

งานวิจัยนี้ได้โคลนยีนเดกซ์แทรนเนสจากรา *Penicillium pinophilum* SMCU 3-14 และนำไปแสดงออกในแบคทีเรียและยีสต์ โดยการแสดงออกในแบคทีเรียมีการเชื่อมต่อกับการลดอะมิโนยีสติดีน 6 หมู่ด้านปลายคาร์บอคชีของสายพอดิเพปไทด์ จากนั้นนำไปแสดงออกใน *Escherichia coli* 2 สายพันธุ์ ได้แก่ BL21(DE3)pLysS และ Rosetta-gami B(DE3)pLysS ภายใต้การควบคุมของโปรโมเตอร์ T7 อีกทั้งยังได้เปรียบเทียบผลของ signal peptide จากว่าที่มีต่อการแสดงออกในแบคทีเรียสายพันธุ์ดังกล่าว พบว่าเมื่อเปรียบเทียบการเกิดบริเวณในรอบโคลินเมื่อเลี้ยงบนอาหารแข็งที่มีเดกซ์แทรนเกรดอุดตสาหกรรม 1% สายพันธุ์ Rosetta-gami B(DE3)pLysS สามารถผลิตเดกซ์แทรนเนสได้มากกว่าสายพันธุ์ BL21(DE3)pLysS และโคลนที่แสดงออกเดกซ์แทรนเนสที่มี signal peptide จากการผลิตโอนไซม์ได้มากกว่าโคลนที่แสดงออกเดกซ์แทรนเนสที่ไม่มี signal peptide ดังนั้นจึงเลือก *E. coli* สายพันธุ์ Rosetta-gami B(DE3)pLysS ที่แสดงออกเดกซ์แทรนเนสที่มี signal peptide จากการไปหาภาวะที่เหมาะสมในการเลี้ยงเชื้อเพื่อผลิตเดกซ์แทรนเนสในอาหาร minimal medium ที่ให้ผลผลิตสูงที่สุดโดยการวิเคราะห์ผลด้วย SDS-PAGE จากผลการทดลองสรุปได้ว่าภาวะที่เหมาะสมสำหรับผลิตรีคอมบิแนนท์เดกซ์แทรนเนสใน *E. coli* สายพันธุ์ Rosetta-gami B(DE3)pLysS คือ ที่อุณหภูมิ 37° ความเข้มข้น IPTG 25 ไมโครมิลลิตร เป็นเวลา 6 ชั่วโมง จากการทดสอบแยกทิชชูของรีคอมบิแนนท์เดกซ์แทรนเนสโดยวิธี Blue dextran SDS-PAGE พบว่าหลังจากวีเนเจอร์แล้วเดกซ์แทรนเนสที่ผลิตได้สามารถย่อยบลูเดกซ์แทรนและเกิดบริเวณในสเปนเจลได้ และเมื่อนำรีคอมบิแนนท์เดกซ์แทรนเนสที่ผลิตได้ไปทำให้บิสทีดิโดยโคลามาโทกราฟีสัมพรรคภาพ พบว่าเดกซ์แทรนเนสที่ได้มีขนาดประมาณ 68 กิโลดالتัน สำหรับการแสดงออกในยีสต์ พบว่าเมื่อนำเดกซ์แทรนเนสไปแสดงออกใน *Saccharomyces cerevisiae* สายพันธุ์ BJ5462 ภายใต้การควบคุมของโปรโมเตอร์ PGK ที่ควบคุมให้มีการแสดงออกตลอดเวลาแล้ว ยีสต์ดังกล่าวสามารถผลิตเดกซ์แทรนเนสและหลังออกมานิอาหารเลี้ยงเชื้อ โดยเดกซ์แทรนเนส ดังกล่าวสามารถย่อยเดกซ์แทรนได้

Dextranase gene from *Penicillium pinophilum* SMCU 3-14 was expressed in bacteria and yeast. In bacteria, the dextranase gene with and without native signal peptide at the N-terminus was fused with six histidine residues tagged at the C-terminus. The dextranase gene was expressed in *Escherichia coli* strains BL21(DE3)pLysS and Rosetta-gami B(DE3)pLysS under the control of T7 promoter. It was found that activity of dextranase from Rosetta-gami B(DE3)pLysS was higher than BL21(DE3)pLysS, and the dextranase gene with native signal sequence was expressed higher than the gene without native signal sequence as evidenced by their respective clear zones on agar plate containing 1% industrial grade dextran. Hence, Rosetta-gami B(DE3)pLysS harboring dextranase gene with native signal sequence was chosen as expression host for further optimization in minimal medium for high productivity monitored by SDS-PAGE. Optimum conditions for dextranase production obtained are cultivation at 37°C, IPTG 25 μM with induction time of 6 hr. The recombinant dextranase also conferred dextranase activity on Blue dextran SDS-PAGE. After purification with affinity chromatography, it was found that recombinant dextranase revealed a distinct specific band with molecular weight of about 68 KDa. In yeast, the dextranase gene with native signal peptide at the N-terminus was expressed in *Saccharomyces cerevisiae* strain BJ5462 under the control of constitutive PGK promoter. The result showed that the *S. cerevisiae* produced active dextranase which was secreted into culture medium.