g and h, if and only if f is completely multiplicative.



In 1973, E. Langford established characterizations of completely multi-

plicative functions in terms of the Dirichlet convolution.

Definition 1. For g, h € A, the product k = g % h is said to be discriminative if

the relation
k(n) = g(1)h(n) + g(n)h(1)
holds only when n is prime and is said to be partially discriminative if for every

prime power p' (i € N) the relation

implies that ¢ = 1.

Theorem 6. Suppose that f(1) # 0. Then f is completely multiplicative if and

only if it distributes over some discrimitive product k = g * h.

Theorem 7. Suppose that f is multiplicative. Then f is completely multiplicative

iof and only iof it distributes over some partially discrimitive product k = g * h.
In 2010, V. Laohakosol and N. Pabhapote present some properties which
related to completely multiplicative functions.

Let M and C be the set of all multiplicative functions and completely

multiplicative functions, respectively.
Theorem 8. Let f,g € M. Then f xg € C & either

g(*) =) + (fp) + 9l) f (")

+o () + 9) T () + (f(p) + 9(p)"

or

F") =g~ ") + (f(p) + 9)g ")

+o A (fp) +90) g™ () + (F(p) + 9(p))"

for all primes p and all a € N.



Corollary 1. Let f € C and g € M. Then

fxgeC e g™ =99+ fp)

for all primes p and all a € N.

Corollary 2. Let f,g € C. Then

frgeCs f(p)glp) =0

for all primes p.

Definition 2. Let r € R and n = H p”*™ be the prime factorization of n.

p prime

The generalized Mobius function is defined by

ol =TT (, 7,y ) -0

pln

Note that

1. py = p, the Mobius function,

2. pg = I, the Dirichlet convolution identity,
3. p_1 = u, the unit function,

4o Psye = fos * p; S, € R

Theorem 9. Let f be a nonzero multiplicative function and r a nonzero real

number. Then f is completely multiplicative if and only if (u, f)™* = pu_,.f.

Rearick’s Logarithm (see Rearick, 1968).
Let P stand for the set of all real valued functions f such that f(1) >0
Definition 3. For f € P, let

Lf(1) =log f(1),
Zf ~(n/d)logd, if n>1.

din

Theorem 10. For all f,g € P, L(f xg) = Lf + Lg.



The algebraic independence in A (see Shapiro and Sparer, 1986).

In 1986, H. N. Shapiro and G. H. Sparer investigated the algebraic inde-

pendence in A.

Definition 4. Let £ be a subring of A. For k > 1 we say that fi, fo,..., fr € A.
are algebraically dependent over €. If there exist P € E[f1, f2, ..., fi] \ {0} such
that

P(fl??fk)zzal* 1*21** I;“Zkzo
(4)

and is said to be algebraically independent over £ otherwise.
We say that fi is algebraic over E[fa, ..., fx] if fi, f2,..., fx are alge-

braically dependent over .

The algebraic independence of arithmetic functions under the Dirichlet
convolution can be considered relative to a given subring R of A. In particular, A

contains the complex numbers via the identification of a ¢ € C with the function

cl(n) of A.

Definition 5. A derivation d over A is a map of A into itself satisfying

d(f*g)=df g+ fxdg, d(cif + cag) = crdf + cady,

where f,g € A, ¢1,c € C.
Two typical examples of derivation are

(i) the p-basic derivation, p prime, defined by
dy(f) = f(np)vp(np)  (Vn € N)
(ii) the log-derivation, defined by
dr(n) = f(n)log(n) (¥Yn € N).
Lemma 1. Let € be a subring of A, and [ a given function of A such that there

exists a derivation d over A which annihilates all of € and d(f) # 0. Then f is

not algebraic over .



Definition 6. Given fi, f,..., fr in A and derivations dy, ds, ..., d; over A, the

Jacobian of the f; relative to the d; is given by the k x k determinant

J(fl, .. .,fk/dl, e ,dk) = det(dz(fj)),

fori,j € {1,2,...,k}. Clearly a Jacobian is an element of A. In the case where
each d is a basic derivation d,,, corresponding to some prime p;, we shall use the

notation J(f1,..., fx/p1,--.,pr) for the corresponding Jacobian.

Theorem 11. Let f1,..., fi be given functions of A and dy,...,dy derivations

over A which annihilate all elements of the subring £. Then if J(f1,..., fx/di, ..., dy) #

0, the fi,..., fr are algebraically independent over .

Theorem 12. Let € be a subring A such that, for some set of r distinct primes
D1, ..., Dr, the corresponding basic derivations dy,, all annihilate E. Then, for 2s +

1 <, the functions I;(n) =n?, —s < j < s, are algebraically independent over &.

Corollary 3. Let € be a subring A such that for infinitely many primes p the basic
derivations d,, annihilate all of €. Then the functions I;(n),j =0,£1,£2,... are

algebraically independent over E.

Theorem 13. Let £ be a subring of A such that given any finite subset £ C &
there are infinitely many primes p such the deriations d, annihilate all of £*.
Then given any sequence of complex numbers r;,i = 1,2,... with distinct real

parts, and any sequence of integers s; (not necessarily distinct), the functions
fij(n) =n"(log n)*

are algebraically independent over &.

Corollary 4. Let r;, i1 = 1,2,...,L be complex numbers with distinct real parts,

and m; any non-negative integers. Then, the functions

C(ml)(s — 7). .. ,C(mL)(s —rg)

are algebraically independent over C.
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Corollary 5. The zeta function does not satisfy any nontrivial algebraic differ-

ential difference equation over C.

The binomial convolution of arithmetic functions.

The works of L. Té6th and P. Haukkanen was presented in 2009. They

introduced a new convolution as follows. Let n = H p*™ denote the canonical

p
factorization of n € N. The binomial convolution of arithmetic functions f and g

is defined as

11 (Eg)) F(@g(n/d),

p

(fog)n)=>_ (

dln
where (Z) is the binomial coefficient, v,(n) is the highest power of p dividing n

and [ is the binomial convolution identity. Note that f°* = fo fo---of (k times).

Theorem 14. The algebras (A, +,0,C) and (A, +,x,C) are isomorphic under

the mapping f g, where £(n) = Hup(n)!.

Denote f~1° be the inverse of f under the binomial convolution.

Theorem 15. for any f € A with f(1) # 0,

ST )

and

€

¢ (3)

f—l* —

Theorem 16. If f is multiplicative and f(p*) = 0 for all prime powers p* with

a > 2, then for everyn > 1,
f7n) = (D)) [T F)™ = Am)Em) [ [ £ o)™ (4)

and

where Q(n) = Z vy(n) and A\(n) = (—1)%".

P
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Theorem 17. Let f be a multiplicative function. Then f is completely multi-
plicative if and only if f(goh) = fgo fh, for all g,h € A.

Definition 7. An arithmetic function f is said to be semimultiplicative if

for m,n € N where (m,n) and [m,n| stand for the g.c.d. and l.c.m. of m and
n. Notice that for semimultiplicative functions f and g we have that fg is also a

semimultiplicative function.

Proposition 1. An arithmetic function F' (not identically zero) is semimultiplica-
tive if and only if there exists a nonzero constant Cr,a positive integer ar and a

multiplicative function F' such that
F(n) =cpF'(n/ar), foralln €N

(see section 4 of Téth and Haukkanen, 2009), where ar is the smallest positive
integer k such that F(k) # 0 and cp = F(ap). Note that an arithmetic function
F’ possesses the property that F'(x) =0 if v ¢ N.

Proposition 2. Semimultiplicative functions form a commutative semigroup with

identity under the Dirichlet convolution and

/ / /
ap«G = arpaqg, Crxg = CrCqg, (F * G) = F'" % G,

a = ara C = CpC, —f(aFaG)
FoG — FUG, FoG — CF Gg(aF)é-(aG)7
I gG«FGG £<aF)£ /) <€(CLG>§ />:|
oG = o 2222
oG = Earac)e K e, )o\Ue 9))

where &,(n) = &(an) for all a,n € N.

Proposition 3. If F' is semimultiplicative (not identically zero) and f is multi-

plicative with f(ap) # 0, then

far
flar)

arp =ap, cp = flap)cr, (fF) = F,

where f,(n) = f(an) for all a,n € N.
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Definition 8. For an arithmetic function f, exponential Dirichlet series is defined

as

- (2) -5 4%

Theorem 18. The product of exponential Dirichlet series is the exponential Dirich-
let series of the binomial convolution of the corresponding arithmetic functions,

i.€.,

D(f.s)D(g,s) = D(f o g,5).

remark. The algebra (f)7 +,.,C) of exponential Dirichlet series is isomorphic to

the algebra (A, +,0,C).

The polynomial convolution equation.

In 2007, H. Glockner, L. G. Lucht and S. Porubsky investigated the solu-

bility of polynomial convolution equation of the form
ad*g*d+ad_1*g*(d_1)+---—|—a1*g+a0:0

with fixed coefficients ag, ag_1, ..., a1, a9 € A.

Theorem 19. Ford e N, let T : A — A be defined by
Tg:ad*g*d+ad—1*g*(d_l)+"'+a1*g+ao (6)

for g € A with ag,a4_1,...,a1,a0 € A and aq # 0. If zy is a simple zero of the

polynomial
f(2) = ag(1)2% + ag_1 ()2 + -+ ay(1)z 4 ag(1), (7)

then there exists a uniquely determined solution g € A to the convolution equation
Tg = 0 satisfying g(1) = zo. If f(2) has no simple zero, then Tg = 0 need not

possess any solution. In any case T'g =0 has at most d solutions.
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MATERIALS AND METHODS

Let M, C and S denote the set of all multiplicative, completely multi-

plicative functions and semi-multiplicative functions, respectively.

Definition 9. Let a € A be such that a(n) # 0 for all n € N. The Q,—

convolution of arithmetic functions f and ¢ is defined as

(fog)n) =) —=7

TY=n

We denote f* as fo fo---of (k times).

The Q,— convolution can be expressed in term of the Dirichlet convolution

as follows:
feg=a <i * 2) ;
a
that is
v
afoag=a| —xx—|.
a o«
So
a(fxg) =afoag (8)
or equivalently
af oag
ST S (9)

In 2009, L. T6th and P. Haukkanen showed that (A, +, %, C) is isomorphic
to (A, +,0,C). They also compared properties of arithmetic functions under the
Dirichlet convolution with binomial convolution. We now show that the algebra
(A, +, ,C) is isomorphic to (A, +,¢,C) and showed that most basic properties

under Dirichlet convolution are analogous to those under the Q,— convolution.

Theorem 20. The algebras (A, +,*,C) and (A,+,0,C) are isomorphic under
the mapping f — i
o
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Proof. First, we will show that (A, +,¢,C) is a C—algebra. It is easy to see that
(A,+) is a vector space over C. Let fi, fo, f3 € A and ¢ € C, then

L (fio f)n) = X A Al)h() < C

Ty

Thus fi ¢ fy € A.

2 (fro (ot f)) = 3 =S ) (fa + )0

TYy=

£ Z o(n) ) f2(y) + f1(2) f3(y))

O[

= (fio f2)(n) + (fio f3)(n).

Thus fio (fo+ f3) = fio fot fio fa
3. Using expression similar to 2 we obtain (f; + f2) o fs = fio fs + fao f5.
From 1-3, we obtain (A, +, <>) 1s a ring.

4 e(fio fa)(n Db =Y 28 o))

a(z)a(y)

TY=n TY=n

= (cfy <>f2)( )-
Thus c(f1 ¢ f2) = cf1 © fo and similarly c¢(f; ¢ fo) = f1 ¢ cfo.
From 1-4, we obtain (A, +, ¢, C) is a C—algebra. We next show that the mapping

f f is a bijection on A. We let H : A — A be defined by H(f) = i
% a

5. Let f,g € A. Thenf:g(@g:g(:)H(f):H(g).

Thus H is a 1-1 function.

6. Since f = af = H(af) and af € A, then
«Q

Thus H is an onto function.

From 5-6, we obtain the mapping f — i is a bijection on A.

1)) =at) (L2 @)

(0% «

H(fog)=H(f)*H(g).

H(cf) =
These show that H is an homomorphism. We conclude that (A, +,x*,C) is iso-
morphic to (A, +,¢,C). H
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Remark. It is well known that (A, +,*) is an integral domain. Consequently,

(A, +,¢) is also an integral domain.

We denote by f~1° the inverse of f under the Q,— convolution ¢. Then
for f € A, f71* and f~1° exist if and only if f(1) # 0.

Theorem 21. For any f € A with f(1) # 0,

—1x (&f)_l
= 10
f - (10)
—1x%
—1o f
—afl 1

re=a(2) (1)

Proof. Since f * f~'* =T and from (8) we have af ¢ af 71* = al.
—1¢
Thus af " = (af) ¥ie., f* = m. On the other hand, we have
a

—1o —1lo

fof‘lO:aIthatisa(i*f ) =al, so (i*f ) =1.
a o« a o«
—1o —1% —1x
Therefore / e (i) or that f ' =a (i) : O
« « «
> —1o
Example 1. a * =« (2) =au ™ =au, sou* = il S | L IL.
a a a

Theorem 22. If f,a € M and f(p*) = 0 for all primes power p* with a > 2

then for everyn € N,

=
3
G
E
3
QI%

Proof. Since = € M, i(p“) = pr ; =0, for all @ > 2 and from Theorem 21 we
« a(p®
f —1x b
have f~1¢ = (— hence by Theorem 16 we obtain
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Example 2. For a € M we have

1, n=1;
a(n)

oy =4 o
[T~

n > 1.

To prove this identity, we first find the Q,— convolution inverse of Mobius

function, p~1°. Since

then

It follows that £(1)%—(1) = I(1) = 1. For n > 1,

That is

Thus,

Therefore




p () = —aln) 3 L=
B _a(n) p(x)aly)
4o <y>Ha<p>”p<y>

:Eyzn H O./ Vp(x) (v)

y<n

17

) for m < n, then we obtain

(by inductive assumption)

(x =p1---pr, pi distinct)

=l zf;)w (Z plwyuly) - u(l)U(n)>
a(n)

We give here another proof. From Theorem 22 we have

qulo(n) Q(n

- (]

~ (1)) m—s

a(n) .
[Tt~

p

HM vp(n)

(_1)’/17(”)

( )

Ha
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Various characterizations of completely multiplicative functions have been
discovered by J. Lambek (Lambek, 1966), E. Langford (Langford, 1973), P. Haukka-
nen (Haukkanen, 2001), N. Pabhapote and V. Laohakosol (Pabhapote and Lao-
hakosol, 2004).

In 2009, L. Téth and P. Haukkanen (see section 3 of Téth and Haukkanen,
2009) proved a characterization of completely multiplicative functions using the
notion of distributivity with respect to the binomial convolution. We now extend
some of these characterizations of completely multiplicative function through the

use of the Q,— convolution.

Theorem 23. Let f € M. Then f € C if and only if f(goh) = fgo fh for all
g,h e A

Proof. Assume that f € C. Let g,h € A. Then

J=a(e Ly = fgo pn

Y
(0% «

flgoh) = fa(Lx
a
Conversely, assume that f(goh) = fgo fh for all g,h € A. Then

, h

0f(gh) = flagoah) = afgoafh =a(®LL Ty _ o pgu ph)

so, f(g*h) = fg= fh and so by Theorem 3, f is a completely multiplicative. [

Location and Duration of Research

Location, Department of Mathematics, Kasetsart University.

Duration of Research, July 2011- Fabuary 2012.
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RESULTS AND DISCUSSION

1. The properties of the Q,— convolution.

In 1973, E. Langford characterized completely multiplicative functions us-
ing a distributivity property with respect to the Dirichlet convolution. We extend
some of these characterizations of completely multiplicative functions through the

Q.— convolution.

Definition 10. For g, h € A, the product & = goh is said to be Q,—discriminative,

if the relation
a(1)k(n) = g(1)h(n) + g(n)h(1) (12)
holds only when n is prime, is said to be Q. — partially discriminative, if for

every prime power p’ (i € N) the relation

a(L)k(p') = g(Dh(p") + g(p")h(1) (13)

implies that ¢ = 1 and is said to be QQ, — semi — discriminative, if the relation

a(1)k(n) = g(1)h(n) + g(n)h(1) (14)

holds only when n = 1 or n is prime.

Theorem 24. Suppose that f(1) # 0. Then f € C if and only if it distributes

over a (), — discriminative product.

Proof. Let f € C, then by Theorem 23 we obtain f(g ¢ h) = fgo fh for all
g,h € A. Now we prove the conversely. Assume that f distributes over a Q,—
discriminative product k = g ¢ h where g,h € A. First we show that f(1)=1. If
k(1) =0 then 0 = k(1) = —g(l)h(l)’ so we get g()h(1) + g(Dh(1) =0=k(1).

a(l) a(1) a(l)
That is, a(1)k(1) = g(1)h(1) + g(1)h(1). This equation express (12) holds for n is

not prime which is a contradiction, hence k(1) # 0.
h h

Since F(1K(1) = k(1) = a2 1) = F2a) L2 0) = rayk), i

follows that f(1)%k(1) — f(1)k(1) = 0. But f(1)k(1) # 0, thus we obtain f(1) = 1.

Next, we show that for all prime py, ..., p, (not necessary distinct),

fi--pm) = f(p1) - f(Pm) (15)
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We now show it by induction on m. Equation (15) is trivial if m = 1.
Let m > 2 and assume that f(p;, ---pi;) = f(pi,) -~ f(pi;) for 1 <5 <m,

Pirs- - Di; € {P1,--.,Pm}. Then by distributive property f(goh) = fgo fh we

get that
a(piy + i) f(Piy - i )ig(pi P )ﬁ(pz " Dig)
1 m 1 m JZO a 1 m a 1 m
= fg Jh
Za(pil--~pim)ZE(pi1"'pim);(mmpim),
j=0
g, .\ N g h
f(pi, plm)[a 1)@(1911 Din) + a(p“ pzm)a(l)
m—1
g h
+ 2. i)~ (P Din )]
g, fh I Ih
a( )a(pl Din) + a(pl pm)a()
m—1
I Ih
+‘ E(pil"'Pim)E(Pil“'pim),
7j=1
m—1
g h
f(pi - pi) — a(pil 3 'Pim)a(l?z‘l  Diy)
m—1 fg h
~ _(pu pzm) (pil plm)
‘~
7=1
Since,

L= a o a a
xz,y<n
: o : g, "
and k = g o h is Q,—discriminative product, it follows that Z =(z)—(y) # 0.
ant
Thus f(p1---pm) = f(p1) - f(Pm). The proof is complete. O

Theorem 25. Let f € M. Then f € C if and only if it distributes over a

Qo—partially discriminative product k = g o h.

Proof. If f € C then Theorem 23 show that f(go h) = fgo fh for all g,h € A.
Conversely, assume that f distributes over a Q,—partially discriminative product

k = g o h. We will show that for all primes p, f(p™) = f(p)™; for all m € N.
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If m = 1, obvious. Let m > 2 and assume that f(p") = f(p)” for 1 < r < m.

Since f(goh) = fgo fh, we obtain

" h " fh ,
o)™ Y L) ) = 0l 3 ) ),
i=0 i=0
h ho&= h
o) <§<1>5<pm> + 2= + > 2() <p““>>
h h, o "= fg, . fh
= WO+ P m + S0 e,
m—1 m—1
m g, i h m—i\ __ & () ﬁ m—i
f™) 2 @)™ = 2. ()"~ "™)
m—1 ‘ m—1
By induction hypothesis, f(p™) 121 %(pz)a (") = f(p)" zzl g(pz)a(pmﬂ)
It follows from g ¢ h is Q, partlz;lly discriminative product that
m—1 m
gmSsh | AV wird o T e gek PSSl g AN
2 bV )—;a(p)oé(p )=~ Q)=@") = Z (™)~ (1) # 0.
Therefore f(p™) = f(p)™. We conclude that f € C. ]

Theorem 26. Suppose that f(1) = 1. Then f € C if and only if it distributes

over a (o, — semi — discriminative product.

Proof. 1f f € C then Theorem 23 show that f(goh) = fgo fhforall g,h € A. The

conversely follows through the same proof as in the last half of Theorem 24. [J

Definition 11. Let »r € N, r > 2 and let g1,¢s,...,9. € A\ {0}. We say that

the product k =g 0g20---¢g, is

e (), —r fold discriminative, or “o— r. d.” for notation, if the relation
)" (. 291 +gi-1(1)gj(n)gj+1(1) - -~ g,(1) (16)

holds only when n is prime;
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e (), —r fold partially discriminative, or “o— r. p. d.” for notation, if the

relation
1) k(p Zm gD (g (D)0, (1) (17)

implies that ¢ = 1;

o (), — 1 fold semi — discriminative, or “o— r. s. d.” for notation, if the

relation
1 k(n Zgl gy g g () (8)

holds only when n = 1 or n is prime.

Theorem 27. Suppose that f(1) # 0. Then f € C if and only if it distributes

over a o— 1. d. product.

Proof. Let f € C, then by Theorem 23 we obtain f(goh) = fgofhforall g,h € A.
Conversely, assume that f distributes over a o— r. d. product k = g1 0g2¢---0g,.

First we Show that f(1)=1. So we get

a(l)r1 Zgl -+ gj-1(1)g(1)gj+1(1) - - - g-(1) = 0 = k(1), i.e.

k(1 Zgl - 9j—1(1)g;(1)gj41(1) - - - g-(1), so the equation (16) holds

forn=1 Wthh is a contradiction. Thus k(1) # 0. Since

fk=flgrogeo---0g.)=faofgo--ofg,

we get
FK(Q) = a1 >fjl< >f92<1>- T )
u ()
( )
()

It follows from f(1)k(1) # 0 that f(1)"~! = 1. Next we show that for all prime

P1,- -, Pm (nOt necessary distinct),

fi--pm) = f(p1) - f(Pm)- (19)
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We proceed by induction on m. This is trivial if m = 1, so assume that

n=p; P, ;m > 2 and that (19) is true for all integers which the number of

prime factor (not necessary distinct) is less then m. Since

flgrogeo---0g.)=fgiofgao---0 fgr
Then

Fr-pm)a(prepm) Y %(dl)"'&(dr)

«
dl“‘d'r:pl"‘pm

) Y 2@y,

dl"'dr:pl“'pnl
Using the induction hypothesis, we get

For-+pm) B Z(d)-- T (d)

di-+dr=p1-pm
dj#p1---pmfor all je{l,...,r}

+ fpr-+pm) %) L))

dy--dr=p1--pm
dj=p1--pmfor some je{l,...,r}

=f(p1) - f(pm) Z %(dl) WL (d,)

dy -y =p1 P
dj#p1--pmfor all je{l,...,r}

+ (1 pm) f)T d dz %(Ch) T %(dr).
dj:plmplmfo;gfrile];%{l ..... r}
But f(1)"~! = 1. Hence
1+ pm) = F(21) - ()] >3 L(d)--- L) =0

dy--dr=p1--pm
dj#p1---pmfor all je{l,...,r}

> L(d) - 2(dy)

di-+dr=p1---pm
djipl“'anfor all Je{l ,,,,, ’I"}

—h(pr ) — 3 L(d) - 2 (dy)

dl“'dT:pl'“pm
dj=p1---pmfor some je{l,...,r}

and k is o— r. d. product, it follows that

g g

S L)L) 0 Thus frpa) = F01) - Flp).
dy-+dr=p1--pm

d;j#p1--pmfor all je{l,...,r}

This show that f € C.
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Theorem 28. Suppose that f(1) € M. Then f € C if and only if it distributes

over a o— 1. p. d. product.

Proof. 1f f € C then Theorem 23 show that f(go h) = fgo fh for all g,h € A.
Conversely, assume that f distributes over a o— r. p. d. product k = gy0g90- - -©g,..

Since f € M. Thus it suffices to show that for all primes p, f(p™) = f(p)™; for

all m € N. The case m = 1 being trivial, so assume that m > 2 and f(p') = f(p)*

holds for ¢ < m. Using distributive property and induction hypothesis, we get

flgrogao---0g)™) = (far0 fgao---o fg.)(p™)

m [ [
f®™) > —(dy)---=—(dy)
(6] (6]
dy--dr=p™
dj#p™for all je{l,...,r}

+ £ 3 Ady)---L(d,)

dy---dp=p™
dj=p™for some je{l,...,r}

—F(p)™ 3 Rdy)---2(a,)

(6% «
dy+dy=p™
dj#p™for all je{l,...,r}
. rd g1 g1
T Y BB,

dy--dp=p™
dj=p™for some je{l,...,r}

dy--dr=p™
dj#p™for all je{l,...,r}

Since

dl"'d’r‘:p’,,L
dj#p™for all je{l,...,r}

= k(p") - > 2(d)-- ()

dy---dp=p™
dj=p™for some je{l,...,r}

and k is o— r. p. d. product, it follows that

g g m m
> Z(d) -+ =(d,) # 0. Thus f(p™) = f(p)™ O
dyi-+dp=p™ « @
dj#p™for all je{l,...,r}
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Theorem 29. Suppose that f(1) = 1. Then f € C if and only if it distributes

over a ©— r. s. d. product.

Proof. 1f f € C then Theorem 23 show that f(goh) = fgo fhforall g,h € A. The

conversely follows through the same proof as in the last half of Theorem 27. [

Theorem 30. Let f € M. Then f € C if and only if (fg)~'° = fg='° for all
g € A with g(1) # 0.

Proof. Since f € C and we have fal = f(go g '°), so by Theorem 23,

al = fal = fgo fg='°. That is (fg)~'* = fg~'.
Conversely, assume that (fg)~'¢ = fg='° for all g € A with g(1) # 0, then
—1x
(fa)7'* = fa7' ie., @ <f_a> = fau. So f~% = fu. By Theorem 4 we get
a

that f € C. m

Theorem 31. Let f € M. Then f € C if and only if (af)™' = paf.

Proof. If f € C then by Theorem 30, (af)~ ! = a7 '°f = paf.
Conversely, assume that (af)™'* = paf. Then we get

afopaf =al
Q Q
frpf=1,
f7 = uf.
By Theorem 4 we conclude that f € C. 0
r
Recall that yu,.(n) = ( )(_1)%(”); rcR.
H vp(n)

pln

Theorem 32. Let f € M andr € R —{0}. Then f € C if and only if

(Hraf)™' = p_,af.



26

Proof. Let f € C, then

al =fal
=fauo

:fa(/ir * M—T)

_fa <oz,ur o au_r>
o

=fau, o fap_,

ie., (praf)™°=p_.af.

—1x%
Conversely, let (p.af)™1° = p_,af, we have « (M@f) = lu_yof.
a
So (prf)™™ = p_,f. Theorem 9 implies that f € C. O

Remark. Let f € M. Then f € C if and only if (uaf)™'* = u_,af.

Theorem 33. Let f € M. Then f € C if and only if (fa) ' (p®) = 0 for all

prime p and all a > 2.

Proof. If f € C then by Theorem 30, (fa)™'* = fa~1°.

Hence (fa)~'*(p*) = fa='*(p*) = fapu(p*) = 0.

Conversely, assume that for all primes p and all a > 2, (fa)~'°(p®) = 0.

From Theorem 21 we have (af) ™! = af~'*, so that 0 = (af)~1°(p*) = af~1*(p%)
i.e.,f~™(p*) = 0. Theorem 2 implies that f € C. [

Proposition 4. For f € M, f~'*(p) = —a(1)*f(p) for all primes p.

Proof. From (f o f71)(p) = (al)(p), we get

oo (Lo Zo+Ln! Cw) o
e R
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Remark. If a(1) = 1 then f~*°(p) = —f(p) for all f € M.

Theorem 34. Let f,g € M. Then fog e C & either

o S0 [T W) ) T ) + )
9= T (p){ oDalr Do) T T el alpaGr D }
(f(z;)(l)a () o)
o 90" e [N @ +9@) 9T R) +a(p)
e ==y " “”{ aMalrNam) T T e @) }
N (f(i)(;r)f(f?)) (21)

for all prime p and all a € N.

Proof. Assume that fog € C. Let p be a prime and a € N, then g(p*) =
(fog)o f(p?).

g9(p*) = a(p?) [Z %(pa‘l)&(p")]

(0%
=0

Since f¢ g € C, thus

(Fo9)b) = (Fo o) = [a<pa> (Lo tdel))_ VWL 5,
We get
oy W) o [0 @) ) | R R) )
o) = ) | P et
(f(p) +9(p)"
+ 04(1)0‘71 ’

Similarly, we can prove the equation (21) by interchanging f and g.
Conversely, Assume that the equation (20) holds.

We obtain (f ¢ g)(p') = W

< "= | M i:M i
But (f o g)(p) { (p)< 2 (Do) )] 1) (Vi € N).

Hence (f ¢ g)(p') = (fog)(p)’ (Vi € N), that is f o g € C. The same result holds

by comparing (20) and (22) for successive

values of 7 € N.

similarly for the equation (21). O
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In 2009, Téth and Haukkanen (see section 4 of Téth and Haukkanen,
2009) proved some properties of semi-multiplicative functions with respect to the

binomial convolution. Similar results can also be derived for the Q,— convolution.

Proposition 5. If f € M then f € S.

Proof. Let m,n € N, (m,n) = d and we get that m = dk and n = dl with
(d,k)=1,(d,l) =1 and (k,l) = 1. It follows that

f(mn) = f(dk)f(dl) = f(d)f(k)f(d)F(1) = f(d)f(kdl)
= f((m,n))f(mn/d) = f((m,n))f([m,n]).

Thus f € S. [

Theorem 35. Let o € M, then § is a commutative semigroup with identity

under the Qn,— convolution.

Proof. 1t is known that semimultiplicative functions form a commutative semi-
group with identity under the Dirichlet convolution (see section 4 of T6th and

Haukkanen, 2009). Since fo g = a(i * g), hence it is suffices to show that for
a «

allfGS,iGSandOzIES.LethS.Thenform,neN,
«

Lo f L )
a( )a( ) a(m)a(n)
_ F{mn) f(fmn)
a((m,n))a([m,n])
=L (om L ()
Thus g € S. Therefore for all f,ge S, fog= a(g * g) €S

Since a, I € M thus by proposition 5, we get o, [ € S, so that ol € S.
We conclude that S is a commutive semigroup with identity under the Q,— con-

volution. n

Adopting notations of Proposition 1, we get:



Theorem 36. Let o« € M and f,g € S, then

(i) ajog = aysay.

(i) a(asay)

o0 = alag)alag) Y

) (o = 2emtenole) (o ooy

aa(aray) Qa; Qg

Proof. (i) Since fog = a(g * g), thus

=aysas (by Proposition 2)

vg (by Proposition 3)

= aya, ( by Proposition 3 and Ze M).

(67

(ii) crog = (f 0 g)(ageg) = (f 0 g)(ayay) = a(&f%)(% 3 g)(afag)'

Consider

(g . g) (ara) = 3 g(r)§(8>
s

hence cpoy =

29
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)

/
a(l a
_ 9 (i * Q) (by proposition 3)
alaray) \o  «
Q@ AN AV
__Qagay ((_) % <_> ) (by proposition 2)
a(aray) « a
& Qgray (a(af) ! g Oé(ag)g/) (by prOpOSitiOH 3 and g c _/\/[)
alarag) \ Qg o

- o (e r) o ()]

_ Qaga,(ay)a(ay) (af/ ag,) |

o
Qa;  Og,

]

Since Dirichlet series is one of the most fundamental concepts in ana-
lytic number theory which has been investigated widely in the literatures (see
McCarthy, 1985; Shapiro, 1983), generalizations of this concept is naturally of in-
terest. In 2009, T6th and Huakkanen proposed a generalization of Dirichlet series
by exponential Dirichlet series. A similar result in term of a— Dirichlet series is

presented as follows:

Definition 12. For arithmetic function f we define the a-Dirichlet series by

. n

Df5)=D(L,s) = > a{i)is, fny ec.
Notice that
(1) if @ = € then D(f,s) = D(f,s) where D(f,s) is the exponential Dirichlet
series (see section 5 of T6th and Huakkanen, 2009);

(2) D(a,s) = ((s) where ((s) is the arithmetic zeta function (see also section 5

of Téth and Huakkanen, 2009).

Let D denote the set of all a—Dirichlet series. We will show that D is a
C—algebra under the usual addition and multiplication of series and isomorphic

to (A, +,0,C).
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Proposition 6. (f), +,-,C) is a C— algebra.

Proof. 1t is easy to see that D is a vector space over ﬁeld C.

Let Fy(s), Fa(s), F5(s) € D. Then Fi(s) = D(fy, s) Z f(’fé;l fu(n) € A,
k=1,2,3
- po - S0 A %@gw%v
N L (L RN s o f)(n)
_;?S (Bed)m-3 e

2. F1(s)(Fy(s) + Fa(s)) = 21 ofn;is (Z 2 P Zl Ofé;;)

n TY=n

ﬁ*ﬁ+ﬁ*§)m)

(0] (6] (0% (0%

-5 (S ke T ko)
(

I
.

)(s)(F2)(s) + (F1)(s)(F5)(s).

Thus Fl(S)(FQ(S) + Fg(S)) = Fl(S)FQ(S) + Fl(S)F3(S).
3. Using expression similar to 2.

Thus (Fi(s) + FQ(S))%(S) = Fi(s)F3(s) + Fa(s)F3(s).
1 o(Fy(s)Fy(s)) = S o))

n=1 ( )ns
(cF1)( Zl Cf1<>f2 C;(f:znf;)lgn)
$)(chy)( ; f1<>cf2 :Czl(f;z{;)lgn)‘
Thus o(F} (s) Fa(s)) = <cF1< >>F2< ) = Fi(s)(cFa(s)).

From 1-4 we conclude that (f), +,+,C) is a C-algebra. ]

Theorem 37. The algebras (A, +,¢,C) and (15, +,-,C) are isomorphic.

Proof. Tt is easy to see that the mapping f — D(f, s) is a bijection on D.
Moreover f + g D(f 4 g,s) = D(f,s) + D(g,s) and ¢f — D(cf,s) = ¢D(f, s)
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and we can express that

ﬁ(fog,s) =D (a (£*§> ,s)
=D (i * 2, s)
a o«
f g
=P (a) D(5)
= D(f,5)D(g, 5)
This prove is complete. [l

We proceed to derive further properties of Q,— convolution. Properties
involving the Rearick’s logarithm and p—basic derivation with respect to the
Dirichlet convolution are well known in number theory. These properties have
been published in the literature (see Laohakol et al, 2002; Raerick, 1968; Shapiro,
1983). We now show that these properties have analogues with respect to the

Qn— convolution.

Proposition 7. For f,ge A, ne N, letd.f: A— A be defined by

de = f(n)log n,

let dpf : A — A be defined by

or equivalently

Then dy, and d, are derivations on (A, +,0).

Proof. We will show that
(i) dileif +c2g) = cxdif + codrg, di(fog) = fodig+godif.
(ii) Jp(clf + ¢29) = crdf + ey, dp(fog) = fodpg —|—g<>cipf.



Let n € N. Then
dp(erf + c2g)(n) = (e1f + c2g)(n)log n
= [(c1f)(n) + (c29)(n)] log n
= c1f(n)log 1 + cag(n)log n
= cdp f(n) + cadpg(n).
)

dr(fog) = (fog)(n)logn

= (Z —a(a(n) f(x)g(y)> log n

z)a(y)
= a(n) <Z i(m)g(y)low + Z —(x)%(y)logy)

= (fodrg)(n) + (g odrf)(n).

dyferf + exg)(n) = afn) (le s 629) (n)vy(np)

«

= an) (2L) Gyt + atm) (2) (e o)
= aln) ( £) (vytom) + caatm) (£) (o)

= crdf + codyg.

(s o9) =t (£22) (uppy (o)

PN CE I

=) (L2 (o)

:Mm%(g*g)m)
:Mm(ﬁ*%g+§*%£)m)
:amWE*g(%gﬂ@w+amﬂg*g(%£ﬂ(m
= a(n) [fy*‘%g (n) + afn) [g%] (n)

:fOJpg+g<>pr.

33
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Hence d;, and d,, are derivations on (A, +,0). O

Definition 13. For f € P, let

Lof(1) =log f(1) and
B i f—1<>
Lof(n) = a(m) 3 L)

dn

(n/d)logd, if n>1.

(we recall that P is the set of all real valued functions f such that f(1) > 0.)
Proposition 8. For any f,g € A with f(1) #0,¢9(1) # 0,
(fog) ™ =fTog™"

Proof. (fog)o(fog™ ) =fogogof o= fof=al.
That is (fog) = f 1 og . ]

Theorem 38. For all f,g € P,

La(f 0 9)(1) = % (Lof(1) + Lag(1)) and
Lo(fog)(n)=Laf(n)+ Lag(n) when n > 1.

Proof. For n =1, we get that

Lo(f 0 g)(1) = log((f ¢ g)(1))
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Forn > 1, L,f(n) can be expressed using d, f as follow:

Laf(n) = am) 3 L@l
dn

a(n) (f_lo x M) (n)

(0% «

(n/d)logd

= (fodpf)(n),

Lo(f o g)(n) = [(fog) o di(f o 9)] (n)
= [(fog) " o(godLf + fodrg)] (n)
=[(fog) " olgodef)(n)] + [(fog) o (godrg)(n)]
= (fog®ogodif) (n)+ (f*og *ogodLg) (n)
= (fodrf)(n) + (g7 0 drg)(n)

Remark. If a(1) =1 then L,(f ¢ g)(n) = Lof(n) + Log(n) for all n € N.
2. o— algebraic independence over subrings of A.

The o— algebraic independence of arithmetic functions can be considered
relative to a given subring R of A. In particular, (A, +,¢) contains the complex

numbers via the identification of a ¢ - al(n) of A.

Definition 14. Let £ be a subring of A. For k > 1 we say that fi, fo,..., fr € A.
are © — algebraically dependent over &, if there exist P € E[f1, fa,. .., f] \ {0}
such that

fla"')fk’ Zazo 0110 OZk:O

and is said to be ¢ — algebraically mdependent over &£ otherwise.

We say that f) is o— algebraic over E[fs,. .., f&] if fi1, fo, ..., fx are o—

algebraically dependent over £.



36

Definition 15. Given fi, fa, ..., fx in A and derivations dy, ds, . . ., dy over A, the

o—Jacobian of the f; relative to the d; is given by the k x k determinant

J(fryoos fofdu, ... dy) = det(di(f;)).

We use multiplication in the determinant by Q,— convolution. Clearly a Jacobian
is an element of A. In the case where each d is a basic derivation d,,, correspond-
ing to some prime p;, we shall use the relation J(fy,..., fu/p1,...,px) for the

corresponding Jacobian.

Theorem 39. Let £ be a subring of A, and f a given function of A such that
there exist a derivation d over A which annihiletes all of €& and df # 0. Then f

is not o— algebraic over .

Proof. Suppose that f is o— algebraic over £. Then there exist g; € £ such that
Y gioft=0 (23)
i=0

with g,, # 0 and g; € £ is of smallest possible degree m.
Taking the derivation d to the equation (23), we obtain

(g: 0 d(f) + [ o dg;)

M-

0

.
Il

(g0 (f 7V 0 df))

M-

1

.
I

((gi 0 if*"D) o df) (by associative law)

M-

1

(Z (g; © ifo(i_l))> odf (by distributive law).

=1

<.
I

Since df # 0 and (A,o,+) is an integral domain, it follows that

m

Z g; o i folY Z ig; o fo07Y = 0 with ig; € £ which is a contradiction.

i=1
We conclude that f is not o— algebraic over £. m
Theorem 40. Let fi,..., fr be given functions of A and d,...,dy derivations
over A which annihilate all elements of the subring £. Then if J(f1, ..., fu/dy, ..., dp) #

0, the f1,..., fr are o— algebraically independent over E.
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Proof. We define a linear map d : A — A by J(g) = J(g, fz,...,fk/ozl,...,cfk)
for g € A. Clearly, d is a linear combination of the derivations dj, ..., dy and d
is also a derivation. For 1 < i < m, we obtain J(fz) — (. That is d annihilates
all elements of the ring £[fs,. .., fx]. But d(fi) # 0. Thus by Theorem 39 we get
f1is not o— algebraic over £[fs, ..., fx] . By symmetry implies that the f; are o—
algebraically independent over £. O

Example 3. The functions I(n) = n*, k € NU {0} are o— algebraically inde-
pendent over C.

Let k € NU {0} and py, ..., px be distinct primes.

Using the Jacobian J at n =1,

po[() poll po]k’
§ TNUBR O, LA AN
J<]077-[k/p077p/€)(1) = p% p% A p% (1)
dpkjo dpkjl dpkjk
Io(po)  I1i(po) It (po)
a(po)  a(po) a(po)
Io(p)  L(p) I (p1)
TS0 ki ety By alon)
a(1)k : :
Io(pe) Ii(pk) I, (pr)
alpr)  alpk) a(py)
Io(po) [1(]90) Ik(po)
B a(l) Io(p1) Li(p1) Ii.(p1)
a(po) - - - a(pr) :
Io(pr) Li(pr) -+ In(pr)

a(1) » opro-o pf
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L po plg
~ a(1) 1 p - pb
J<]Oa---aIk/p0>---7pk)(1):a(p0>,..a(pk) S .

L p Pk

Therefore I,(n) = n*, k € NU {0} are o— algebraically independent over C.

Example 4. The functions p and I(n) = n*, k € N are o— algebraically inde-

pendent over C.

Let k£ € N and py, . .., pr be distinct primes.
Putting n = 1 into the Jacobian .J,

JPO/’L Cipojl :Dolk‘
J(Io,- Iefpos - o)) =| 0 T (D)
ka K ka I ~Pk Iy,
u(po)  I1i(po) It (po)
a(po)  a(po) a(po)
kel | #1)  Ii(p1) It (p1)
1S DL W~y Blev ey (1)
a(1)F ;
per) (o) I (Pr)
a(pr)  olpk) a(pr)
—1 po plg
k

1o 2



39

1 po P
~ L op - ph
Jo, - Ie/po, - o)) = | "

I p Pk

£0.

Hence the functions y and Ix(n) = n*, k € N are o— algebraically independent

over C.

Theorem 41. Let £ be a subring of A such that for some set of r distinct primes
D1, .., Pr, the corresponding p-basic derivations a?pi all annihilate €. Then, for

2s+1 <, the functions I;(n), —s < j < s, are o— algebraically independent over

£.

Proof. Let pg,...,pasi1 be distinct primes and 2s + 1 < r then, for n = 1, we

obtain
dp Iy dp I g 1,1
Y i Nl [ d, ],
JI e Lfprs. . p2)(D) = 7 ¢ _ " (1)
dp25+1l—8 dp25+1 ]—S+1 T dp2s+1ls
I_s(p1) I_s+1(p1) 7 Is(p1)
a(p1) a(p1) a(p1)
k+1 I_s(p2) I_sii(p2) ., Is(p2)
_ oM S a(p2) a(p2)
Is(p2st1) Iosyi(pesyr) . Is(P2sy1)
a(p2st1) a(p2s+1) a(p2s+1)
it o B
s —s+1 s

a(1) p* ottt b

—s —s+1 s
Post1 Posy1 " Pastl
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1 p - P
. a(Dpr®...oppiy |1 p2 o PP
JU .. Is/p1, ... p2ss1)(1) = -
( / 1 2 +1)( ) Oé(p1) o Oé(pzs+1) . . . .
I posy1 -+~ p%§+1

= a<1)p_s"'p2_ss+1 H(p_p.)

a(p1) - a(pass1) Ny

£0.

Theorem 40 implies that the functions I;(n), —s < j < s, are o— algebraically

independent over &. O]

Corollary 6. Let £ be a subring A such that for infinitely many primes p the basic
derivations Jp annihilate all of £. Then the functions I;(n),j = 0,£1,£2,... are

o— algebraically independent over &.

Example 5. The functions u, I, ¢ are x— algebraically dependent over C but they

are o— algebraically independent over C.

Since p * Iy = ¢, we have the x relation pux I — ¢ = 0, that is u, [, ¢ are
«— algebraically independent over C. Consider J(u, Iy, ¢/p,q,r) with p,q,r are
distinct primes.

s

T, 1, 6/p,a,r) = | dyp dgly d,

CirH Czrfl Cirﬁb

S S

=dyp 0 dyIy o dpd + dply 0 dyp  dppt + dyp & dopu o d 1
— Np¢ o chll o dypt — d},u o qub od.I) — JI,II o Jqp o db.

Then,

J(u,I1,0/p,q,7)(p)

_i0*)vp(P*) i (@)vg (@) S(r) v (1) +11(pQ)Vp(p2)¢(Q)Vq(Q)u(r)l/r(7”)
a(p?)a(q)a(r) a(p?)a(g)a(r)
N (P )vp(P*) (@ ve (@) L (r)ve (1) d(p*)vp(?) (@) vy (@) pe(r) v (1)

a(p?)a(g)a(r) a(p?)a(q)a(r)
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Li(p*)vp(P) (@) ve(@) o (r)vi(r)

w(p*) v (D) D(q)vg (@) i (1) v (1)

a(p)a(pg)a(r)
d(p)vp(p) 11 (pa)ve(pq) pu(r) v, (1)

a(p)a(pg)a(r)
¢(p)vp(p) (pa)vy(pg) 1 (r)v (1)

a(p)a(pg)a(r)
L (p)vp(p) 1(pq) Ve (pq) (1) v (1)

a(p)a(pg)o(r)
1(p)vp(p)p(pa)vy(pg) 11 (1) v (1)

a(p)a(pg)e(r)
Li(p)vp(p)d(q)vy(q) p(pr)v:(pr)

a(p)a(pg)a(r)
1(p)vp(p)11(q)ve(q)p(pr)vy(pr)

~—

a(p)a(pg)a

o(p)vp(p)1i(q

a(p)a(q)a(pr)
o(p)vp(p)1(q)vy(q) i (pr)vy(pr)

vy(q)u(pr)ve(pr)

—~

a(p)a(pg)e(r)
Li(p)vp(p) (@) vy (@) o (pr v (pr)

a(p)a(q)a(pr)
1(p)vp(p) (@) V(@) L1 (pr) v (pr)

a(p)a(q)a(pr)

(g—p)(p+7)

a(p)a(q)a(pr)

(p—r)p+q)

2p(r — q)

Choosing

n is a squarefree;

L

thus

— 2pr + 2pq + p* + pq — pr — qr + pg +qr — p> — pr

J(p: 11, ¢/p, 4, 7)(p)

4dpq — 4pr

4p(q — )

£0,

It follows that the functions u, I, ¢ are o— algebraically independent over C.

This example shows that the functions u, I, ¢ are o— algebraically inde-

Therefore, the

pendent but they are not x— algebraically independent over C.

x— algebraic independence may not be related to the o— algebraic independence

over subring of A.
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Theorem 42. Let £ be a subring of A such that given any finite subset £ C &
there are infinitely many primes p such the derivations Jp annihilate all of £*.
Then given any sequence of complex numbers r;,i = 1,2,..., with distinct real

parts, and any sequence of integers s; (not necessarily distinct), the functions

fij(n) = a(n)n"(log n)*
are o— algebraically independent over E.

Proof. Assume that there is a finite subset of {f;;} which are o— algebraically
dependent over &£ and this set is {fi1,..., fu}. Let £ (C &€) be the finite set
of all coeffients in this o— algebraic relationship. Then, for all sufficiently large
primes p such that Jp annihiletes the set £ and the subring (£*), we get that
fi1, .., fu are o— algebraically dependent over (£*). If we can choose primes p;;

among these so that
J(fire- o fu/pi, - o) # 0,

by Theorem 40 we have fi1,..., fi are o— algebraically independent over (£*),
which is a contradiction.

Without loss of generality, assume that t; (—s < t; < sforallj € {1,...,1}
and s is a fixed positive integer) is an integers. We instead the set {fi1,..., fu}
by the set {f;;|i € {1,...,k},j € {—s,...,s}}. Let T = (2s + 1)k, then for any

sequence of sufficiently large primes, p, ..., pr, we get

j(fl,—su Ce ,fLS, Ce 7fk,—57 ceey fk,s/ph e ,pT)(TL) = det(dpa(fw))(n)

= det(a(n)%(npa)Vpa (npa))

— det [ an a(np,)(npa)" (log npa)jy n
=d t( (n) a(npa) pa pa))

= det (a(n) (npa)" (log npa)jypa (npa))
where a =1,...,T; i € {1,...,k}; j€{—s,...,s}. Thatis
j(fl,*su S 7f1,87 s 7fk,*s7 R fk,s/plv s 7pT)(1) = det(a(l)(pa)” (lOg pa)j>

= a(1)Tdet(p," (log pa))

=a()S
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(Note that J" = det(p,"(log pa)’).)

Let t(p, FJ) =A{1,...,k};5,...,dr € {—s,...,s} be a typical term in
the expansion of the determinant defining J’. We may assume that
Re(r1) >Re(rg) >... >Re(r). We consider the first row, the column which has
the unique largest absolute value is pi*(log p1)®, so we shall exchange the first
column with this column. We next consider the second row, the column which
has the next unique largest absolute value (after the first column), similarly we
exchange the second column with this column. Afterwards we will continue this

process. We assume that in the final determinant, by choosing p; > py > -+ > pr

sufficiently large the term with largest absolute value is the main diagonal term
Yy = .\ o Lt s (] ®)2 ... 0T (] OF
= aya - ary = pi'(log p1)°py * (log p2) py’" (log pr)™7,
where (7);, (s); denote the diagonal exponents. Let
aj = ay,, - -ar, = py(log p1)™ - pi*(log pr)’™

be any term in the determinant expansions. There are three possibilities.
(i) Ifry # o (Re(r1)>Re(ay)), then choosing p; sufficiently large in comparison

with other p; ’s, we see that pi' >> p* which leads to |Y| > |a;»

(ii) If ry = oy, s > B, then as in (i), (log p1)* >> (log p1)** and Y| > |a;-

(iii) If 11 = aq, s = Pi(i.e. both terms arise from the expansion of the (1,1)
term), repeating the same arguments as above we see that the next largest term
must come from the main diagonal.

Moreover, we can even choose the primes p; > --- > pr so large that

1 .
<7 for each t(p,7,j) # Y.

t(F, 7, )
Y

Thus J' = 1+ ((T!—1) terms each with absolute value < =) # 0. This show that

there are sets of primes p such that J' # 0, yielding J(1) # 0, as required. ]

In 1986, H. N. Shapiro and G. H. Sparer discovered relations between
the Riemanm zeta function and its algebraic independence with respect to the
Dirichlet convolution. We now establish this relation with respect to the Q,—

convolution.
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Corollary 7. Let r;,1 = 1,2,..., L be compler numbers with distinct real parts,

and m; any non-negative integers. Then, the functions
(s — ), .., ¢ (s —rp)

are o— algebraically independent over C.

Proof. Let £ be a subring of C and ¢ € C. Since ¢ = c¢I, thus for all primes p we
. s ~ ~ I
obtain d,(c)(n) = dy(cI)(n) = cd,(I)(n) = a(n)—(np)vy(np) = 0.

«
From ((s) = Zn_s; s € C and d,(n~*) = 0. Hence there exist infinite many
neN
prime p such that d,¢ = 0. It follows from Theorem 39 that the functions

C(ml)(s —T1),... ,C(mL)(s —rr)

are o— algebraically independent over C. O
Corollary 8. The zeta function does not satisfy any nontrivial algebraic differ-
ential difference equation over C.

Proof. We will show that there is no polynomial F'(s, z1, ..., z;) over C, not iden-

tically 0, such that for all s € C
F(C™) (s —ry),....¢M) (s —7p)) =0 (24)

where the m; and r; are fixed integers (m; > 0) and the pairs (m;, ;) are distinct.
If relation (24) existed there would be a similar one in which the explicit presence
of the variable s is missing from the polymial, then by Theorem 42 we have a

contradiction. O

3. Solutions to arithmetic convolution equations.

In 2007, H. Glockner, L. G. Lucht and S. Porubsky solved the polynomial

convolution equation

Tg=agxg+as1%¢" V4. daxg+ay=0 (25)
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with fixed coefficients ag,aq_1,...,a1,a9 € A and ag # 0 by showing that it has

a solution g € A satisfying ¢g(1) = z,, if zo is a simple zero of the polynomial
f(2) = ag()z2? + ag_1 (1) 297 + -+ ar(1)z + ao(1).

In the next theorem, we show that the polynomial binomial convolution equation
Teg = aq o ¢°4 + ag_q o go(d_l) +---4a;0g+ag = 0 and the polynomial Q,—
convolution equation T,g = aq ¢ ¢°¢ + aq_1 © go(d_l) +---+a;09g+ap =0 both

have solutions g € A under similar conditions.

Theorem 43. Ford € N, let T; : A — A be defined by
Teg = aqo g° + ag-109°"V+-- +a10g+a (26)

for g € A with ag,aq4_1,...,a1,a0 € A and aq # 0. If zg is a simple zero of the

polynomial
felz) = 20+ T2 4+ D)2+ 2 (), (27)

then there exists a uniquely determined solution g € A to the convolution equation

Teg = 0 satisfying g(1) = 2,.
Proof. Assume that 2, is a simple zero of f¢(z). From the relation
h
goh=¢ (Q * —), we obtain that
£ ¢
Teg = ago g™ +as10¢" "V + -+ a1 09+ a
ag  (9\"  aq B a g  a
=¢ _*(_) + 1*<_) +...+_1*_+_0 )
Sy & 3 3 & & ¢

Let T': A — A be defined by

_ A gwd | Qd-1 g k(d-1) a1 o
Th=—xh""+—xh + 4+ —xh+ — Vhe A
§ § § £ ( )

and

2) = 2yl Gyt By B0y,
fe(2) 5(1) +£(1) + +§(1)+§(1)

Since (1) = 1, we have that f¢(2) = f(z) and 2z is also simple zero of f(z).
By Theorem 19, T has a solution h € A such that h(1) = z. Let g = h&
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then T¢(g) = Te(h) =& <% « b adg_l w« B0 44 % x h + %) =0
and g(1) = h(1)§(1) = 2. .

Example 6. Let Ttg = az o ¢g°* + az 0 g°* + a; o g + ag and

1, n<3;
az(n) =

0, else,

2, n<3;
as(n) =

0, else,

-1, n<3;
ai(n) =

1, else,

—2n, n<3J;
ap(n) =

n, else.

Consider fe(z) = %(1)2’3 + %(1)22 o %(1)2 45 %(1), we get that

fe(z) =22 +22° — 2 —2
=(z+1)(z+2)(z-1)
Thus zgp = —1,—2,1 are simple zero of f¢(2).

If g € A be such that Tegg = 0 then 0 = T¢g(l) = fe(g(1)). Hence we can
determine a solution g € A of Ty =0, e.g. if g(1) = 1 = 2, then

_ 1w 9 99 @2 009 1y2 4 By g 3| _ 1
9(2) = —¢ {5(2)+ 5(2)5(1)+ g(Q)g(l) L 5(2)5(1) 1
—_1 E E & gm gm _(Ion orn

1<5j<3 [Imy..mj=n
mi..m;<n

Theorem 44. For d € N let T, : A — A be defined by

Tag = CLdOde—FCLd,l <>g<>(d71) +--ta10g9+ag (28)



47

for g € A with ag,aq_1,...,a1,a90 € A and ag # 0. If zy is a simple zero of the

polynomial
d d ad—1 d—1 a ap
«(2)=—(1 — (1 e+ —(1 —(1), 2
falz) = 20)2 4 ) B 1)z 4 2) (29)

then there exists a uniquely determined solution g € A to the convolution equation

Tog = 0 satisfying g(1) = a(1)z,.

h
Proof. Assume that zy is a simple zero of f,(z). Since goh = « (2 * —> ,thus
a o«

we get that
Tog = aqo g™ +as10¢" ™+ +ar0g+a
*d s *(d—1)
:a(@*@) 4oL, (9) +...+@*g+@>‘
« (0% (07 (07 (07 « (0%

Let T': A — A be defined by

Th=20prdyp 201 pea-n o By L B0 yp e )
«Q Q o g

and
fal2) = 220 + "L 4+ 2Dz 4+ 2(1).

Since (1) fo(2) = f(z). Therefore zy be a simple zero of f(z).

By Theorem 19, T has a solution h € A such that h(1) = 2. Let ¢ = ha then

Talg) = Tu(ha) = o (L ot 4 s et gy By 90)
o o a o

and g(1) = h(1)a(l) = a(1)z. O
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Example 7. Let T,g = a3 ¢ ¢°3 + as ¢ g°* + a1 © g + ap and

1, n is a prime p;
a(n) =

—1, else,

1, n<3;
az(n) =

0, else,

2, n<3;
az(n) =

0, else,

-1, n<3;
ai(n) =

1,  else,

=20y n < 3;
ao(n) =

n, else.

a2

Consider f,(z) = %(1)23 + (1)z+ﬂ(1) + @(1), we get that
a a

e Q
falz) = &2 22 - 2)

=(z+1)(z24+2)(1 - 2).

Thus zg = —1,—2, 1 are simple zero of f,(z).
If g € A be such that T,g = 0 then 0 = T,9(1) = fo(—g(1)). Hence we can
determine a solution g € A of T,, =0, e.g. if g(1) = —1 = 2, then

“%:q%®+%®%D+EQWﬁ+%

2)9(1)"] = 1.

g(n) = é Z Z %(Z)%(ml) . g(mj) + %(n) for n > 2.

1<5<3 | lm1...mj=n
mi..mj<n
Some cases of polynomial convolution equation with no simple zero were
also considered by H. Glockner, L. G. Lucht and S. Porubsky (see section 3
of Glockner et al., 2007). They examplarily derived some conditions which are
necessary for the existence of the g € A to Tg = 0. More precisely, if T'g = 0 has
a solution g € A, then the coefficient functions a; € A of T'¢g must be subject to

some severe restrictions. Now we will elaborate further on these conditions.
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For k € N we introduce the polynomials fi(z) € C[z] by
fi(2) = ag(k)z* + - + a1 (k)2 + ao(k).

Obviously, fi(z) = f(z). Suppose that g is a solution of Tg = 0 satisfying
g(1) = zp. Let n. = pi* -+ p then

Tg(n) = (ag* g** + ag_1 * g o pa kgt ap)(n)

= Z a; * g*'(n) + ao(n)
1<i<d

= Z Z ai(mo)g(ml) .. g(ml)

1§’L§d Lmomy---m;=n

=Y | X almo)glm) - g(mi) + ai(m)g(1) | +ao(n)

1<i<d | mom1-m;=n
=Y |4 mo<n

+ Qo (n)

) Z > (j)ai<mo>g<ml>~~g<mj>g<1>fJ’

1<i<d j 1 momzy---m;=n
my--m;>1

+ Z a;(n)g(1)" + ao(n)

1<i<d

- %gwl) ;) £ 9(1) + Fulo(D)

1<4<d MOm1 - Mmj=n
my--m;i>1

For example, let Tg = g*¢ — a with a € A, a(1) = 0 then f(z) = 2¢.
It follows that zy = 0 is a multiple zero of f(2) i.e. f/(0) =--- = f4=1(0) =0,
f9(0) = d!. Since fi(z) = 2% — a(k) thus we get
flij)(z) =dld—1)---(d—j—1)249 j=1,...,d. It follows that
f[0)=---= ,gd 1)(0) =0 and fkd)(O) = d!. Hence for n € N s.t. Q(n) <d,

0=Tom) = Y Zglm)- - gmaf0) + Fu(0) = aln)

momai--mg=n
mip---mg>1



ie. a(n) =0, and for n =p* ---pl, Q(n) =d,

0=Tg(n)

= g(p))™ - g(p)" f1 7 (9(1)) + fulg(1))
=( ) " g(p)™) d = a(pit - pl)
=g(p - g(py)™ —a(ptt - pir)

Le. g(p1)" - g(p)" = a(p}* - - - p;7) for all prime p;.

Therefore g(p)? =

a(py* - pir)t =

a(p?) for all prime p. It follows that

(g(p)™ -+ g(p,)™ )% = a™ (pg) - - - a™ (p?) for all prime p;.

50
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CONCLUSION

In this thesis, the following results have either been derived or proved.

1. Basic properties of the Q,— convolution,

2. Characterizations of completely multiplicative functions with respect
to the Q,— convolution.

3. Connections between the binomial convolution and Q,— convolution,

4. Criteria for o— Algebraic independence over a subring R of A.

5. The solubility of polynomial convolution equation whose characteristic
polynomial has no simple zero.

6. The solubility of polynomial binomial convolution equations and the

polynomial Q,— convolution equations.
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