

EFFECTS OF CHONDROITIN SULFATE PROTEOGLYCAN GENE DELETION AND PHYTOCHEMICALS ON CARTHLAGE DEVELOPMENT AND DETERIORATION

KANYAMAS CHOOCEEEP

DOGTOR OF PHILOSOPHY IN BIOCHEMISTRY

THE GRADUATE SCHOOL CHANG MAI UNIVERSITY OCTOBER 2010

EFFECTS OF CHONDROITIN SULFATE PROTEOGLYCAN GENE DELETION AND PHYTOCHEMICALS ON CARTILAGE DEVELOPMENT AND DETERIORATION

KANYAMAS CHOOCHEEP

A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOCHEMISTRY

THE GRADUATE SCHOOL CHIANG MAI UNIVERSITY OCTOBER 2010

EFFECTS OF CHONDROITIN SULFATE PROTEOGLYCAN GENE DELETION AND PHYTOCHEMICALS ON CARTILAGE DEVELOPMENT AND DETERIORATION

KANYAMAS CHOOCHEEP

THIS THESIS HAS BEEN APPROVED TO BE A PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOCHEMISTRY

EXAMINING COMMITTEE

Assoc. Prof. Dr. Prachya Kongtawelert MEMBER

THESIŞ ADVISORY COMMITTEE o Advisor

Assoc. Prof. Dr. Prachya Kongtawelert

28 October 2010 © Copyright by Chiang Mai University

ACKNOWNLEDGEMENTS

This dissertation would not have been a real fulfillment without the backing and cooperation from various individuals through various means. The author wishes to express her sincere gratitude and deep appreciation to her advisor, Assoc. Prof. Dr. Prachya Kongtawelert, for his invaluable assistance and helpful guidance throughout her study.

She would like to express her gracious thank to her co-advisor, Prof. Dr. Hideto Watanabe, Institute for Molecular Science of Medicine, Aichi Medical University, for his excellent training in molecular biology and animal model experiment, and also for his invaluable advice, and providing laboratory facilities and financial support during her stay there.

She wishes to express her gratitude to Prof. Dr. Koji Kimata for his precious advice and consideration. She would like to give special thanks to Dr. Sonoko Hatano, for her valuable guidance. Deepest gratitude are also due to the members at Institute for Molecular Science of Medicine, the Animal and Instrument Center at Aichi Medical University for their kind assistance, and friendship.

She would like to acknowledge the grant for foreign researcher at Aichi Medical University and the Royal Golden Jubilee (RGJ) scholarship for the financial support that made this work possible.

She would like to express her great appreciation to Assoc. Prof. Dr. Siriwan Ongchai for her valuable suggestions. She also would like to thank Dr. Peraphan Pothacharoen for her good guidance and encouragement.

iii

Special thanks also to all her senior, junior friends and colleagues in Department of Biochemistry, Faculty of Medicine, Chiang Mai University for sharing the literature and invaluable assistance.

She wishes to express her love and deepest appreciation to her beloved family; for their understanding, patience, encouragement, assistance, and endless love, through the duration of her studies.

Kanyamas Choocheep

Thesis Title Effects of Chondroitin Sulfate Proteoglycan Gene Deletion and Phytochemicals on Cartilage Development and Deterioration

Author Miss Kanyamas Choocheep

Degree Doctor of Philosophy (Biochemistry)

Thesis Advisory Committee

Assoc. Prof. Dr. Prachya Kongtawelert	Advisor
Prof. Dr. Hideto Watanabe	Co-advisor
Assoc. Prof. Dr. Siriwan Ong-chai	Co-advisor
Dr. Peraphan Pothacharoen	Co-advisor

ABSTRACT

E 42186

Versican/PG-M is a large chondroitin sulfate proteoglycan in the extracellular matrix, which is transiently expressed in mesenchymal condensation areas during tissue morphogenesis. Here, versican conditional knockout mice Prx1-Cre/ $Vcan^{flox/flox}$, in which Vcan was pruned out by site-specific Cre recombinase driven by Prx1 promoter were generated. Although Prx1-Cre/ $Vcan^{flox/flox}$ mice were viable and fertile, they developed distorted digits. Histological analysis of newborn mice revealed hypertrophic chondrocytic nodules in cartilage, tilting of the joint and a slight delay of chondrocyte differentiation in digits. By immunostaining, whereas the joint interzone of Prx1-Cre/ $Vcan^{flox/flox}$ without versican expression exhibited a decreased incorporation of TGF- β . In a micromass culture system of mesenchymal

cells from limb bud, whereas TGF- β and versican were co-localized in the perinodular regions of developing cartilage in *Prx1*-Cre/*Vcan*^{+/+}, TGF- β was widely distributed in *Prx1*-Cre/*Vcan*^{flox/flox}. These results suggested that versican facilitates chondrogenesis and joint morphogenesis, by localizing TGF- β in the extracellular matrix and regulating its signaling. The failure of joint morphogenesis which found in conditional deletion of versican might later make mice suffer from joint anomaly as seen in human joint diseases.

Taking into consideration, rheumatoid arthritis (RA) is one of the common joint diseases that primarily affects the joints and results in the progressive destruction of articular structures, particularly cartilage and bone. Synovial fibroblasts (SFs) in the most superficial lining layer of the hyperplastic RA synovium have been indicated to play an important role in the pathogenesis of RA. During the pathological events in RA, the activated synovial fibroblasts in the lining layer of the synovial membrane invade deeply into the articular cartilage and bone, and release several cytokines or matrix metalloproteinases (MMPs) that in turn contribute to cartilage deterioration and joint destruction. Reportedly, several studies have indicated that A. galanga has a potential anti-rheumatic activities, however, the precise action of the extract on arthritic diseases is not yet fully understood. Hence, the inflammatory model was independently established as a clinical study for investigation the effects of A. galanga extracts on the expression of genes involved in catabolic activities in an IL-1B-induced human SFs. In this model, primary human synovial fibroblasts were treated for 24 h with A. galanga hexane extracts in the presence of recombinant human IL-1β. MMPs in the culture medium were monitored by gelatin zymography. Total RNA was isolated from the cell lysate and analyzed by semi-quantitative RT-

PCR. After treatment with *A. galanga* extract fraction 4, MMP-2 activity in the culture medium was significantly decreased. In addition, MMP-1, MMP-3, MMP-13, and Cox-2 expression were down-regulated by 10 μ g/ml that of the fraction. These data suggested that the decrease of gene expression and production of MMPs in synovial fibroblasts against inflammatory stimuli could be due to the effects of the *A. galanga* extract fraction 4. Therefore, fraction 4 of *A. galanga* extracts may contain some active compounds which could be worth as anti-arthritic agent.

อาจารย์ที่ปรึกษาร่วม

อาจารย์ที่ปรึกษาร่วม

ชื่อเรื่องวิทยานิพนธ์	งนธ์ ผลของการขาดหายไปของยืนคอนดรอยดินซัลเฟตโปรตีโอไกลแคนและ	
	ผลของสารพฤกษเคมีต่อการเจริญและการ	เสื่อมของกระดูกอ่อน
ผู้เขียน	นางสาวกันยามาส ชูชีพ	
ปริญญา	วิทยาศาสตรคุษฎีบัณฑิต (ชีวเกมี)	
คณะกรรมการที่ปรึกษาว	วิทยานิพนธ์	
	รศ.คร. ปรัชญา คงทวีเลิศ	อาจารข์ที่ปรึกษาหลัก
	Prof. Dr. Hideto Watanabe	อาจารย์ที่ปรึกษาร่วม

คร.พีรพรรณ โปธาเจริญ

รศ.คร. ศิริวรรณ องค์ไชย

บทกัดย่อ

เวอร์ซิแคนหรือ พีจี-เอ็ม เป็นคอนตรอยดินซัลเฟตโปรติโอไกลแคน ซึ่งพบได้ในองค์ประกอบ ภายนอกเซลล์ และพบว่ามีการแสดงออกเพียงชั่วกราวในบริเวณที่มีการกระชับของกลุ่มเซลล์ mesenchymal ในระหว่างการพัฒนาโครงสร้างของเนื้อเยื่อ เพื่อศึกษาหน้าที่ของเวอร์ซิแคนใน ช่วงเวลาดังกล่าวจึงได้ทำการตัดยินเวอร์ซิแถนออกด้วยเทคนิก Cre/LoxP recombination ภายใด้ พีอาร์เอ็กซ์วัน (Prx-1) ซึ่งเป็นโปรโมเตอร์ที่จำเพาะ ส่งผลให้มีการตัดยินเวอร์ซิแคนออกไปตาม สภาวะและเนื้อเยื่อที่จำเพาะได้ หนูที่ถูกตัดยินเวอร์ซิแคนออกไปเรียกว่าหนูPrx1-Cre/Vcan^{flox/flox} แม้หนู Prx1-Cre/Vcan^{flox/flox} มีชีวิตรอดและสืบพันธุ์ได้ตามปกติแต่พบพัฒนาการนิ้วเท้าที่มี ลักษณะถดผิดปกติ เมื่อวิเคราะห์ชิ้นเนื้อของหนู Prx1-Cre/Vcan^{flox/flox} แรกเกิดทำให้ทราบว่าการ

กดของนิ้วในบริเวณดังกล่าวเกิดจากการรวมกลุ่มของกอนโดรซัยด์ชนิดไฮเปอร์โทรฟิลในกระดูก อ่อนและส่งผลให้มีการเอียงของข้อต่อรวมถึงเซลล์ในบริเวณนั้นมีการพัฒนาไปเป็นเซลล์กอนโคร ชัยต์ได้ช้าลง เมื่อทำการข้อมด้วยวิธีทางอิมมิวโนพบว่าบริเวณที่จะกลายเป็นข้อต่อของหนูกลุ่ม กวบคุมมีการแสดงออกเวอร์ซิแกนร่วมกับทีจีเอฟเบด้า (TGF-β) แต่ไม่พบการแสดงออกดังกล่าว ในหนู *Prx1-Cre/Vcar^{flox/flox}* นอกจากนั้นเมื่อทำการเพาะเลี้ยงเซลล์ mesenchymal จาก ระยางก์อ่อนในระบบขนาดเล็กและมีจำนวนมาก (micromass) พบว่าที่จีเอฟเบด้าและเวอร์ซิแคน ในกลุ่มควบคุม มีการแสดงออกในบริเวณ perinodular เดียวกัน แต่ในหนู *Prx1-Cre/Vcar^{flox/flox}* พบการแสดงออกของที่จีเอฟเบด้าเป็นบริเวณกว้าง ผลการทดลองนี้แสดงให้เห็นว่า เวอร์ซิแคนช่วย ให้เซลล์ mesenchymal พัฒนาไปเป็นเซลล์กอนโครซัยต์และช่วยในการพัฒนาของข้อต่อโดยจับ กับที่จีเอฟเบด้าไว้ในองก์ประกอบนอกเซลล์ รวมทั้งกวบคุมการส่งสัญญานของที่จีเอฟเบด้าเจ้าจู้ กายในเซลล์ ในหนูที่ถูกดัดขึ้นเวอร์ซิแคนออกไปทำให้ไม่สามารถพัฒนาข้อต่อได้ตามปกดิจึงอาจ เป็นสาเหตุหนึ่งที่ทำให้มันได้รับผลกระทบงากกวามผิดปกดินี้ในภายหลังเช่นเดียวกับที่พบในโรก ข้อของมนุษย์

ข้ออักเสบรูมาตอยด์เป็นโรคข้อที่มีอุบัติการณ์สูง พยาธิสภาพของโรคเริ่มจากการอักเสบ ของข้อต่อจนส่งผลให้มีการทำลายกระดูกอ่อนหุ้มข้อและกระดูกได้ในภายหลัง เซลล์สร้างเส้นใย ในไขข้อซึ่งพบในชั้นผิวนอกของเยื่อหุ้มข้อ ถูกซี่บ่งว่าเป็นเซลล์ที่มีบทบาทสำคัญต่อการคำเนินไป ของโรก โดยเซลล์สร้างเส้นใยในไขข้อที่ถูกกระตุ้นในบริเวณเยื้อหุ้มข้อจะลุกลามไปทำลายกระดูก อ่อนหุ้มผิวข้อและกระดูก โดยการปล่อยไซโตไคน์และเอนไซม์ metrix metalloproteinases (MMPs) ประกอบกับมีรายงานถึงฤทธิ์ด้านการอักเสบของข้อรูมาตอยด์จากสารสกัดของข่า (*A. galanga*) อย่างไรก็ตามยังไม่ทราบถึงกลไกที่แน่ชัดในฤทธิ์ด้านการอักเสบ ดังนั้นจึงสนใจที่จะ E 42186 ศึกษาในลักษณะที่เป็นแบบจำลองทางกลินิก โดยศึกษาผลของสารสกัดพฤกษเกมีที่ได้จากข่าต่อ การแสดงออกของยืนที่เกี่ยวข้องกับการสลายกระดูกอ่อน ในรูปแบบการทดลองครั้งนี้ เซลล์สร้าง เส้นใยในไขข้อของมนุษย์จะถูกเลี้ยงในภาวะที่ถูกกระตุ้นด้วยอินเตอร์ลิวกินวันเบด้า (IL-1β) ร่วม กับการใส่สารพฤกษเกมีที่ได้จากข่าเป็นเวลา 24 ชั่วโมง จากนั้นทำการวัดกัมมันตภาพของเอนไซม์ MMPs ซึ่งหลั่งออกมาในอาหารเลี้ยงเซลล์โดยวิธี gelatin zymography ส่วนอาร์เอ็นเอที่ได้จาก เซลล์ถูกนำไปวิเคราะห์ด้วยวิธี semi-quantitative RT-PCR ผลการทดลองด้วยข่า fraction 4 ที่ กวามเข้มข้นตั้งแต่ 10 μg/ml พบว่าทำให้กับมันตภาพของเอนไซม์ MMP-2 ในน้ำเสี้ยงเซลล์ลดลง งัและยังพบการแสดงออกของยืน MMP-1, MMP-3, MMP-13 และ Cox-2 ลดลงอีกด้วย จึงสรุป ได้ว่าการลดลงของเอนไซม์เหล่านี้น่าจะเป็นผลมาจากฤทธิ์ข้องสารพฤกษเคมีในข่า fraction 4 ดัง นั้นสารพฤกษเคมีจากข่าดังกล่าวจึงอาจมีสารออกฤทธิ์ซึ่งสามารถใช้เป็นสารด้านโรกข้ออักเสบได้

Х

TABLE OF CONTENT

ACKNOWL	EDGME	ENTS		iii
ENGLISH A	ENGLISH ABSTRACT			
THAI ABST	ГНАІ ABSTRACT			viii
LIST OF TA	LIST OF TABLES			xvii
LIST OF FIG	LIST OF FIGURES			xviii
ABBREVIA	TIONS			xxii
CHAPTER I	INTR	ODUCTIO	ON	
1.1 Staten	nent of th	ne problem		1
1.2 Literature reviews				
1.2.1	Cre/lox.	P and Prx1	gene	5
1.2.2	Proteog	glycan		9
	1.2.2.1	Proteogly	vcan classification	9
		1.2.2.1.1	Interstitial proteoglycans	9
			and the aggrecan family	
		1.2.2.1.2	Secretory granule proteoglycans	12
		1.2.2.1.3	Basement membrane proteoglycans	12
		1.2.2.1.4	Membrane-bound proteoglycans	12
	1.2.2.2	Proteogly	can functions	14
1.2.3	Gene an	nd protein s	tructure of versican	16
1.2.4	The role	e of versica	n in cell behavior	19

1.2.5	The inter	action of versican with its extracellular matrix binding	22
	and cell s	surface molecules	
1.2.6	Cartilage	e development	29
	1.2.6.1	Mesenchymal condensations	30
	1.2.6.2	Chondrocyte differentiation and proliferation	35
	1.2.6.3	Chondrocyte maturation	36
1.2.7	Joint for	mation	37
	1.2.7.1	Joint specification	37
	1.2.7.2	Joint cavitation	43
	1.2.7.3	Joint morphogenesis	46
1.2.8	Joint det	erioration	46
	1.2.8.1	Rheumatoid arthritis and pathology	46
	1.2.8.2	Role of synovial fibroblast in rheumatoid arthritis	49
1.2.9	Phytoch	emicals	51
	1.2.9.1	A. galanga and its characteristic	51
1.3 Obje	ectives		54
CHAPTER	II MAT	TERIALS AND METHODS	

2.1	Materi	als		55
2.2	Metho	ds		55
	2.2.1	Generat	ion and preparation methods	55
		2.2.1.1	Generation of conditional Vcan knockout mice	55
		2.2.1.2	Preparation of Alpinia galanga hexane extracts	56
	2.2.2	Identifie	cation methods	58

	2.2.2.1	DNA extraction	58
	2.2.2.2	Genotyping of versican transgenic mice	58
	2.2.2.3	Genotyping of Prx1-Cre mice	59
	2.2.2.4	Genotyping of ROSA26 mice	59
	2.2.2.5	DNA sequencing	60
2.2.3	Analytic	methods	61
	2.2.3.1	Analysis of <i>Prx1</i> -Cre activity	61
	2.2.3.2	X-ray and histological analysis	62
	2.2.3.3	Cryosectioning and X-gal staining	62
	2.2.3.4	Immunostaining and hyaluronan detection	63
	2.2.3.5	Micromass culture	64
	2.2.3.6	Western blot analysis	65
	2.2.3.7	Alcian blue staining	66
	2.2.3.8	Phytochemical analysis by HPLC	66
	2.2.3.9	Human synovial fibroblast and treatments	67
	2.2.3.10	Viability assay	67
	2.2.3.11	Gelatin zymography	68
	2.2.3.12	Gene expression analysis	68

CHAPTER III RESULTS

3.1 Generation and identification of $Prx1$ -Cre/ $Vcan^{flox/flox}$			71
	3.1.1	Generation of Prx1-Cre/Vcan ^{flox/flox} mice	71
	3.1.2	Genotyping	75
		3.1.2.1 Genotyping of versican transgenic mice	75

		3.1.2.2	Genotyping of <i>Prx1</i> -Cre mice	75
	3.1.3	DNA se	quencing	77
3.2	Pheno	otype inve	stigations	83
	3.2.1	X-ray ex	amination	83
	3.2.2	Gross ob	servation	83
	3.2.3	Histolog	ical analyses	88
		3.2.3.1	Delayed cartilage development at newborn	88
		3.2.3.2	Delayed cartilage development at E15.5, E16.5,	91
			and E 18.5	
3.3	Versi	can distrib	oution in mice digits	100
	3.3.1	The abs	sent of versican in Prx1-Cre/Vcan ^{flox/flox} digits	100
	3.3.2	Cre im	munostaining and β -galactosidase activity	102
3.4	Distri	bution of	hyaluronan and its binding molecules in joint interzone	106
3.5	Altera	tion of T	GF-β signaling in joint interzone	111
3.6	Impai	red meser	nchymal condensations in Prx1-Cre/Vcan ^{flox/flox}	113
	micro	mass cult	ure	
	3.6.1	β-galact	tosidase activity in micromass culture	113
	3.6.2	Versica	n expression patterns in micromass culture at day 3,	115
		day 6, a	and day 9	
	3.6.3	Delaye	d chondrocyte differentiation in micromass culture	117
3.7	Impa	ired meser	nchymal condensations and altered TGF- β signaling	119
	in Pr.	x1-Cre/Vc	<i>can^{flox/flox}</i> micromass culture	
	3.7.1	Express	sion patterns of TGF- β and its related molecules in	119
		micron	nass culture at day 3, day 6	

xiv

	3.7.2 Alteration of TGF- β signaling in micromass culture	122
3.8	Localization of TGF- β in the extracellular matrix by versican	126
3.9	Phytochemical profiles of A. galanga hexane extracts	128
3.10	Effect of A. galanga hexane extracts on IL-1 β -reduced gelatinases	131
	production	
3.11	Effect of A. galanga hexane extracts on IL-1 β -reduced gelatinases	135
	expression	
3.12	Effect of A. galanga hexane extracts on the IL-1 β -induced COX-2	137
	and MMPs expression	

CHAPTER IV DISCUSSION AND CONCLUSION

4.1	4.1 Discussion for conditional knockout mice of versican model		
	4.1.1	Versican is required for TGF- β signaling during joint	139
		morphogenesis	
	4.1.2	Versican accumulates TGF- β to perinodular regions in	142
		mesenchymal condensation	
	4.1.3	Functional domain of versican	143
4.2	Discu	ssion for the effects of A. galanga on an inflammatory model of	145
	humar	n synovial fibroblasts	
REFERENCES			151
APPEN	APPENDICES		185
A	APPENDIX A		
A	APPENDIX B		190
A	APPENDIX C		

PUBLICATIONS FOR THESIS

CURRICULUM VITAE

xvi

196

195

LIST OF TABLES

Table			
1.1	Examples of chondrotin sulfate proteoglycans	11	
1.2	Major classes of genes and gene products associated with skeletogenic	34	
	condensations along with their functions and stages of action		
2.1	Primers for semi-quantitative RT-PCR	70	
3.1	Alignment-hit table of nucleotide sequence using primer 001	80	
3.2	Alignment-hit table of nucleotide sequence using primer 002	80	

LIST OF FIGURES

Figur	Figure			
1.1	Schemetic of Cre/loxP mediated recombination and excision	7		
1.2	Schematic of cell-specific Cre-mediated gene targeting in mice	8		
1.3	Protein structure of versican	18		
1.4	Oganization of the mouse PG-M gene and alignment of isolated	19		
	genomic DNA clones			
1.5	Interaction of versican with other molecules	23		
1.6	Illustration of cartilage development	29		
1.7	Illustration of joint formation, showing the joint interzone	39		
	specification, cavitation and joint morphogenesis			
1.8	Illustration of cytokine signaling pathways involved in RA	48		
1.9	Photographs of trunk, blossom, and rhizome of A. galanga	53		
2.1	Diagram of Alpinia galanga hexane extract preparation	57		
2.2	Genomic mapping for conditional deletion of the floxed stopper	61		
	sequence of ROSA26 reporter mice			
3.1	Genomic construct for conditional deletion of the Vcan mice	73		
3.2	Illustration of the generation of transgenic mice	74		
3.3	Genotyping of Prx1-Cre/Vcan ^{+/+} , Prx1-Cre/Vcan ^{+/flox} ,	76		
	and Prx1-Cre/Vcan ^{flox/flox}			
3.4	PCR analysis of Prx1-Cre/Vcan ^{+/flox} for DNA sequencing	78		
3.5	Schematic of 001 forward and 002 reverse primers alignment	79		

xviii

Chromatogram of DNA sequencing using 001 forward primer 81 3.6 Chromatogram of DNA sequencing using 002 reverse primer 82 3.7 84 X-ray visualization of 8-month-old mice 3.8 Gross observation of 1-month-old, 2-week-old, and 1-week-old mice 85 3.9 3.10 Gross observation of Prx1-Cre/Vcan^{+/+} and Prx1-Cre/Vcan^{flox/flox} limbs 86 at 1-month-old, 2-week-old, and 1-week-old mice 89 3.11 Histological analysis of hind limbs at newborn by H&E staining 90 3.12 Histological analysis of fore limbs at newborn by H&E staining 3.13 Histological analysis of hind limbs at various embryonic stages by 93 H&E staining 3.14 Histological analysis of hind limbs at E16.5 and E15.5 by H&E staining 95 3.15 Alcian blue staining of hind limbs at E15.5 by H&E staining 96 3.16 Histological analysis of hind limbs at E14.5 by H&E staining 97 3.17 Immunostaining for Ki67 of hind limbs at E15.5 99 3.18 Immunostaining for versican of hind limbs at newborn, E16.5, E15.5, 101 and E13.5 3.19 Immunostaining for versican of hind limbs at E15.5 103 104 3.20 Immunostaining for Cre enzyme of hind limbs at E15.5 β -galactosidase staining of hind limbs at E14.5 105 3.21 108 3.22 Distributions of HA and HA-binding molecules in the joint interzone

at E15.5 3.23 Immunofluorescent staining for CD44 of hind limbs at E15.5 110

3.24 Immunostaining for pERK1/2 and β -catenin in joint interzone at E15.5 110

xix

3.25	Immunostaining patterns of TGF- β , T β RII, and phospho-Smad2/3 in	112
	the joint interzone at E15.5	
3.26	Alcian blue staining of hind limbs at E13.5	114
3.27	β -galactosidase staining of micromass culture	114
3.28	Staining patterns of versican and PNA in Prx1-Cre/Vcan ^{+/+}	116
	micromass cultures at day 3, 6, and 9 (lower magnification)	
3.29	Staining patterns of versican and PNA in Prx1-Cre/Vcan ^{+/+}	116
	micromass cultures at day 3, 6, and 9 (higher magnification)	
3.30	Patterns of micromass stained by Alcian blue at day 3, 6, and 9	118
	of <i>Prx1</i> -Cre/ <i>Vcan</i> ^{+/+} and <i>Prx1</i> -Cre/ <i>Vcan</i> ^{flox/flox}	
3.31	Patterns of immunostaining for TGF- β , T β RII, and pSmad2/3 in	120
	<i>Prx1</i> -Cre/ <i>Vcan</i> ^{+/+} micromass cultures at day 3	
3.32	Patterns of immunostaining for TGF- β , T β RII, and pSmad2/3 in	120
	$Prx1$ -Cre/ $Vcan^{+/+}$ micromass cultures at day 6	
3.33	Patterns of immunostaining for versican, TGF- β , T β RII, and pSmad2/3	121
	in <i>Prx1</i> -Cre/ <i>Vcan</i> ^{+/+} micromass cultures at day 6	
3.34	Immunofluorescent staining for versican, TGF- β , T β RII, and phospho-	123
	Smad2/3 at day 6 of culture of <i>Prx1</i> -Cre/ <i>Vcan</i> ^{+/+} and <i>Prx1</i> -Cre/ <i>Vcan</i> ^{flox/floc}	x
3.35	Western blot analysis of TGF- β in micromass	125
3.36	Immunofluorescent staining of versican and TGF- β of <i>Prx1</i> -Cre/ <i>Vcan</i> ^{+/+}	127
	micromass untreated and treated with chondroitinase ABC	
3.37	HPLC-chromatograms of A. galanga extracts	130
3.38	Effect of A. galanga extracts, fractions 1, on the production of MMP-2	132

- 3.39 Effect of *A. galanga* extracts, fractions 2, on the production of MMP-2 132
- 3.40 Effect of *A. galanga* extracts, fractions 3, on the production of MMP-2 133
- 3.41 Effect of *A. galanga* extracts, fractions 4, on the production of MMP-2 133
- 3.42 Viability of human synovial fibroblasts treated with A. galanga extracts 134
- 3.43 Effect of *A. galanga* extracts, fractions 1-4, on MMP-2 and MMP-9 136 expression
- 3.44 Effect of *A. galanga* extracts, fractions 1-4, on COX-2 and MMP-1, -3, 138 and MMP-13 expression

LIST OF ABBREVIATIONS

bp	base pair
β-gal	beta-galactosidase
BSA	bovine serum albumin
CaCl ₂	calcium chloride
cbEGF	calcium-binding epidermal growth factor
CO ₂	carbondioxide
CRP	complement regulatory protein
CS	chondroitin Sulfate
Da	dalton
DAB	diaminobenzidine
DMEM	dulbecco's modified eagle's medium
DNA	deoxyribonucleic acid
ECM	extracellular matrix
EDTA	ethylene diamine tetraacetic acid
EGTA	ethylene glycol tetraacetic acid
EGF	epidermal growth factor
EGFR	epidermal growth factor receptor
ELISA	enzyme-linked immunosorbent assay
ERK	extracellular signal-regulated kinase
En	embryonic day n
ES	embryonic stem

FAK focal adhesion kinase FCS fetal calf serum GAG glycosaminoglycan h hour HA hyaluronan HABP hyaluronan binding protein HBR hyaluronan binding region HAS hyaluronan synthase HCI hydrochloric acid H_2O_2 hydrogen peroxide HPLC high performance liquid chromatography HRP horseradish peroxidase HS heparan sulfate ICD intracellular domain immunoglobulin Ig interleukin IL keratan sulfate KS latent TGF-beta-binding protein LTBP Μ molar mitogen-activated protein kinase MAPK MEFs mouse embryonic fibroblasts minute min magnesium chloride MgCl₂ milliliter ml

xxiii

mМ millilmolar MMP matrix metalloproteinase microgram μg microliter ml NaCl sodium chloride NaOH sodium hydroxide nanogram ng nm nanometer osteoarthritis OA phosphate buffer saline PBS platelet-derived growth factor PDGF. proteoglycan PG rheumatoid arthritis RA ribonucleic acid RNA rpm round per minute reverse transcription-polymerase chain RT-PCR reaction second S SF synovial fibroblast Tg transgenic U unit UV ultraviolet transforming growth factor β -2 receptor TβRII transforming growth factor beta 1 TGF-β1

X-gal 5-bromo-4-chloro-3-indoyl-beta galactopyranoside WT wild type