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Abstract

The Poisson distribution plays important role in count data analysis. However, the Poisson distribution cannot model
some data with over-dispersion because of its property, equi-dispersion. Here we propose a new distribution for over-
dispersed count data, namely the Poisson-generalised Lindley distribution. Basic properties of the distribution and special
cases are also derived. In addition, the new distribution is applied to some real data sets using the method of maximum
likelihood for parameter estimation. The results based on p-value of the discrete Anderson-Daring test show that the new
distribution can be used as an alternative model for count data analysis.
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1. Introduction

Count data are used to describe many phenomena
such as the insurance claim numbers, number of yeast cells,
number  of  chromosomes,  etc.  (Panjer,  2006).  Count  data
analysis can use a Poisson distribution to describe the data if
its variance to mean ratio, called the dispersion index, is unity
(equi-dispersion)  (Johnson  et  al.,  2005).  However,  many
practical count data sets do not satify the equi-dispersion
assumption. Therefore, the Poisson distribution is inflexible
to model many count data sets (Raghavachari et al., 1997;
Karlis and Xekalaki, 2005). An inequality of variance and
mean is called over-dispersion  if the variance exceeds the
mean, and under-dispersion if the variance is less than the
mean.

Many researchers have looked at the over-dispersion
issue which can be addressed by the use of mixed Poisson
distributions (Raghavachari et al., 1997; Karlis and Xekalaki,
2005; Panjer, 2006). Mixed Poisson distributions arise when
the mean of the Poisson is a random variable with some speci-

fied distribution. The distribution of the Poisson rate is the
so-called  mixing  distribution  (Everitt  and  Hand,  1981;
Raghavachari et al., 1997).

The negative binomial (NB) distribution, which is a
traditional mixed Poisson distribution where the mean of the
Poisson variable is distributed as a gamma random variable,
was derived by Greenwood and Yule (1920). It has increas-
ingly  become  a  popular  alternative  distribution  to  the
Poisson distribution. However, the NB distribution may not
be appropriate for some over-dispersed count data.

Other mixed Poisson distributions arise from alterna-
tive mixing distributions. If the mean of the Poisson follows
an inverse Gaussian, resulting in a Poisson-inverse Gaussian
(Holla, 1967). The Poisson-Lindley (PL) (Sankaran, 1970) and
generalised Poisson - Lindley (Mahmoudi and Zakerzadeh,
2010) distributions were obtained where the mixing distribu-
tions are the Lindley and the generalised Lindley distribu-
tions, respectively. Recently, a Poisson-weighted exponential
distribution was developed by Zamani et al. (2014), where
a weighted exponential is the mixing distribution.

It has been found that the general characteristics of
the mixed Poisson distribution follow some characteristics of
its mixing distribution. Depending on the choice of the mixing
distribution, various mixed Poisson distributions have been
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constructed.  However,  since  their  mathematical  forms  are
often complicated, only a few of them have been applied in
practice.  Furthermore,  in  any  case,  there  are  naturally
situations where a good fit is not obtainable with existing
developed distributions (Karlis and Xekalaki, 2005).

The purpose of this paper is to present an alternative
distribution  for  over-dispersed  count  data,  namely  the
Poisson-generalised Lindley (PGL) distribution. It is obtained
by mixing the Poisson distribution with a new generalised
Lindley (NGL) distribution (Elbatal et al., 2013).

The probability density function of the three-para-
meter NGL distribution, which generalised the Lindley distri-
bution, has many shapes.  Due to its flexible shape, it can be
used as an alternative model for fitting positive real-valued
data in many areas. For this paper, we show that the proposed
mixed Poisson distribution is suitable for modelling real count
data in some situations.

In Section 2, the new distribution, called the PGL distri-
bution, is introduced. Some special cases of the distribution
are  also  considered  in  this  section.  Its  basic  mathematical
properties  including  the  moment  generating  function,
probability generating function and moments are derived in
Section 3. We also discuss the method of parameter estima-
tion in Section 4. Finally, applications of the PGL to real data
are given in Section 5.

2. The Poisson-Generalised Lindley Distribution

Let Y  be the random variable that represents the total
number of outcomes of a particular experiment. The simple
model for the probabilities of the possible outcomes of this
experiment is the Poisson distribution, with probability mass
function (pmf)
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An important property of the Poisson distribution is that the
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The PGL distribution is a new mixed Poisson distribu-
tion. It is obtained by mixing the Poisson distribution with
the NGL distribution. We provide a general definition of this
distribution which will subsequently expose its pmf.

Definition 1:
Let |Y   be a random variable following a Poisson

distribution with parameter , | ~ Pois( )Y   . If  is dis-
tributed as a new generalised Lindley with parameters ,
and , denoted by ~ NGL( , , )    , then Y is called a
Poisson-generalised Lindley variable.

Proposition 1:
Let Y be a random variable according to the PGL

probability  function,  denoted  by  ~ PGL( , , )Y    ,  the
pmf of  Y is
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Proof:
Since | ~ Pois( )Y    and ~ NGL( , , )    , the

marginal pmf of ~ PGL( , , )Y     can be obtained by

0
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By substituting Eq. (1) and Eq. (2) into Eq. (4), we derive the
marginal pmf of the PGL distribution:
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Moreover, if a random variable corresponding to
yY  ,    {0,1, 2, }  is a sample space, the pmf of Y
is the probability function with the following properties:
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I. If a random variable Y is distributed as the PGL
with the pmf in Eq. (3), when y = 0, we obtain

 1 ( ) ( )
P( 0)

( 1) 1 ( ) 1 ( )
Y

     
    

 
  

    

    
    
    

       1

1

,
1 1 

  
 




 

 
 
 
 

for , , 0    , ( 0) 0P Y   .
If 1y  , we have

( 1)P Y  

 

2

1 ( 1) ( 1)
( 1) 1 ( ) 1 ( )

     
    

   
 

    

    
    
    

 

2

1 ( 1) ( 1)
( 1) 1 ( ) 1 ( )

     
    

   
 

    

    
    
    

   

1

2 2 ,
1 1 

 



 
 

  




 

 

where , , 0    , then ( 1) 0P Y   .
In the same manner, it is obviously, 0,1, 2,3,...y  ,

the probability of Y is greater than or equal to zero. There-
fore, ( )P Y y  sastifies ( ) 0P Y y  , for all Y  .

II. If  a random variable y is distributed as the PGL
with the pmf in Eq. (3), then
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Hence, ( ) 1P   .
From I and II, it can verify that the pmf of | , ,Y   

is a probability function.
Figure 1 illustrates pmf plots of the PGL distribution

for some selected parameter values. It was found that the
shape of the PGL distribution is characterised by long-tailed
behaviour and also that the distribution has the same shape
as the NGL distribution with appropriate parameter values.
The parameters  and  are the shape parameters and  is
the rate parameter of the PGL distribution. Furthermore, the
PGL is a bimodal distribution when parameters  and  are
very different for appropriate values of the parameter  as
shown in Figure 2.

2.1 Special cases

This section presents some special cases of the PGL
distribution.

Corollary 1:
For 1, 2   , we obtain the PL distribution with

the pmf
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The PL distribution is a mixed Poisson distribution,
which is a well-known discrete distribution. It has been used
previously to model count data (Sankaran, 1970, Shanker and
Fesshaye, 2015).

Corollary 2:
For r   , we obtain the NB distribution with

the pmf
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Corollary 3:
For 1   , we obtain the Poisson-exponential or

geometric distribution with the pmf
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3. Some Properties of the PGL Distribution

This  section  presents  some  basic  mathematical
properties of the PGL distribution, specifically the moment
generating function, probability generating function and the
kth moment.
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Figure 1.  Some unimodal pmf plots of the PGL distribution with specified parameter values

3.1 Moment generating function

Proposition 2:
Let Y be a random variable with the PGL probability

function,  the  moment  generating  function  (mgf)  of
~ PGL( , , )Y     is
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3.2 Probability generating function

Proposition 3:
Let Y be a random variable with the PGL probability

function,  the  probability  generating  function  (pgf)  of
~ PGL( , , )Y     is
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Alternatively, the pgf of the PGL distribution can be
got by setting exp( )s t  in the expression for the mgf.

Figure 2.  Some bimodal pmf plots of the PGL distribution with specified parameter values
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3.3 Moments

Proposition 4:
Let Y  be a random variable with the PGL probability function, the kth factorial moment of ~ PGL( , , )Y     is

Proof:
The kth factorial moment of a mixed Poisson distribution can be found by
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In particular, the  mean, variance, skewness and kurtosis  of ~ PGL( , , )Y     according to its generating function,
respectively, are
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4. Parameter Estimation

A widely used method of estimating the parameters of a distribution is by maximising the log-likelihood function of
parameters,  , called maximum likelihood estimation (MLE). Let 1 2, , , nY Y Y  be an independent and identically distributed
random variables which has the PGL distribution, and correspond to 1 2, , , ny y y  which is a random sample from the PGL
population. Let ( , , )T  Θ  be the vector of the parameters. The likelihood function of the PGL distribution is
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The maximum likelihood estimators of the PGL distribution can be achieved by setting the score functions equal to
zero, giving the so-called maximum likelihood score equations, and solving this system of equations. In this case, the score
functions are nonlinear and do not have analytical solution. Instead, maximum likelihood estimates can be obtained by a
numerical method (e.g., Newton-Raphson method, Nelder-Mead method, BFGS method, SANN method, as implemented in
an R function mle2).

5. Applications to Real Data Sets

Some real data sets are considered to fit with the proposed distribution (PGL), Poisson, NB and PL distributions. The
first data set is number of the mistakes in copying groups of random digits that was used for illustrating the PL distribution by
Sankaran (1970). The second data set is the number of micronuclei after exposure at dose 4 (Gy) of - Irradiation. They were
counted using the cytochalasin B method and fitted with the NB distribution (Puig and Valero, 2006). The third data set is
an application in genetics, the number of chromatid aberrations (0.2 g chinon 1, 24 hours). It had been fitted previously with
the Poisson and the PL distributions, but given the amount of over-dispersion in the data, the PL distribution is a more
appropriate model (Shanker and Fesshaye, 2015).

Another application involving bimodal data is also considered in this part. The data set is the number of Chemopodium
album in arable land per quadrat, which was fit with the NB distribution (Bliss and Fisher, 1953). We fit this data set with
the proposed distribution, the NB distribution and a five-parameter mixture of two NB distributions (MixtureNB) with the
weighted parameter , where 0 1  , with pmf
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Descriptive summaries of these data are shown in Table 1. The index of dispersion is greater than unity for all data
sets, indicating that all data sets are over-dispersed.

In this work, the SANN method based on bbmle package (Bolker and Team, 2014) of the R programming language
(R Core Team, 2014), being a  global optimization, is used to compute the maximum likelihood estimates (Nash, 2014).

Tables 2, 3, 4 and 5 present the results of fitting the different distributions to these real data sets. We use the estimated
log-likelihood (LL) and Anderson-Darling (AD) test for discrete distributions to compare the expected and observed values
of each data set. The AD-test is an empirical distribution  function  goodness-of-fit  test  for  discrete  data (Choulakian et al.,
1994).

The null hypothesis is that data follow whatever distribution that is being tested including Poisson, NB, PL,
MixtureNB, and PGL with given parameter estimates against the alternative that data follow some other distributions. The
discrete AD-test can be obtained by using dgof package (Arnold and Emerson, 2011) of the R  programming language.

Table 1. Summary data

Min Mode Max Mean Dispersion

Number of mistakes in copying groups 0 0 4 0.7833 1.6051
Number of micronuclei 0 0 7 1.0132 1.1725
Number of chromatid aberrations 0 0 7 0.5475 2.0558
Number of Chenopodium album per quadrat 0 5 10 4.0316 1.9551

Sankaran (1970).  The second data set is the number of micronuclei after exposure at dose 4 (Gy) of - Irradiation.
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Table 2. The number of mistakes in copying groups of random digits

              Expected values

Poisson NB PL PGL

0 35 27.41 33.97 33.06 34.49
1 11 21.47 14.51 15.27 12.65
2 8 8.41 6.39 6.74 7.03
3 4 2.2 2.84 2.88 3.36
4 2 0.43 1.27 1.21 1.47

Parameter ̂ = 0.7833 r̂ = 0.9421 ̂ = 1.7434 ̂ = 2.7084
estimates p̂ = 0.5456 ̂ = 0.0039

̂ = 2.3928

LL -77.5456 -73.3684 -73.3510 -72.5825
AD-statistic 2.2733 0.1546 0.2287 0.0518
p-value 0.0494 0.8286 0.7395 0.9680

The mistakes in
copying groups

Observed
values

Table 3. The number of micronuclei

              Expected values

Poisson NB PL PGL

0 1974 1816.04 1965.37 2396.75 1975.37
1 1674 1839.97 1695.41 1300.33 1676.23
2 869 932.11 857.66 668.83 863.87
3 342 314.8 331.87 332.16 336.85
4 102 79.74 108.68 160.92 108.87
5 26 16.16 31.71 76.53 30.69
6 13 2.73 8.5 35.88 7.79
7 2 0.39 2.10 16.63 1.73

Parameter ̂ = 1.0132 r̂ =  5.8154 ̂ = 1.3873 ̂ = 9.22
estimates p̂ = 0.8517 ̂ = 2.9427

̂ =  8.4507

LL -6767.9100 -6735.9057 -6918.3639 -6735.7035
AD-statistic 10.664 0.1000 64.3591 0.0221
p-value 0.0003 0.9545 0.0000 0.9985

The number of
micronuclei

Observed
values

The fitted distributions for the number of mistakes in
copying groups are shown in Table 2. It illustrates that the
PGL distribution gives the largest LL value. Although, the
differences between  LL values are small, but the distances
from the observed to expected values and the p-value based
on  the  discrete  AD-test  indicate  that  the  null  hypothesis
cannot be rejected at the 0.05 significant level. It verifies that
the mistakes in copying groups follows the PGL distribution
with the highest p-value and can model this data well.

The number of micronuclei are fitted. From the result
in Table 3, the LL values from the NB and the PGL distribu-
tions  are  very  similar.  However,  the  expected  values  from

the PGL distribution are very close to the observed values,
resulting in the null hypothesis being accepted at the 0.05
level of significance with p-value 0.9985.

Fitting the distributions to the number of chromatid
aberrations data set shows that the PGL distribution gives
the largest value of LL (Table 4). Comparing the observed
and expected values demonstrates that the  PGL distribution
again provides a good fit to the number of chromatid aberra-
tions, with the highest p-value (0.9362).

In the case of bimodal data, the MixtureNB distribu-
tion seems to provide a bit more appropriate for the number
of Chenopodium alblum data set. Based on -p-value, it indi-
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cates that the data follow the mixture of two NB distributions
at the 0.05 level of significance. Due to the expense of 2 extra
parameters of the MixtureNB distribution, the PGL distribu-
tion with close LL value can be chosen as a simpler model for
fitting this data set.

Figure 3 shows plot of the observed values and the
expected values related to those shown in Tables 2-5 of the
PGL distribution. It illustrates that real data are very close to
the PGL distribution. Therefore, the PGL distribution can be
an alternative model for count data in some situations.

Table 4. The number of chromatid aberrations (0.2 g chinon 1, 24 hours)

              Expected values

Poisson NB PL PGL

0 268 231.36 270.34 257.02 264.83
1 87 126.67 78.53 93.39 91.7
2 26 34.67 29.79 32.76 23.54
3 9 6.33 12.18 11.21 8.78
4 4 0.87 5.16 3.77 5.09
5 2 0.09 2.23 1.25 3.07
6 1 0.01 0.98 0.41 1.66
7 3 0 0.43 0.13 0.79

Parameter ̂ = 0.5475 r̂  =  0.6205 ̂ = 2.3804 ̂ = 4.7909
estimates p̂ = 0.5318 ̂ = 42.1508

̂ =  13.3789

LL -439.5136 -399.8572 -403.455 -398.0406
AD-statistic 8.7108 0.1891 0.8576 0.0712
p-value 0.0014 0.7586 0.2585 0.9362

The number
of chromatid
aberrations

Observed
values

Table 5. The number of Chenopodium album per quadrat

Expected values

NB MixtureNB PGL

0 19 8.99 18.99 17.66
1 5 13.41 5.01 4.39
2 6 14.24 5.81 7.19
3 9 13.07 9.63 10.59
4 5 11.07 12.42 12.42
5 20 8.89 12.84 12.13
6 14 6.89 11.05 10.27
7 8 5.19 8.16 7.73
8 4 3.84 5.27 5.27
9 3 2.79 3.02 3.31
10 2 2 1.56 1.93

Parameter estimates r̂ =  2.3648 1̂r = 821.4177 ̂ = 0.2278
p̂ =  0.3689 1p̂ = 0.9998 ̂ = 21.5688

2̂r = 32751.02 ̂ = 0.3477

2p̂ = 0.9998 ̂ =  4.2322

LL -233.0949 -212.7645 -214.5600
AD-statistic 4.1169 0.4291 0.6248
p-value 0.0067 0.6987 0.5167

The number of
Chenopodium album

per quadrat

Observed
values
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Figure 3.  Results of fitting distributions to real data sets

6. Conclusions

In this work, a new mixed Poisson distribution is intro-
duced. We consider that the mean of Poisson variable is an
independent  and  identically  distributed  random  variable
according to a mixing distribution, a new generalised Lindley
distribution. The proposed distribution is called the Poisson-
generalised Lindley distribution. We have determined various
mathematical properties of the Poisson-generalised Lindley
variable, for instance, the probability mass function, moment
generating  function,  probability  generating  function,  the
mean, and the variance. We show that the negative binomial,
Poisson-Lindley, and Poisson-exponential distributions are
special cases of it.

The proposed distribution is applied to several real
data sets. The results, including the p-value based on the
discrete Anderson-Darling test, indicate that the Poisson-
generalised Lindley distribution is a flexible model that may
be a useful alternative to other distributions for count data
analysis.
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