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Abstract

We propose a two-class revenue management (RM) model, which combines two of the most important RM strategies,
namely overbooking and seat inventory control for a passenger airline. We derive a closed-form expression for an optimal
overbooking limit that maximizes the expected profit, and analytically perform sensitivity analysis by changing model para-
meters such as a revenue, a penalty cost associated with unsatisfied demand, a show-up probability, a refund, a denied
boarding cost, and a plane capacity.
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1. Introduction

In 2014, the global economic crisis damaged most
economic sectors, but commercial airline could still grow
2.6% and were worth $704 billion (Flight global, 2015b).
According to 2014 aerospace industry financial data, the
commercial airline industry would continue to grow in the
next  ten  years  (Flight  global,  2015a).  One  of  the  keys  to
success is revenue management (RM) (Sabre Corporation,
2015). RM can be defined as “selling the right product to the
right customer at the right time for the right price” (Cross,
1997). Major research areas in RM can be categorized into
1) seat inventory control, 2) overbooking, 3) pricing and
4) demand forecasting (McGill and van Ryzin, 1999). In this
paper, we focus on two RM strategies, namely overbooking
and seat inventory control, practiced by a passenger airline.

Overbooking means that the airline intentionally sells
more reservations for a flight than physical capacity on the
aircraft  to  compensate  for  cancellations  and  no-shows.
The seat inventory control problem concerns with mixing
passengers  in  different  fare  classes  in  the  same  aircraft

compartment. In this paper, we combine two strategies and
propose a static two-class overbooking model, in which low
fare (class-2) customers arrive before high fare (class-1)
customers. The airline incurs a penalty cost for each rejected
booking  request.  The  penalties  are  different  for  the  two
classes. The airline may overbook class-2 customers. The
two fare classes may have different show-up rates. We want
to find an optimal overbooking limit that maximizes the total
expected profit.

There are many multiple-class booking control models
which allow overbooking; see, e.g., Brumelle and McGill
(1989), Subramanian et al. (1999), Gosavi et al. (2002), Lan
et al. (2011), Aydin et al. (2012), and Lan et al. (2015). These
models are formulated as Markov decision processes, and
most do not possess the closed-form solutions except Aydin
et al. (2012). Aydin et al. (2012) assume that the random
vector of booking request follows a multinomial distribution.
Our  model  assumes  general  distribution  for  the  booking
request. In practice most commercial RM systems are based
upon the two-class model, instead of the multi-class model.
In this article, a closed-form solution of the proposed two-
class model is obtained.

The two-class model, which focuses on the booking
control problem, dates back to Littlewood (1972). All booking
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requests  show  up  at  the  time  of  service;  i.e.,  there  are  no
cancellations or no-shows: Littlewood (1972) does not allow
overbooking. Shlifer and Vardi (1975) study the two-class
overbooking model but does not include the booking control
problem. The two-class model, which includes both over-
booking  and  booking  control  problem,  can  be  found  in
Sawaki (1989) and Ringbom and Shy (2002). Sawaki (1989)
and Ringbom and Shy (2002) extend Littlewood (1972) to
allow no-show passengers. In Sawaki (1989), the booking
requests of the two classes are assumed to be continuous,
whereas those in Ringbom and Shy (2002) follow bivariate
normal.  The  show-up  passenger  in  Sawaki  (1989)  and
Ringbom and Shy (2002) follows a binomial distribution.
In ours, the booking request needs not be normal, it can be
any  non-negative  integer-valued  random  variable  with  a
general distribution. In Ringbom and Shy (2002), the refund
is fully given to class 1 and the class 2 receives no refund,
whereas in ours, the refunds are given to both classes, and
the refund needs not be fully given (i.e., the refund can be
expressed as a percentage of the fare). Similar to other over-
booking models, we accept the booking requests up to the
overbooking limit, and additional requests are rejected. In
Sawaki (1989), the airline incurs a penalty (loss-of-goodwill)
cost for only class-1 rejected booking request, whereas in
ours,  the  penalty  cost  is  given  to  each  rejected  booking
request. Our refund and penalty scheme are more general and
fit  more  cases  in  practice.  This  is  the  first  to  include  the
refund cost and penalty cost simultaneously into the two-
class RM model.

The  rest  of  the  paper  is  organized  as  follows.  The
model is formulated in Section 2 and analyzed in Section 3.
Section 4 concludes our paper and provides future research
problems. All proofs are shown in Appendix.

2. Formulation
Let   be the set of real numbers and + be the set of

non-negative integers. Let ( ) max(0, )y y   for y. The
quantile function of distribution function of random variable
D is denoted as  1 ( ) inf : ( )DF a x P D x a    .

Consider  an  airline  with  fixed  capacity    and  two
customer classes with fares 1 2 0p p  . We assume that all
class-2 reservations arrive before class-1 start reservation.
For each i = 1, 2, the airline earns revenue of pi when a class-i
customer is accepted; on the other hand, if rejected the airline
incurs a penalty cost gi where 1 2 0g g  . The penalty cost
when a customer is rejected includes, e.g., the loss-of-good-
will  cost,  which  measures  customer  satisfaction,  and  the
opportunity cost, which measures future revenue loss. The
loss-of-goodwill cost may be intangible and can be difficult
to estimate in practice. The opportunity cost depend on what
happens after the lost sales occur. If a customer is likely to
return to make a booking request, then the opportunity cost
is the expected revenue loss from this event; however, if a
customer never returns to make any bookings with the airline,
then the opportunity cost includes all future revenues the
customer might have brought to the airline.

Let x   be an overbooking limit of class 2: Class-
2  booking  requests  are  accepted  up  to  x.  We  allow  over-
booking; i.e., can be greater than capacity . Let Di be class-i
demand, the number of class-i booking requests. Assume
that D1 and D2 are two independent  -valued random vari-
ables. The number of class-2 reservations is 2min( , )x D , and
the number of class-2 booking requests rejected is 2( )D x  .

After class-2 reservations all arrive, class-1 customers
start their booking. The remaining capacity after class-2
arrives is  2min( , )x D  . We do not overbook class-1
because class-1 passengers are of high priority or extremely
high penalty cost. Class-1 customers are accepted up to the
remaining capacity. For  i = 1, 2, let ( )iB x  be the number of
class-i reservations:

2 2( ) min( , )B x x D ,  1 2 1( ) min(( ( )) , )B x B x D   .
Some reservations may cancel prior to or do not show

up  at  the  time  of  service.  In  this  model,  we  assume  that
cancellation and no-show passengers are the same. Given
that  the  number  of  class-i  reservations  is ( )i iB x y , the
number of class-i show-ups, denoted by ( )i iW y , is assumed
to follow a binomial distribution with parameters iy  and i
where (0,1]i   is the show-up probability of class-i. Note
that when the show-up probability of class-i is equal to 1
( 1)i   it means that all passengers of class-i show up at
the  time  of  service.  That  the  binomial  distribution  is  an
adequate  model  for  the  show-ups  distribution  has  been
showed in Tasman Empire Airways (Thompson, 1961). Each
class-i reservation that does not show up receives a refund

ir , which is a proportion i  of revenue cost where (0,1)i  ;
i i ir p  for i = 1, 2.

At the time of service, the number of show-up passen-
gers may be over capacity. Recall that we overbook only
class-2 passenger, so all denied boarding passengers are
class-2. The airline pays a compensation h to each denied
boarding passenger where 2h p . This compensation may
include  a  fare  of  a  higher  booking  class  on  a  next  flight,
vouchers for cash or tickets for future travel, and/or hotel
accommodation. The airline wants to choose an optimal
overbooking limit *x  that maximizes its expected profit:

   
2

1
( ) ( ) ( ) ( )i i i i i i

i
x E p B x r B x W B x


   

  

  2 2 ( )E h W B x     

  2 2 1 1 2( ) ( ) .E g D x g D B x
     

  
(1)

The first term in (1) is the expected of revenue ( )i ip B x  minus
the expected refund cost paid to reservations with no shows

( ( ) ( ( )))i i i ir B x W B x .  The  second  term  is  the  expected
denied boarding cost, the company pays to the denied board-
ing passengers when the number of show-ups is more than
capacity. Recall that we do not overbook class-1 customer,
so all denied boarding passengers are class-2. The last term
is the expected penalty cost, the expected revenue lost when
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we reject the booking requests of class 1 and 2. Note that in
(1)  there  are  two  sources  of  uncertainty,  namely  demand
uncertainty  and  the  number  of  show-ups.  In  practice,  an
optimal overbooking limit is re–solved periodically to account
for change in show-up probability and proportion of refund
cost over time, resulting in overbooking limits that vary over
time. The airlines accept the reservations at any time up to
the current overbooking limits. Typically, airlines may only
monthly  update  the  optimal  overbooking  limit  for  a  flight
before departure at least six months (Phillips, 2005). Most
airlines recalculate the optimal overbooking limit everyday
during the last week before departure.

3. Analyses

In this section, increasing (respectively; decreasing)
means non-decreasing (respectively; non-increasing). For

1, 2i  ,  let  i i i i i ip g r r       and  2 1/   .  Let

2 2 20
( ; , ) 1 (1 )

t j x j

j

x
F t x

j
   


  

 
 
 

  is the tail-sum prob-

ability (complementary cumulative distribution function) of
binomial distribution with parameters x and 2 .

Theorem 1. The expected profit function ( )x  is piecewise
on 0,1, ..., 2x    and , 1, ...x    , and it is unimodal
in each piece.

1. For 0,1, ..., 2x   , the expected profit ( )x  has
a local maximum point x  given by

1

1

1

1 1

1

0 ; 0 ( 1)

(1 ) ; ( 1) ( 0)

2 ; ( 0) 1

D

P D

x F P D P D

P D

 

   

 



   

        

   







(2)

2. For , 1, ...x    , if 2 2 20 / ( ) ( 1; , )h F       ,
then the expected profit ( )x  has a local maximum point x
given by

2
2

2

arg min{ { , 1, ...} : ( 1; , ) }x x F x
h


   


      .  (3)

Otherwise, the expected profit function is increasing.
From Theorem 1, we can find the optimal overbooking

limit *x  from three points; , 1x    and x. Suppose that
2 2 20 / ( ) ( 1; , )h F       . Then

* arg max{ ( ), ( 1), ( )}.x x x     

Suppose that 2 2 2/ ( ) ( 1; , )h F      .

If lim ( )
x

x


 max{ ( ), ( 1)}x    , then * arg max{ ( ), ( 1)}.x x   

Otherwise, ( )x  is increasing, and the airline should set the
optimal overbooking limit to be as large as possible. The opti-
mal overbooking limit in Theorem 1 has a closed-form that is
easy to calculate. This solution can be extended to heuristic
method in multiple fare classes model which is better than
using Markov decision process.

Different shapes of the expected profit function are
shown in Figures 1 and 2. In Figures 1 and 2, demand, iD , is
assumed to be Poisson random variable with mean i  for

1, 2i  , and capacity is 100.   Although Poisson random
variable is assumed in numerical experiments, the proof of
Theorem 1 does not need to assume Poisson distribution.
This theorem holds for any non-negative random variable.
We set the penalty cost equal to the revenue; i.e., 1 1g p
and 2 2g p . We assume that the opportunity cost is the
lost revenue from rejecting a reservation from that particular
class.

In Figure 1, we do not overbook; i.e., *x  . The
maximum expected profit in the first piece (in Theorem 1) is
greater than that the second piece. In Figure 1d, the optimal
overbooking limit is * 0x  ; this correspond to the first case
in (2). It means that we do not accept class-2 reservations
when mean demand of class-1 is large. In Figure 1a, 1b, 1c,
the optimal overbooking limit *x  is given in the second case
in (2). Note that as the mean demand of class-1 1  increases,
the optimal overbooking limit decreases.

In Figure 2, overbooking occurs; i.e., *x  . The
maximum expected profit in the second piece (in Theorem 1)
is greater than that in the first piece; i.e., ( ) ( ).x x    Note
that  as  the  denied  boarding  cost  h  increases,  the  optimal
overbooking limit decreases.

From Figures 1 and 2, we see that the optimal over-
booking limits change the location when some model para-
meters change. We formally perform sensitivity analysis in
the next Corollaries.

Corollary 1. For 0,1,..., 2x   , suppose that the ratio
2 1/   or capacity   increases or 1D  decreases with respect

to usual stochastic order. Then, the local maximum point x
increases.

Suppose that we do not overbook; for instance, (i)
mean  demand  of  class-1  is  larger  than  capacity,  (ii)  mean
demand of class-2 is much lower than capacity. There are
many cases that increase the optimal overbooking limit with
corresponding to 2 1/   increases, e.g. (1) revenue cost of
class-2 increases (or revenue cost of class-1 decreases), (2)
penalty cost of class-2 increases (or penalty cost of class-1
decreases), (3) show-up probability of class-2 increases (or
show-up probability of class-1 decreases), (4) refund cost of
class-2 decreases (or refund cost of class-1 increases).

In Corollary 2, we indicate how the local maximum
point x changes, when the model parameter of class-2 and
capacity are varied.

Corollary 2. For , 1,...,x     suppose that the ratio
2 2/ ( )h   or capacity   increases. Then, the local maximum

point x increases.
Suppose that we overbook; for instance, (i) class-2

revenue  is  close  to  class-1  revenue,  (ii)  mean  demand  of
class-2 is much higher than capacity. There are many cases
that increase the optimal overbooking limit with correspond-
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ing to  2 2/ ( )h   increases, e.g. (1) revenue cost of class-2
increases, (2) penalty cost of class-2 increases, (3) show-up
probability of class-2 decreases, (4) refund cost of class-2
decreases, (5) denied boarding cost decreases.

Corollary 2 implies that the airline may need to update
the optimal overbooking limit when there is an unusual situa-

tion  such  as  disaster,  insurgence  or  demonstration  which
affects some parameters in the model. For instance, Bangkok
bomb at Erawan shrine on 17 August 2015 may decrease a
show-up  probability  from  tourists  who  plan  to  travel  to
Bangkok. When the show-up probability decreases, the air-
line may need to set a higher overbooking limit. On the other

Figure 1. The expected profit when varying 
1

40, 60,80   and 100. Other parameters are 1 1 2 2100, 20,p g p g   
1 2 1 250, 10, 0.9, 0.7r r       and h = 300.

Figure 2. The expected profit when varying h = 100, 300 and 500. Other parameters are 1 1 2 2100, 80,p g p g   
1 2 1 280, 40, 0.9, 0.7r r       and  

1
40  .
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hand,  during  long  holiday  such  as  Christmas,  new  year
festival, Songkran festival the show-up probability may be
higher;  consequently  the  airline  may  decrease  the  over-
booking limit.

4. Conclusions

In  this  article,  we  propose  a  static  two-class  over-
booking model and derive an optimal overbooking limit that
maximizes the expected profit. The parameters in the model
are  revenue  cost,  penalty  cost,  refund  cost,  show-up
probability, denied boarding cost and capacity. Sensitivity
analyses  with  respect  to  changes  in  model  parameters  are
performed: If it is optimal not to overbook, then the booking
limit is affected by the demand of class 1 and all of model
parameters except for denied boarding cost. If it is optimal
to overbook, then the overbooking limit is affected by all of
model parameters of class-2 including denied boarding cost
and capacity.

It is possible to extend the study as follows: Estimat-
ing the parameters in the model when demand is censored.
The  model,  in  which  demands  are  dependent,  could  be
studied. Moreover, we can allow overbooking on class 1; this
model  would  have  two  overbooking  limits.  We  hope  to
pursue some of these related problems in the future.
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Appendix

Lemma 1. The expected profit ( )x  can be written as follows:

For  0,x 
2

1 1
1

( ) [ ( )] [ ].i i
i

x E B x g E D 


  (4)

For  1, 2,..., 1,x  
2

1

( ) [ [ ( )] [ ]].i i i i
i

x E B x g E D 


  (5)

For  , 1,...,x   
2 1

2 2 2 1 1 2 2
1 0

( ) ( ) [ ( )] [ ( )] [ ] ( ( ( )) ),i i
i t

x h E B x E B x g E D h P W B x t


   


 

       (6)

where the expected number of class-2 reservations is

1
2

2
0

0 ; 0
[ ( )]

( ) ; 1, 2,...
x

t

x
E B x

P D t x







 







and the expected number of class-1 reservations is

1

1
0

1 1

1 1 2 1
0

1

2 1
0

( ) ; 0

[ ( )] ( ) ( ) ( ) ; 1, 2,..., 1

( ) ( ) ; , 1,...

t

x

t t x

t

P D t x

E B x P D t P D t P D t x

P D t P D t x



 





 

  





  

  





 

       

    













 



Proof.  From (1), we obtain

 
2

2 2
1

2 2 1 1 2

( ) ( ) [ ( )] [ ( ( ))] [( ( ( )) ) ]

[( ) ] [( ( ( )) ) ].

i i i i i i
i

x p r E B x r E W B x hE W B x

g E D x g E D B x

 







  

    

    


(7)

If 0,x   we use a tail-sum formula for expectation to find the expected number of class-2 reservations

1

2 2 2
0 0

[ ( )] (min( , ) ) ( ).
x

t t

E B x P x D t P D t
 

 

    
Similarly,

1 2 1
0

2 1
0

2 1
0

[ ( )] (min(( ( )) , ) )

(( ( )) ) ( )

[1 (( ( )) )] ( ).

t

t

t

E B x P B x D t

P B x t P D t

P B x t P D t






















  

   

    







(8)
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Clearly, if 0,x   then 2[ ( )] 0.E B x 

If 0,x   then 
1

1 1
0

[ ( )] ( ).
t

E B x P D t
 



 

If 1, 2,..., 1,x    the probability mass function of 2 ( )B x   is given as

2

2 2

( ) ;

( ( ) ) ( ) ; 1,...,

0 ;otherwise

P D x k x

P B x k P D k k x



   

  

       





(9)

If , 1,...,x     the probability mass function of 2( ( ))B x   is given as

2

2 2

( ) ; 0

(( ( )) ) ( ) ; 1, 2,...,

0 ;otherwise

P D x k

P B x k P D k k  

 

     





(10)

Substitution (9) and (10) into (8), we obtain

1

1
0

1 1

1 1 2 1
0

1

2 1
0

( ) ; 0

[ ( )] ( ) ( ) ( ) ; 1, 2,..., 1

( ) ( ) ; , 1,...

t

x

t t x

t

P D t x

E B x P D t P D t P D t x

P D t P D t x



 





 

  





  

  





 

       

    













 



The number of class-i show-ups, ( )i iW y , has binomial distribution with parameters iy  and (0,1]i   where iy  is the number
of class-i reservations and i  is the show-up probability of class-i.

Then, [ ( ( )) | ( ) ]i i i i i iE W B x B x y y  . So,

[ ( ( ))] [ ( )] ; 1, 2.i i i iE W B x E B x i  (11)

We know that ( ) min( , )a b a a b   . Thus,

2 2 2 2 2[( ) ] [ min( , )] [ ] [ ( )].E D x E D x D E D E B x     (12)
Similarly,

1 2 1 1[( ( ( )) ) ] [ ] [ ( )].E D B x E D E B x      (13)
The expected number of class-2 passenger who are denied boarding is

2 2 2 2 2 2

1

2 2 2 2
0

[( ( ( )) ) ] [ ( ( ))] [min( ( ( )), )]

[ ( )] ( ( ( )) ).
t

E W B x E W B x E W B x

E B x P W B x t


 









  

   (14)

Substitution (11), (12), (13) and (14) into (7), we obtain

 
2 1

2 2 2 2
1 0

( ) [ ( )] [ ] [ ( )] ( ( ( )) ) .i i i i
i t

x E B x g E D h E B x P W B x t


  


 

     
 
 

  (15)

After substitute 2[ ( )]E B x  and 1[ ( )]E B x  into (15), the expected profit becomes (4) - (6). 
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Proof of Theorem 1. For 0,1, 2,...,x   let ( ) ( 1) ( )x x x      be the forward difference of the expected profit. Denote
( ) ( 1) ( );i i iG x B x B x   1, 2.i   Clearly,,

2 2[ ( )] ( )E G x P D x       x  
and

2 1
1

( ) ( 1) ; 0,1,..., 1
[ ( )]

0 ; , 1,...

P D x P D x x
E G x

x

 

 

      


 




After some tedious algebra, we obtain the expression for the difference as follows.
For 0,1,..., 2x   ,

2 2 1 1( ) ( )[ ( 1)].x P D x P D x        

For 1x   ,

2 2 1 1 2 2( ) ( )[ ( 1)] [( ( ( )) ) ]x P D x P D x hE W B x            

For , 1,...x    ,

2 2 2 2( ) ( )[ ( 1; , )],x P D x h F x       

where 2 2 2
0

( ; , ) 1 (1 )
t

j x j

j

x
F t x

j
   



  
 
 
 

  is the tail-sum probability of binomial distribution with parameters x and 2 .

We will consider two piece: 0,1,..., 2x    and , 1,...x    .

Define 2 1 1( ) ( 1)x P D x        . Consider the first piece,

2 2 1 1 2( ) ( )[ ( 1)] ( ) ( ).x P D x P D x P D x x           

We observe that ( )x  has the same sign as term ( )x . Then

1. If ( ) 0x   for 0,1,..., 2x   , then the expected profit ( )x  is increasing and a local maximum point is 2 

2. If ( ) 0x   for 0,1,..., 2x   , then the expected profit ( )x  is decreasing and a local maximum point is 0.
3. We will show that ( )x  is decreasing in x. If ( ) 0,x x x     and ( ) 0,x x x    , then there exists a local

maximum point is x  such that ( )x  is increasing for x x  and decreasing for x x . A local maximum point is at x .

If 1 2 1( 0) / 1P D     , then 
1

( ) 0
2

x   for all 0,1,..., 2x   , so ( ) 0x   for 0,1,..., 2x   . The expected

profit function is increasing in x. A local maximum point is 2  .
If 2 1 10 / ( 1)P D      , then ( ) 0x   for all 0,1,..., 2x   , so ( ) 0x   for 0,1,..., 2x   . The

expected profit function is decreasing in x. A local maximum point is 0.
Recall that 1( 1)P D x    is increasing in x so ( )x  is decreasing in x. If 1 2 1 1( 1) / ( 1)P D P D       , then

(0) 0   and ( 2) 0    , i.e., there exists a local maximum point x such that ( ) 0,x x x     and ( ) 0,x x x    .
So, ( ) 0,x x x     and ( ) 0,x x x    , i.e., a local maximum point x given by

1arg min{ {0,1,..., 2} : ( 1) }x x P D x          (16)

Let 1y x   . Then, for 0,1,..., 2x   , we have that 1, 2,..., 1y   . Also, 1y x    . A local maximum point
condition (16) becomes

1

1
1arg max{ {1, 2,..., 1}: ( ) 1 } (1 ) 1Dy y P D y F           

So,

1

1 (1 ).Dx F    

Next, consider the second piece, , 1,...x    .
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Let 2 2 2( ) ( 1; , )x h F x       .

2 2 2 2 2( ) ( )[ ( 1; , )] ( ) ( ).x P D x h F x P D x x          

We find that ( )x  has the same sign as term ( )x . Then

1. If ( ) 0x   for , 1, ...x    , then the expected profit ( )x  is increasing and a local maximum point is set as large
as possible.

2. We will show that ( )x  is decreasing in x. If ( ) 0,x x x     and ( ) 0,x  x x  , then there exists a local
maximum point is x  such that ( )x  is increasing for x x  and decreasing for x x . A local maximum point is at .x

If 2 2/ ( ) 1h   , then ( ) 0x   for all , 1,...x    , so ( ) 0x   for , 1,...x    . The expected profit function
is increasing in x. A local maximum point is set as large as possible.

Recall that 2( 1; , )F x   is increasing in x, so ( )x  is decreasing in x. If 2 2 2( 1; , ) / ( ) 1F h        then
(0) 0   and lim ( ) 0

x
x


 , i.e., there exists a local maximum point x such that ( ) 0,x x x     and ( ) 0,x x x    .

So, ( ) 0,x x x     and ( ) 0,x x x    , i.e., a local maximum point  is given by

2
2

2

arg min{ { , 1,...} : ( 1; , ) }.x x F x
h


   


      (17)


Proof of corollary 1. Note that a function 1( 1)P D x    is increasing in x. The directional change of x with respect to

2 1/    is obvious in equation (16). Let   and ̂  be a function that has a local maximum point x  and x̂  respectively..
Since, ˆ  , then ˆx x  .

Note that 1( 1)P D x    is increasing in . Consider the directional change of x  with respect to . Let  and ̂  be
capacity such that ˆ  , 1y x    and ˆˆ 1.y x  

1 1 ˆ( ) ( )P D y P D y  

1 1

1

1 1

1

ˆ(1 ; ) (1 ; )

ˆ ˆ(1 ; )

D D

D

F F

F

     

  

 



    

  

Thus, ˆ .x x 
Consider the directional change of x  with respect to D1. Assume that 1 1

ˆ ,stD D  i.e., D1 smaller than 1D̂  with respect
to usual stochastic order (Muller and Stoyan, 2002).

Let F and G be distribution functions of D1 and 1D̂ , and 1( ) ( )F t P D t   and 1
ˆ( ) ( ).G t P D t   So, ( 1)F x   

( 1)G x    for all {0,1,..., 2}x   . Let x  and x be local maximum points of D1 and 1D̂  respectively. Since, F  and G
are increasing in x. Thus ˆ .x x  

Proof of Corollary 2. Note that a function 2( 1; , )F x   is increasing in x. The directional change of x  with respect to

2 2/ ( )h   is obvious in (17). Let 2 2/ ( )h    and let x be a local maximum point associate with . Similarly, let

2 2
ˆˆ ˆˆ / ( )h    and let x̂  be a local maximum point associate with ˆ.  Since, ˆ,   then ˆ .x x 

Recall that 2( 1; , )F x   is decreasing in . Consider the directional change of x with respect to . Let . and ̂  be
capacity such that ˆ, 

2 2ˆ( 1; , ) ( 1; , ).F x F x     

Thus, ˆ .x x  


