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Subsequence Time Series {ST'S) Clustering is a time series mining task used to discover clusters of inter-
esting subsequences in time series data. Many research works had used this algorithm as a subroutine in
rule discovery, indexing, classification and anomaly detection. Unfortunately, recent work has demon-
strated that almost all of the STS clustering algorithms give meaningless resuits, as their outputs are
always produced in sine wave form, and do not associate with actual patterns of the input data. Conse-
quently, algorithms that use the results from the STS clustering as their input will fail to produce its
meaningful output. In this work, we propose a new STS clustering framework for time series data called
Selective Subsequence Time Series {SSTS) clustering which provides meaningful results by using an idea
of data encoding to cluster only essential subsequences. Furthermore, our algorithm also automatically
determines an appropriate number of clusters without user's intervention.

@ 2012 Elsevier B.V. All rights reserved.

1. Introduction

Time series clustering [2.6.15.13.24] is one of the most popular
tasks in time series data mining community {5.16,18,25,26.20}.
Most algorithms generally perforiv whole time series clustering
{24.15]. More specifically. those algorithms try to group individual
time series instances to a set of clusters. On the other hand. Subse-
quence Time Series (STS) clustering [2,13.6}]. which will be consid-
ered in this work. has been gaining more popularity. STS clustering
algorithm discovers clusters of interesting subsequences within a
single time series data streany. This algorithm can be used as a sub-
routine of other data mining tasks, such as rule discovery [28.4.12),
indexing [17]. classification {3]. and anomaly derection [28].

Unfortunately, it has been demonstrated that these STS cluster-
ing algorithms produce meaningless results [13]. Because most
algorithms use a sliding window to extract subsequences and try
to cluster them all, the resulting cluster centes's turn out to be some
forms of sine waves regardless of the original shape of the patrerns
in the input data. Therefore, every algorithm that uses this mean-
ingless STS clustering as a subroutine will in turn fail to produce
meaningful results as well.

The cause of producing sine waves as outputs has been ana-
lyzed by many authors {8.11,21}. They have shown that clustering
of every single subsequence leads to meaningless outputs. In fact.
some subsequences such as noises or outliers should not be
clustered. For instance, consider a speech recognition problem,
non-speech segments in a source data has to be determined and
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removed. Similarly, in sign language recognition, transitions
between consccutive signs, called movement epenthesis {2922,
has to be discarded. We show in Fig. 1 that meaningtul STS cluster-
ing can be achieved by ignoring some subsequences. We use an
£CC data from {9] ro demonstrate that it is not necessary to include
some trivial subsequences in a cluster.

In this work. we propose a new STS clustering framework called
Selective Subsequence Time Series {SSTS) clustering, which per-
forms subsequence clustering to produce meaningful cluster
centers. We will show that the cluster centers from our algorithin
do represent the actual patterns within the input data, instead of
producing sine waves. In essence, we adoptan ideaof dataencoding
to determine proper clusters by clustering only important subse-
quences. Some subsequences that are not significant will be dis-
carded. On the other hand. because it is hard to exactly specify
window size of the subsequences, our approach allows window size
ta be varied. The appropriate sliding window size, w, depends on
types of data and application requirement. In practice, a user only
need to roughly estimate a value of w, and then our algorithm will
determine an appropriate value, However, due to the flexible win-
dow length w, the members of clusters could be of different lengths.
Moreover, different types of data need different predefined number
of clusters k. so our algorithm automatically determines an appro-
priate number of clusters depending on characteristics of input data.

The rest of this paper is organized as follows. In Section 2, we
provide review and discussion of some related works. Section 3
offers background knowledge used in this work. Detail of our
approach are described in Section 4. Section 5 shows essential
experiments in various domains including real and synthetic data.
Finally, conclusion and discussion about future research direction
are discussed in Section 6.
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Four cluster centers
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Fig. 1. Meaningful STS clustering achieved by ignoring some subsequences.

2. Related work

In time series mining communities, clustering task has always
been receiving much attention. However, most warks focus on
clustering individual time series whereas clustering subsequences
of a single lang rime series, the problem considered in this work, is
not well resolved. The most referenced work is thic one that uses
STS clustering as a subroutine for rule discovery {4]. Until recently.
it has been discovered that the STS clustering used in that work is
meaningless { 13]. Because they try to cluster every single extracted
subsequences, their output turns out to always be in sine waves
regardless of what the input sequence looks like. This problem
has then been analyzed by many authors {8,11.21]. It now comes
to a conclusion that clustering every subsequence extracted by
moving a fix sliding window leads the cluster centers to converge
to sine waves. Many authors have propaosed algorithms to solve
this problem {2,6], but those algorithms require a fixed value of
number of clusters k and length of subsequences w. which are
not suitable in real world prablems.

3. Background

In this section, we provide definitions and background knowil-
edge used in this work.

3.1. Definition and notation

Definition 1. A time series T of size nt is an ordered sequence of real
value data, where T = (£.65.. .

Our approach takes a sequence of time series T as an input and
extracts it to a set of subsequences.

< L.

Definition 2. A subsequence of length n of time series T is
Tin=(tubivte. .. Lien 1), Where 1=20<m  n+ 1, n<m.

As mentioned in Section 1, we adopt an idea of simple data
encryption to determine proper clusters by emulating the clusters
as a codebook.

Definition 3. A codeboolk is a data structure used to store code-
words, representing repeating parts in an input data. The input
data can be compressed by substituting the repeating parts with
smaller codeword symbals. In this work, we emulate cluster cen-
ters as the codewards used to represent their member subse-
quences. Performance of the encoding can be measured by using
Compression ratio and Error defined below.

Definition 4. Compression ratio is a ratio of the data size between
after and before compression, including an overhead of construc-
tion of a codebook and codeword symboals. For example, given a
16-charecter string S ="ABCDEFGHIKEMNOP”. Suppose that sub-
strings “ABC" and “HlJ" are similar, we can substitute them with
a symbol x, therefore the encoded string 5 = “xDEFCXKLMNOP™. In
this case, we can eliminate 6 characters (“*ABC' and “Hlf”), but a
cadeword of size 3, and twa x’s must be created: thus, the com-
pression is 6 (3+2)=1 character, and the compression ratio
R 1821 0.94.

=2:
16

Definition 5. Error can be obtained by calculating summation of
distances from cluster centers fo their cluster members. For exam-
ple, the two substrings “ABC’ and “H{f", which are mentioned in
the previous definition, are grouped into a cluster €, then a code-
word (a cluster center) € is created. The Error of creating a cluster
from those substrings is EiCy « DistiC. ABC | DistiC. Hif:.

Next, we summarize background knowledge used in this paper.

3.2. Euclidean distance neasure

To measure distance between twa subsequences, we use Euclid-
can distance that has been widely used in time series domain. The
distance is as shown

- S S .
DistiXi . Xinj — V Zk_c!«\m Xist) N

Befare the distance calculation, all subsequences must be nor-
malized. We use Z-normalization {10] that makes the value of
mean and standard deviation of a time series ta be zero and one,
respectively. Given a subsequence Tip = (i fist.. - Gan 1) Whose
mean is g and standard deviation is 4. The normalized time series

1S Thy o {(6.8l_ye .2 8ipy ). where g = B2,

To create a cluster center, we use amplitude averaging approach

to average two sequences. Given subsequences P = (py,.... DisesmaPn)

and @=(qy.....qu....Gn), & New subsequence R={rq.. .b....J0q)is
—113,

raduced by rj = “282%% \where ¢, and cug are weight of P and Q.
_ I q

—'1'1‘, —Ulq

3.3. Uniform scaling

Many rescarch works show that uniform scaling technique can
improve performance in terms of accuracy [7,30]. Specifically, a
subsequence T=(ty,....t... ..tn) can be shrunkfstretched, by spec-
ifying a scaling factor [ 1. to a new time series

T (£ Clasee « 1 r;). where & = Ljnmy. O0/f7 <0< m-fL0 We
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extract input time series to subsequences of different lengths. in
detail, clustering algorithm takes two parameters, w and f, window
length and scaling factor. respectively. Subsequences of length
from fwjfi to iw. [ are extracted, then we use uniform scaling
to make them the same length of w before clustering them.

3.4. Subsequence matching

Subsequence matching algorithm [27] is usually used as a sub-
routine in many data mining tasks. By giving a query sequence, we
can retrieve a subsequence, which is the most similar to the query.,
from a longer time series. In this work, we use the Euclidean dis-
tance as a distance measure to compare the query sequence with
all the extracted subsequences.

3.5, Subsequence motif discovery

A subsequence motif [23] is the most similar pair of subse-
quences in a time series data. Many research works have proposed
motif discovery algorithms trying to improve performance in
terms of speed and accuracy. In this paper, we use the MK algo-
rithm in [19], which is considered the fastest algorithm to find a
- pair of motif by using the Euclidean distance.

4. Selective Subsequence Time Series clustering framework

This section provides details of our approach called Selective
Subsequence Time Series (SSTS) clustering framework. Firstly, we
begin by stating the problem definition.

4.1. Problent definition

Inputof our algorithin is asingle time series-data. The problem is
to first deterimine a nuinber of clusters n, and then to group subse-
quences inta praper clusters: some subsequences can be discarded
without being assigned to any cluster. The subsequences are
extracted using a sliding window approach. The sliding window
can be varied in a range specified by a user. For example, we demon-
strate by using a 16-character string S = “"ABCDEFCHIKLMNOP” as an
input. We use a sliding window w of size 3, and a scaling factor
f=1.5: therefare, the length of the subsequences is varied from 2
to 4. The subsequences are extracted into a set & = (“AB".“BC”,. ..,
“OP" “ABC',“BCD”,. . . ,"NOP" "ABCD™,"BCDE", . .. "MNOP"). The
algorithm should produce a set of clusters Coos {070 cuny Cioooo Gl
Each cluster consists of its members and a cluster center: G ==
L0 (T t;, .Gl where t; is the jth member of the ith cluster,

and the G; is the cluster center of the ith cluster.
4.2. Clustering method

To form clusters from a set of subsequences, we must iteratively
pick one subsequence and assign it to a cluster. However, in the
first place, we do not have any predefined cluster yet, and we must
make a decision as follows. Intuitively. we can choose two subse-
quences which are the most similar, to create the first cluster, then
the first cluster center is produced. As a result, we can choose other
subsequences, which are the maost similar to the already created
cluster, to be added to the existing cluster: therefore, the cluster
center is then updated. Nevertheless, it is better to create a new
cluster if there exist two subsequences that are similar to each
other more than to the existing cluster center. Moreover, if there
are two clusters that can be grouped together, we can decide to
merge them to create a new cluster. Thus, we define three opera-
tions for producing clusters from a set of subsequences: those
are Create, Add and Meige to iteratively select two subsequences
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to create a new cluster. to assign a subsequence to an existing clus-
ter, and to merge two clusters into a new cluster, respectively.

Our approach iteratively selects an operation, which are Create,
Add and Merge to produce a set of clusters. Accordingly. we adopt
an idea of data encoding as a heuristic function to choose an
optimal aperation in each step of clusters construction. We emu-
late a set of cluster centers as a codebook, where cach cluster cen-
ter is a codeword used to encode the input time series. Some
subsequences from the input time series, which are members of
a cluster, will be substituted by a small codeword symbol. Eiror
of a cluster is determined by a summation of Euclidean distance
from the codeword, which is the cluster center, to their member
subsequences.

I
EiC — Z Disti &, G {21
=1
where m is a number of members in the ith cluster.
Increased errorAL is obtained after a cluster update.
AE — Eafter - Ebz!axt |3‘

Compression ratio R is determined by calculating data reduction
of the original subsequence including overhead from codeword
construction and codeword symbal substitution.

In detail. Compression ratio and Increased Error for each opera-
tion are described below.

1. Create: Create a new cluster € from rwo subsequences P of
length 1. and Q of length 2. A new codeword C of length w
is obtained by merging P and Q. The length of input time
series ! is reduced by u+ . The overhead is added by the
codeword construction and the substitution of P and @ by
two of a codeword symbol “x™ of size 1.

AE _EiC 4
Rt ey twa 27 i5i

N

. Add: Update an existing cluster € to a new cluster ¢ by add-
ing a subsequence P of length u, and update the codeword ¢
to €. This operation reduces the length of input time series {
by u. The overhead is added by substituting Pby “x” of size 1.

AE _ EiCy - EIC ()]

R—u- 1/l (73

3. Merge: two clusters G and G are merged into a new cluster
C. A codeword of length w is reduced.
AE B¢y [EiG 1 EiG) i8:
R —w,l 9;

The problem can be considered as a search space consisting of
nodes of the three operations, which is illustrated in Fig. 2. Our ap-
proach uses greedy method to iteratively select a node that has
minimal Increased Error. To do this, as shown in Fig. 3, we apply
the MK motif discovery algorithm [19] to discover a pair of subse-
quences, which has minimal Euclidean distance, to be the best
node for the Create operation. To search for the optimal Add node,
all codewords are used as queries for the subsequence matching
algorithm to locate the best subsequence to be added to an existing
cluster. The optimal Merge node can be determined by searching all
nodes, due o its small number of nodes. Note that the subse-
quences can be of different lengths, so we use a uniform scaling
technique to make them the same length w before applying the
motif discovery and the subsequence matching algorithms.
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in Merge
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{ABC, EFG+[NOP]

tart

TKLM]+[NOP]

{HUJHLMN]  [KLM]+[NOP]

A

[ABC,EEGI+{HILKIM]

Fig. 2. The search space consists of Create, Add and Merge operations.

Create

' Subsequence
i Matching

Fig. 3. The optimal nede can be determined by using muotif discovery and
subsequence matching algorithms.

As a running example, we use the character string S mentioned
in Section 4.1 to demonstrate our algorithin step by step, as shown
in Fig. 4. For brevity, we set a window length w to 3 and a scaling
factor to 1; so the subsequences can only be of length 3. First, none
of the cluster exists. The Create operation must be chosen to create
the first cluster Cy. The motif discovery is applied then we get
ing “ABC’ and “EFG" together. Secand, after creating the first clus-
ter, there are two choices that are Greate and Add operations. We

use C; as a query to the subsequence matching algorithm, then
we obtain “NOP" as the result; after removing “ABC* and “EFG™
from the subsequence set, the motif algorithm returns “Hij" and
“KLM™. In this case, suppose the latter case gives smaller AE, we
choase the Create operation to create a new cluster G from “Hij”
and “KLM", then C, is produced. Next, the choices are create, add.
and merge. Suppose the smallest AL is obtained from the Merge
operation of Cy and Cy, so “"ABC”, “EFG™, “HIJ" and “KLM" are merged
into the same cluster, and &; and & are combined. Finally, only C,
remains.

To determine a proper number of clusters, we must choose a
state of creating clusters that provides large compression ratio
while producing less error. From the compression-error graph
shown in Fig. 5a. it is obvious that there is a knee point in the graph
where errors are dramatically increased. It means applying an
aperation after that point will lose the clustering accuracies. Thus,
we return clusters in that state as a result of the algorithm. To find
that point, we determine linear fitting function to the compres-
sion-error graph and choose a point that gives minimuin residual
value to the fitting function as shown in Fig. 5b. Consider a special
case that a user want to specify the number of clusters k., our algo-
rithm can effortlessly handle it by choosing a latest state that has
the number of clusters equal to the one specified by the user.

Table 1 illustrates our main algorithm. The algorithm starts by
extracting subsequences from the input sequence by running
SussequenceExtRACTOR fUunction. After that, it enters a loop to iteratively

e

[KLMZ{NOP)

IARCEEGIHI]  IABCEEGIINK] [ABCEFGI+INOF] [HUMKLM]  [HUMLMN]  [KLM+{NOP]

&r  Create

Add

Merga

i

[ABCEFG]+NOP)

[ABC,EFG]+[HI,KLM]

/

Fig. 4. Greedy search example: an optimal node will be chosen in cach step.
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Error
Linear fitting

208

Telinviey

o

Campression Ratio

Fig. 5. The stopping point can be found at the state that has minimum value of
residual. {a) A lincar estimation line of the error line helps find the knee point in the
error line. {b) The stopping point is determined at the minimum residuals value to
the lincar fitting functon.

Table 1
SSTS clustering.

Function [ ] = SSIS{T,w. )

S = SUBSEQUENCELXTRACTOR] T, W, f}
while there is an operation left
[C[1].9]1]] = Creare Cuusteri €S
[C[2].8]2]) = UpnwreClusrer: €. S
[C[3].9[31] = MerceCwstersi C. S
m = ArGMinerror{C }
¢~ Cmi
S=%[m]
P.addiC)
return Pat{SrorpincState{ )}

LA N

O o NG

—

selectanoperator tocreateclustersuntil there isnosubsequenceleft.
The Create, Add and Merge aperations are applied, then the best one,
whichgives minimumerror,isselected ineachiteration. Every cluster
construction stateiskeptinalist Pfordetermining the beststate later.
After breaking the loap, a proper cluster state will be chosen by using
SroreingSTATE FUnCction.

Details of SusseguenceExrracror function are shown in Table 2.
The funcrion extracts subsequences of length varied from wyy, to
W and makes it the same length by using UnirormScaune func-
tion. Consequently, the extracted subsequences are normalized
by 7 Nemsuz function, and they are stored in a list of subsequences S.

Table 3 shows CreareCruster function in details. It staits by exe-
cuting MorrDscovery to find a motif pair. After that, a cluster is cre-
ated from the motif pair, and the motif pair and the subsequences
that overlap with them are removed from the list of subsequencesS.

Table 4 explains details of UrpateCruster function. Every cluster
center of all created clusters is used as a query sequence for
SussequenceMatcuive function. The function returns a subsequence
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T1able 2
Subsequence extractor.

function [S] = SusseQueNcEEXTRACTOR{T, w, }

1 ift
2 Winax = iW - f
3 { = LencrH{T}
4 for i= WininWniax
5 forj=1:
6 t = UniFormScauNG{sfiij + i~ 1]}
7 2-NORMAUZELt}
8 tstart=j
9 tend=j+i-1
10 S.add{t
11 return §
Table 3
Create operation.
Function [ (7. 8’} CreareCLusier; C. S)
1 Hik] = MoreDecoverv(S}
2 CE = Averace{S(]. S[ 1))
3 CoddMember{S{fy])
4 CaddMemberiSi])
5 CaddiC)
6 remove Sfli) and S|f>] and subscquences that overlap S{{y] and S[1;] from §
7 retun C.S
Table 4

Add operation,

Function [ ¢'.§'] = UrpareCuuster{C. S

1 for i = 1: C.mumberOfCluster)
2 ¢~ Cif]
3 t = SusseQUENCEMATCHINGSS. C.C)
4 C.C = AveraceiC.C.
5 CoddMember{S{t]}
[ if ervorgg > Cemor{}
7 c=C
8 gy =1
9 ermorgy = Cenor)

10 ?=t

11 Cligse] =C

12 remove S{t'} and subsequences that

overlap S{¢] from S
13 return C.§
Table 5

Merge operation.

Function [ (. §'] = MerceCusters C.S)

1 1 = number of clustess in ¢
2 fori=1m—1
3 forj=i+1m
4
5
6
7 add all members of G to
8 if errorgsy > Cr.error{}
9 C=0C
10 ty=i
11 ta=j
12 Ciy - ¢
13 Caremoreilyl
14 return C.$

from S that is the most similar to the query. The subsequence that
produces the least error is chosen to be added to the cluster that
holds cluster center that was used as the query. The cluster center
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Fig 7. {top} Gun-Point data extracted from a vidco surveillance camera. {bottom} Cluster centers of each class.

of that cluster are updated by averaging the old cluster center and
the subsequence resulted from the subsequence matching func-
tion. After that, the resulted subsequence and its overlapping sub-
sequences are removed from S.

The last operation, the Mergeoperation are described as the
MerceCwusters function shown in Table 5. All combination pairs of
the existing clusters are examined, then a pair that gives minimum
error will be merged.

* 5. Experimental results

This section provides experimental results of our proposed
method on various data domains. We separate the experiments
into two parts. First, we shows usefulness of our algorithm on real
and synthetic datasets from various domains. Second, we demon-
strate our search perfermance by comparing our algorithm with
brute-force method on the defined search space.

5.1. Usefiitness of our method

In this part, we demonstrate that our algorithm can be applied
in many types of data domains, i.e., synthetic dataset, data ex-
tracted from video surveillance system and images, and real ECC
data sequence.

3.1.1. Synthetic data
we experiment on the Cylinder-Beli-Funnel (CBF} dataset from
the UCR time series archive [14]. It has been shown that most

STS clustering algorithms fail to produce meaningful result from
this very simple dataset.

In our experiment, we randomly select data from each class,
then concatenate them to a single time series, as shown in Fig. 6.
The cluster results are illustrated as colored' subsequences in
Fig. 6. The result shows that the key characteristics of each class
are clustered correctly, and the cluster centers can represent the
shape of their member subsequences.

5.1.2. Video surveillance problem

In this experiment, we apply our algorithm on the video surveil-
lance domain, which is the gun problem [14]. The time series data
is captured from the centroid of each actor’s right hand performing
two actions: Gun-Draw and Point. The motion of the two classes of
action are very similar and hard to distinguish.

Result of our proposed methad, as illustrated in Fig. 7, shows
that all subsequences of motions are clustered correctly to their
classes. Furthermore, the cluster centers from our method can
preserve the impartant features and shapes in the data.

5.1.3. Time series data extracted from images

This experiment shows the result from clustering data extracted
from images, which are created by tracing the local angles from the
centroid of an image to its perimeter. We make the input time ser-
ies by choosing the dataset that has different complexities {11. The

! For interpretation of color in Figs. 1-10, the reader is referred to the web version
of this articte.
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Fig. 8. {top} A sequence of data extracted fr

om image of faces and leaves. {borraim} cluster centers of cach class.

O

50

1400

Fig. 9. {top} ECC scquences with abnormal heartbeats. { bottom;}

datasets used here are Face-all and OSU-Leaf [14]. which are ex-
tracted from human faces with various expressions on the face,
and from different species of leaf images.

Fig. 8 shows that our algarithm can cluster subsequences of the
data even when the data has different complexity values. The sub-
sequences of face data are grouped in a cluster, whiclh is shown in
red. and the leaf subsequences are separated into two subclasses
that have the same shape.

5.1.4. ECG data

In this experiment, we run our algorithm on a medical dataset,
which is an ECG data [9]. Fig. 9 shows that the beats are of different
shapes. If we can separate the beats into clusters, the heart dis-
cases will be diagnosed easier. From the result in Fig. 9, three
groups of heartbeats are clustered. The normal beats are clustered
within the same group as shown in green, the abnormal beats, as
shown in red, are clustered into the same group, and the blue clus-
ter contains the beats that have minor anomalies, and are clustered
separately.

5.2. Comparison with the brute-force method

we will demonstrate our performance on searching through the
search space. Fig. 10 illustrates the result of our algorithm compar-
ing with the brure-force method tested on the ECG data used in
Section 5.1.4. It roughly contains 6000 possible paths of the input
time series of length 1400 data points and a window size of 100.
The result of our method is shown in a thick blue line. Qur main
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100
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300

21100
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compression ratic

=]

Fig. 10. Our algorithm {shown in blue} comparing with the brute-force method.

goal is to maintain ervor while maximizing the compression ratio.
As shown in Fig. 10, our algorithm can search through the search
space closely following the optimal path by examining just 1 out
of 6000 possible paths.



368 S. Rodpongpun et ol Knowledge-Bused Systems 35 {2012) 361-368

6. Conclusions

In this work, we propose a novel Subsequence Time Series (STS)
clustering named Selective Subsequence Time Series (SSTS) clus-
tering. We show that clustering on time series subsequences can
be meaningful if some noise or unimportant subsequences are dis-
carded, and different lengths of member subsequences are
allowed. We assure the efficiency and usefulness of our algorithm
by experimenting in various data domains. Furthermore, our
method can perform clustering by requiring only a few parameters
where users can easily and flexibly adjust.
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1. Introduction

Time series classification [28.27.18.2 1] is ane of the major prob-
lems in time series data mining community [3.12.13,26], where its
applications contribute in several domains, e.g., speech recognition
{6.22]. biometrics [14,11.17] multimedia [299]. etc. Nearest
neighbor classifier with dynamic time warping (DTW) distance
measure [18,.20] has shown in many recent works to outperform
dozen other distance measures by using only a few parameters
{4]. This leads to active research in DTW distance measure. How-
ever, this DTW distance measure has a well-known drawback,
i.e., its computational complexity is quadratic. Since the nearest
neighbor classifier requires to search through every data sequence
in a database, it is definitely impractical to implement on a system
with limited resources in either memory storage or computational
power, e.g., a tiny sensor ar an embedded system.

Recently, many techniques to speed up nearest neighbor search
for DTW distance have been widely proposed including lower
bounding distance functions {10.30.7,31,23,16] and index struc-
tures {7.23.31.16]. A lower bounding distance function, a much
faster calculation, is used to estimate DTW distance between two
time series sequences with ane simple candition: the lower bound-
ing distance must be smaller than or equal to its actual DTW dis-
rance. Unlike the lower bounding distance function, an index

= Corresponding author. Tel.: +66 8 9499 9400 fax: +66 2 218 6955.
E-mail addresses; gd9vnn@cp.engchula.acth {V. Niennattrakul}, g51dsricp.eng.
chula.ac.th {D. Srisai}, ann@cp eng.chula ac.th {CA. Ratanamahatanaj.
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structure has been proposed to guide the search by accessing only
portions of the database instead of searching through the entire
database. Although these well-known techniques can reduce some
computational fime, a large number of sequences are still required
to be retrieved for the nearest neighbor calculation. In addition,
more storage space is required for storing an index structure, while
its main objective is aiming to reduce storage space for a system
with limited resources.

Template matching is a solution. Instead of searching for a near-
est neighbor from an entire database, only a few templates have to
be retrieved, and the class label of the best-matched template is
returned as an answer for the issued query. Typically, one template
for each class is constructed, so the number of data needed to be
stored is merely equal to the number of classes. With a template
matching framework, a system with limited resources is now prac-
tical; in other words, the system can significantly reduce bath stor-
age and computation requirements for classification problems.

Generally, to construct a template, all data sequences of the same
class are averaged. Unlike other typical data types, time series data
need ashape-based averaging algorithm instead of a typical ampli-
tude averaging approach since correlation among adjacent dimen-
sions of time series exists [15,25]. Additionally, amplitude
averaging praduces an undesired mean, which leads to an inaccu-
rate classification. Fig. 1{b] shows an undesired averaged result con-
taining two events, whereas both original sequences, A and B,
consist of anly one event. In fact, a goad template should preserve
characteristics of these two data sequences, i.c., only one event
should appear, as shown in Fig. 1(c). This characteristic-preserving
template can be achieved by a shape-based averaging method.
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Fig. 1. {a} Two time scrics sequences A and B arc averaged using {b) an amplitude
averaging and {c} a shape-based averaging.

However, finding a shape-based mean is still controversial be-
cause data sequences are averaged in a DTW distance space, not
in a Euclidean space. Unfortunately, to the best of our knowledge,
no optimal solution has yet been proposed. Over a decade ago,
Gupta et al. proposed a heuristic solution called NLAAF [5]. but
only a handful of work has adapted it to a time series data mining
domain {19,24]. Particularly, NLAAF dees not produce good aver-
aged results, and consequently this leads to poor classification
accuracy (this will be demonstrated and compared with our pro-
posed method in Section 5).

In this work, we propose a novel shape-based remplate match-
ing framework (STMF) for time series data with deterministic heu-
ristic averaging algorithms. STMF consists af two phases, i.e. a
training phase, where templates are constructed, and a test phase,
where a query sequence is classified with the constructed tem-
plates. To construct a template, a new averaging scheme with
two averaging functions, cubic-spline dynamic time warping
((DTW) averaging and iterative cubic-spline dynamic time warp-
ing (ICDTW) averaging, is introduced in this paper. With these
algorithms, very well-formed templates are stored in the database.
In the test phase, templates are retrieved and compared with the
query sequence, and a class label of the nearest template will be
the answer to the query. It is worth to note that classification with
templates typically achieves lower accuracy than classification
with an entire database. In experimental evaluation section, we
will show that our STMF achieves comparable accuracies, while
being able to speed up the classification in orders of magnitude.

The rest of the paper is organized as follows. Sections 2 and 3
provide essential background and related work, respectively. Our
framework, STMF (shape-based template matching framework),
will be introduced along with two averaging algorithms in Section
4. In Section 5, extensive experimental evaluation will be demon-
strated. Finally, we offer conclusions and directions for future work
in Section 6.

2. Background

This section provides essential background knowledge to
understand our proposed methods in this paper.

2.1. Dynamic time waiping {DTW) distance

DTW distance [1,20,18] is a well-known shape-based similarity
meastre. Ituses a dynamic programming technique to find an opti-
mal warping path between two time series sequences. Ta calculate

the distance, it first creates a distance matrix, where each element
in the matrix is a cumulative distance of a minimum of three sur-
rounding neighbors. Suppose we have two time series, a sequence
A=i{a,...q....q5 and a sequence B=i{by,....b;... by First, we
create an n-by-m matrix, and then each (i,f) element, 3 of the ma-
trix is defined as:

. P PR, - - . i
vij — lai - bil” + min{y; TEIRI Y RE (1

where +;; is the summation of ig; I and a minimum cumulative
distance of three clements surrounding the (i,j) element, and p is
the dimension of Ly-norms. When all elements in the matrix are
filled, the DTW distance is determined from the last element 7,
of the matrix. For time series domain, p = 2, equipping to a Euclid-
ean distance. is typically used. Since the DTW distance is important
background knowledge for this paper, we provide more concrete
pseudo code in Table 1 and an illustrative example in Fig. 2.

2.2. Dynamic fime warping (DTW} averaging

DTW averaging was first introduced by Gupta et al. [5] to find
an averaged signal between two time series sequences, Unlike
the DTW distance, DTW averaging uses another matrix to store
an index of the adjacent element that has a minimum cumulative
distance. After elements in the path matrix are filled up. the path is
traced back from the last element to the first element. An averaged
result is then calculated along the path. Suppose the path
W= {wy,. oWy, owyi where wy is the kth.coordinate (iy.fe) in
the optimal path of sequences A and B, where i, and j are indices
of data points in sequences A and B, res pec[ivelﬂy. Therefore, a new
sequence Cis derived from elements ¢y = A7 where ¢, and

Ty

- . B .
tng are the weights of the sequences A and B, respectively. We also

Table 1
Dyeamic time warping distance measure.

Funcrion [dist] = DTW-DistaNcE{A. B}

1. let n7 be the length of time series A
2. Letm be the length of time serics 8
3. Initialize D = Arrav{i]fm)
4. Jorii=1-m
5. i}
6. fi=1andj=1}
7 mint =05
8. Elseif {i=1andj=1}
9. min =0
10. Lise
11. min = MINDy; . Di ;D 4 o
12 £nd if
13. Dy = min +a; - biP
14. End for
15, Lnd for

16, Return dist ~ & Dy

1 2 3 4 & & 7

Fig. 2. Mapping between two time series sequences A=:238,23.1.3: and
B=1:31,23.8,3,2 in DI'W distance calculation.
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provide a concrete pseudo code and an example of DTW averaging
in Table 2 and Fig. 3, respectively.

It is important to note that DTW averaging function is an oper-
ation which has only commutative property with no associative
property [15]. In the other words. if there are three sequences A,
B. and C. a result of averaging A and B, then C is not necessarily
equal to a result of averaging B and C, then A. A sequence ordering
can largely affect the averaged result. In addition, an averaging se-
quence will always be longer or equal to the original sequences. If a
large dataset is to be averaged, averaging sequences will be very
long which will definitely decrease a system's performance. There-
fore, in this work. we propase two new DTW averaging functions to
resolve this problem and a new averaging scheme to efficiently
order averaging sequences.

3. Related work

Over a decade ago, Gupta et al. [5] proposed a heuristic shape-
averaging scheme called NLAAF, which was first introduced in sig-
nal processing community, and later has been utilized in data min-
ing tasks {19.24]. Specifically, NLAAF uses a DTW averaging to
produce a mean between a pair of time series sequences. NLAAF
consists of two averaging schemes, i.e.. NLAAF, and NLAAF..
NLAAF; averages sequences in hierarchical manner. Suppase there
are eight sequences, i.e., Ay to Ag. Ay and A, are averaged to produce
Ay, and Az and Ag are averaged to produce Az4.and so on. Then, in
the next level, A3 and As 4 are averaged to produce Agyz)(34) and

so on. Limitation of NLAAF; is that it requires the number of .

sequences o be a power of fwo. Unlike NLAAF;, NLAAF, averages
sequences in sequential manner. Ay and A, are first averaged to
produce A, 5. and.then A, and As are averaged to produce Agyz)a.
and so on.

Since NLAAF, has a limitarion that it requires the number of se-
quences to be a power of two. Gupta et al. recommend to use a
combination of both NLAAF; and NLAAF,. For example, to average
100 sequences, 4 sequences will be discarded, and the rest of the

Table 2
Function medified from DTW distance to find an optimal warping
path.

FUNCTION [ W] = DTW-AVERAGING{A, B, 1, (g}

1. W= WareiNcPaTh{A, B}
2. let N be a length of the path W
3. let Cbe a time series sequence of length N
4. Tor{k=1 toN;
5. [4.i]=wx
G € e
7 Addg toC
8. [Lnd for
9. Return C
{a) 1
A B
1 3
Q)
1 2 3 4 = 7
b) 14 -
( ) DT Averaging B
N P
< P "
| S S
" s 3 4 ] & 7 & &

Fig. 3. {a} Two sequences A=:2,3,8,2,3.1.3: and B=:3,1,23,8,32; arc averaged
by the DIW averaging aigorithm to generate {b} an averaged  sequence
C=:2515.2.3.8.2573.15,25" Note that the length of the result will increase
in each averaging.
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sequences will be separated into three groups of 32 sequences,
each of which will be averaged using NLAAF,. Therefore, three
averaged sequences produced from NLAAF; will then be averaged
using NLAAF,. Obviously, NLAAF is nondeterministic. Since a
DTW averaging function does not have associative property, differ-
ent orderings of sequences in both NLAAF; and NLAAF; will lead to
different averaged results. Additionally, an averaged sequence pro-
duced by NLAAF will be very long since DTW averaging function
will always produce a longer sequence than its original sequences.
In this work, we propose two new DTW averaging functions and an
averaging scheme which will produce a more accurate averaged
result, and when this result is used as a template, it will produce
a more accurate classification accuracy.

4. Shape-based template matching framework

Shape-based template matching framework {STMF] utilizes
shape-based averaging in creating characteristic-preserving tem-
plates using the Dynamic time warping (DTW) distance as a simi-
larity measurement. STMF consists of two phases. i.c., a training
phase and a test phase. In a training phase, one template for each
class is constructed from an entire raw database, and then tem-
plates are stored with their class labels. As the best case. only
one remplate for each elass is required; however, the number of
templates can be more than one. Note that the overall system’s
performance including a storage requirement and a camputational
rime will improve as the number of templates increases. Table 3
shows a simple idea of a training phase of STMF, where an entire
database is an input, and an output is a set of templates.

In a test phase, only a set of templates is retrieved and com-
pared with a query for a closest mateh, where a set of templates
is very small comparing to the original database. Therefore, classi-
fication time of template matching will be much faster than the
typical ane-nearest-neighbor classifier in many orders of magni-
tude. However, this classificarion with template matching has a
trade-off that its classificarion accuracy may decrease since some
characteristics of data objects in the database could be lost in the
averaging process where some details are dominated by a majority
of the data. To be more illustrative, Table 4 shows how to classify
an incoming query with the stored templates.

To average a set of sequences, we propase a scheme to campute
an averaged result since the shape-based averaging does not have a
commutative property [17]. Instead of averaging sequences in a
random order as done in NLAAF, we propose a heuristic solution
to returh a good averaged result by averaging a most similar pair
of sequences first. After the averaged result is generated, a pair of
sequences from the remaining data including the previous aver-
aged result is determined for the next iteration. We keep on going
until only one sequence is left. We provide a pseudo code in Table
B

In this work, we propose two novel averaging functions, i.e., cu-
bic-spline dynamic time warping (CDTW] in Section 4.1 and lrera-
tive cubic-spline dynamic time warping (ICDTW) in Section 4.2.

Table 3
Trainingjtemplate construction phase.

Funcrion |1 ] = SMTF-TRAININGPHASE{S

Let: be asetof labelsinz
For cach label Lin<
= 1 =data objects with the same label L
1= AVERAGINGSCHEME{Z | }
Add [T.L}in~
Lnd for
Return +

NP AW N
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Table 4
Testiclassification phase.

Funcrion flabefges ) = STMI-TesTPhase{r .}

diStge = INFINITE
labelg,q = Nuw
For each template Tin =
dist = DTW-Averacing {Q 1)
If {dist < distyas}
diStyege = dist
tabelges = T - 1abel
End if
End for
Return labely.s

SovemowawN=

Either ane of these two averaging functions can be used as the Aver
acingFunerion in Line 4 of Table 5.

4.1. Cubic-spline dynamic time warping (CDTW) averaging function

CDTW averaging function produces a more accurate averaged
result by considering both position and amplitude of each data
point in a new averaged sequence, while the DTW averaging func-
tion (Table 2) considers only the amplitude. In other words, the
DTW averaging function equally treats every new data point in a
new sequence, while the CDTW averaging function additionally
determines where a new data point should be placed. Specifically,
a position and an amplitude of a data point in the sequence can be
observed as an x- and y-coordinate in time series. To be more illus-
trative, Fig. 4 shows a comparison between two new sequences
generated by CDTW and DTW. From the figure, the sequence gen-
erated fram the CDTW algorithm is more useful since it preserves
both position and amplitude from the warping path.

Suppose the path W= iwy.. .. Wi.....wyi where wy is the kth
coordinate (g fx) in the optimal path of sequences A and B, where
i and ji are indices of data points in sequences A and B, respec-
tively. Therefore, a position ¢, of a data point in a new sequence
C is determined by ¢, = keaziemr and an amplitude Gy, Of a data

g —ing

point in a new sequence C is determined by ¢y, - b f”,‘; 2 where
e1q and g are the weights of the sequences A and B, respectively.

However, the length of the sequence C is always equal to or
longer than the two original sequences: therefore, re-sampling is
required. In this work, CDTW uses a cubic-spline interpolation

[2] since it requires no parameter and outperforms other

()

o f o,
S e
y \M

e gy

-
Ny
(28]
Fou s
L
|

Fig. 4. Comparision between averaged results generated from {a) CDTW and {b}
DTW averaging functions, where {c} two inputs arc A={2,3.8.2.3.1 3and
b=:3,1238732:.

interpolation techniques in re-sampling of natural sequences.
Additionally, CDTW re-samples positions of the averaged result
to integer values. As illustrated in Fig. 5, the sequence € of 9 data
points is re-sampled to the sequence C of 7 data points. We
provide a concrete pseudo code of CDTW in Table 6.

4.2, Iterative cubic-spline dynamic time warping {ICDTW} averaging
function

Although CDTW produces a good averaged result since it con-
siders both a position and an amplitude, another essential but
not necessary condition for averaging is that the averaged result
should be in the middle of two ariginal sequences. In other words,
DTW distances between the sequences and the result should be
equal. Therefore, we propose an iterative approach for the CDTW
averaging function called iterative cubic-spline dynamic time
warping (ICDTW) averaging function that can truly represent char-
acteristics of a set of subsequences. A good real averaged result can
be determined from the result that gives minimum summation
distances between the result itself and every data sequence. Specif-
ically. if two data sequences are considered, the averaged result is
the sequence which not only has minimum summation distance
but also gives an equal distance between itself to these two data
Sequences.

We would like to emphasize that the distances between the
generated result from the CDTW function and the two original time
series are not always equal; therefore, the averaged result needs to
be slightly adjusted. Obviously., since all elements in the sequence
are real numbers, it is very difficult to obtain the sequence that sat-
isfies this condition. We therefore propose a heuristic and deter-
ministic solution, i.c. ICDTW averaging function mentioned
above. To average two time series sequences A and B, the ICDTW
function will find new weights 54 and jip that make the averaged
result C be the center between the sequences A and B. Obviously,
finding both weights s and fip is not very practical since the
weights fi; and fig are real numbers. We instead heuristically use
a binary search to find only the weight fis. when the weight fig is

Table 5
STMIF averaging scheme.

Funcmion [C] = STMF-AVERAGING SCHEME( = )

1. Inidalize a weight «» = 1 for cach sequence S in =
2. While {Sizesz 1> 13

3 [A.B] = Most similar sequences in =

4 C = AVERAGING FUNCTION{AB, (35, iy}

5. Remove A and b from =
6

7

8

e=tup ¥ty
Add Cto =
End while
9. Return €

(a} 10 -
- Cz”(‘
) -~
S \M\N«-m&wﬁ
J1 2 3 4 ) & 7
(b) 10
C /A\\
= "
o - o ‘1\&1
) SN T g
5} .
1 P 4 5 & 7

Fig. 5. {a} A new sequence (" which is re-sampled from {b} 9 data points in the
sequence Cin Hg. 4{a).
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Table 6
Cubic-spline dynamic time warping averaging function.

Funcrion [C] = CDTW-AVERAGING{A, B, coa. g}

1. W= WarPINGPATH{A.B}
2, Let N be the length of the path W
3. Let N be the length of time series A and 8
4. Let € be a time scrics sequence of size N
5. let C be atime series sequence of size N
6. FYori{k=1to N}
7. il
8, X~

10. Add fx,y}to C

11.  End for

12, C = CuricSeune{C}
13, Return

Table 7
Iterative cubic-spline dynamic time warping averaging function.

FuncrioN [C] = ICDTW-AVERAGING{A, B, cn, (g}

1. Inicialize weights fiy — 10 %, fi, —~10°, and jig =1

PRt - i { B 1
Initialize weight fiy, - '”""‘«

C = CDTW-AVERAGING{ A, B, /iy, , fla}
dea = DTWDETANCE{C A} - in
deg = DTWDIsTANCE{C. B} - g

AR S

6. fia —doa < destila iy

7. While {idcp ~ dcyl > 0}

g ﬂA, L Wy ;!‘A,I

9. C = COVW-AVERAGING{A B, fi, . i)
10. dea = DTWDIsrance{C A} - cn
1. dey= DTWDEIANCE(C B} - (g
12. If {dea < deg)

13. Ba - fia
4. lisc

15. B, = i,
16.  Lndif

17.  End while
18.  Return €

Table 8
Details of datasets.
Dataset Number of Length  Size of training  Size of test
classes set set
Synthetic G 60 300 300
Control
CBr 3 128 30 900
Face All 14 131 560 1690
OSU Leaf 6 427 200 242
50 Words 50 270 450 455
Trace 4 275 100 100
‘Two Patterns 4 128 1000 4000
Wafer 2 152 1000 6174
lFace Four 4 350 24 88
Lightning-2 2 637 60 61
Lightning-7 7 319 70 73
ECG 2 96 100 100
Adiac 37 176 390 391
Yoga 2 426 300 3000
Fish 7 463 175 175

fixed. Specifically, for cach iteration, a new weight iy is considered
whether or not the generated averaged result € has an equal DTW
distance to the sequences A and B. If the distance is equal, ICDTW
terminates. In other words, we only need to determine the weight
faand hold the weight $g constant because two sets of weights are
equivalent. For example, for {§a fig) ={4.5). it can be reduced to
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{0.8.1 jwhen the weight fip is fixed to 1: therefore, searching for
Jig is enough to find any pair of weights {fia.fig). Pseudo code of
the ICDTW averaging function is provided in Table 7.

Note that both CDTW and ICDTW averaging functions can be used
in STMF under users' preference. For CDTW, the averaged result pre-
serves the shapes of both original sequences by considering both the
positon and the amplitude of the warping alignment, while ICDTW
averaging returns more accurate characteristics of the averaged re-
sult by calibrating the averaged sequence to have the same distance
between iself and the two original sequences. Performances of
CDTW and ICDTW will be demonstrated in the next section.

5. Experimental evaluation

Three following experiments will demonstrate the superiority
of our proposed method over the current existing approaches.
The first experiment shows accuracies of our shape-based averag-
ing method, i.e.. a new averaging scheme with two proposed CDTW
and ICDTW algorithms, comparing with NLAAF. In the second
experiment, we show that our STMF with both CDTW and ICDTW
outperforms NLAAF and traditional nearest neighbor classification
in terms of accuracy, storage requirement, and time usage for clas-
sification problems. Qur extension of STMF is also evaluated to
show that STMF can support multiple templates within each class,
and to show that traditional nearest neighbor classification is sim-
ply a special case. All codes are implemented in C++ and run on an
Intel Core i7 desktop computer. We evaluate our proposed method
with 15 datasets from the publically available UCR classification/
clustering archive [8]. Table 8 shows the number of classes, length
af each time series data. and size of training/test sets.

5.1. First experiment

In this experiment, we will demonstrate that our proposed
averaging methods, which utilize a new averaging scheme with
CDTW and ICDTW. well represent sequences in the datasets. For
cach dataset, its rraining data and rest data are all combined, and
then all sequences are averaged. In real-word applications, se-
quences should be separated by its own class to achieve maximum
utilities. The averaged results are evaluated using SumDist function
defined as a summation of the distance between the averaged re-
sult and all the eoriginal sequences in the dataset. If a value from
SumDist is small, it means that this method generates a good aver-
aged result. SumDist function is provided as follows.

o

Sm‘nDist(l‘). o L

i

™

L)'I‘WDistalme(!DAD,{‘; . (21
- /

where ¢ is a dataset, b is the averaged result, and D; is a data se-
quence in the dataset = .

Table 9 shows the comparison between SumDist of NLAAF and
our proposed methods, CDTW and ICDTW. The lowest SumDist for
cach dataset is emphasized in bold. Both proposed methods
achieve lower SumDst values since all sequences are averaged
using a new averaging schemes, while NLAAF averages sequences
in random manner. In addition. no re-sampling method is adopted
in NLAAF to scale the averaged sequence down to the same length.
This means that at each step. NLAAF will produce a longer averaged
sequence. It is apparent from the experiment results that CDTW
and ICDTW generate more accurate averages.

We can see from the results that ICDTW usually yields smaller
SumDist than CDTW in almost all of the datasets, and smaller
SumDist than NLAAF in every dataset. However, in some cases such
as 50 Words and Yoga datasets, where sequences within the class
are very diverse, ICDTW may give slightly larger SumDst than
CDTW (but still perfarmis much better than NLAAF); in such cases,
CDTW performs better because ICDTW tries its best to equalize the
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Table 9
Sumbisr of averaging methods.
Dataset NLAAF STMF
CDTW ICDTW
Synthetic Control 8962 3545 3538
CBF 17,827 5119 4856
face All 43,314 12820 12,597
OSU Leaf 12,179 3313 3276
$0 Words 28810 5034 5215
Trace 9417 2054 2046
Two Patterns 105517 34376 33,268
Wafer 693,016 54,115 54,115
Face Four 1735 757 729
Lightning-2 2877 1223 1196
Lightning-7 2961 1126 1113
ECC 1504 545 544
Adiac 1884 512 495
Yoga 163,207 16,826 17193
Fish 944 3N 364
Table 10
Classification accuracy and time usage {scconds) of SIMIF compared with NLAAF,
Dataset NIAAY STMEF
CDTW ICDTW
Synthetic Control 0.80 {1} 0970} 092 {0}
By 0.94 {4) 096{1} 095{1}
Face All 0.57 {46} 0.83{11) 0.81{12)
OSU Leaf 0.35 {67} 0.41{13} 0A427;
50 Words 042 {75) 0.60{44} 058 {43}
Trace 0.92 {6) 0.98 {1} 1.00{2}
Two Patterns 092 {122} 0977 0.95{13)
Wafer 0.10 {514} 0.64{14) 0.63 {8}
face Four 0.56 {2} 0831} 081{1}
Lightning-2 0.56 {16} 0.56{1} 0.54 {2}
Lightning-7 059 (7} 0.66 {2} 0.70 {1}
ECG 0.65 {1} 0.70 {0} 0.71{0;
Adiac 048 {17} 049 {11} 047{12)
Yoga 048 {684} 0A8 {27} 0AB{27}
Fish 0.57 {25} 0.58 {7} 0.59 {8}
Table 11
Storage requirement in KB for storing templates
Dataset NLAAT STMF Original datasct
Synthetic Control 12.40 144 72.00
CBr 4391 154 1536
face All 68.35 736 293.44
OSU Leaf 172.15 10.25 341.60
50 Words 303.87 54.00 486.00
Trace 68.87 440 110.00
Two Patterns 117.81 205 532.00
Wafer 476.97 122 608.00
face Four 24.21 5.60 3360
Lightning-2 12037 5.10 152.88
Lightning-7 64.37 8.93 89.32
ECG 13.30 0.77 3840
Adiac 44.14 26.05 274.56
Yoga 477.70 341 511.20
Fish 8244 1296 324.10

distances, but this in turn could increase the summarized distance
{SumDrst). ICDTW guarantees that distances between the averaged
result and the two original sequences are identical, though not
guarantee to be minimal. In other words, there is a tradeoft be-
tween having an exact average with equal distances and having
an approximate average with minimal distances.

5.2. Second experiment

This experiment demonstrates the utility of our proposed
shape-based template matching framework (STMF) over a
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Fig. 6. {a} Example sequences of four classes of the Trace dataset and templates of
each class generated from STMYF with (b} CDTW and {c} ICDTW.

remplare matching with NLAAF in terms of three metrics, i.e., clas-
sification accuracy, storage requirements, and time usage. Classifi-
cation accuracy is determined by a classification on a set of
templates, and storage requirement is measured from the an
amount of memory needed to store a set of templates. Time
needed to classify the test dataset is also reported. Comparison of
accuracy, storage, and time usage are shown in Tables 10 and 11,
where our method outperforms NLAAF in every dataset. Templates
of Trace dataser generated with CDTW and ICDTW are illustrated
in Fig. 6. The best result is emphasized in bold for each dataset.

The main reason is the fact that data sequences in most datasets
distribute unequally. Although ICDTW generates a more accurate
averaged result, this averaged result may not be the best sequence
to represent the whole unequal distribution of the dataset; each
class may best be represented by two or mare templates since mul-
tiple sub-classes may exist. Therefore, by using only one template
to represent every sequence of the same class, ICDTW could return
averaged characteristics of those multiple sub-classes which tends
to increase classification error.

5.3. Third experiment
Our proposed averaging scheme allows STMF to produce multi-

ple templates for each ¢lass in classification. In this experiment, we
show the classification accuracy of STMF when the number of
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Fig. 7. Classification accuracy of ECG, Face All, Fish, and Wafer datasets when the
number of templates arc varied.

templates are varied. The number of templates used in real-world
applications depends on resources of the system, i.e.. memory stor-
age and computational power. Specifically, the system with small
memory storage and limited computational power is suggested
to use smallest number of templates possible. In Fig. 7, we shows
classification accuracy when the size of remplates are varied in
four datasets, i.e., ECG, Face All, Fish, and Wafer. The classic nearest
neighbor classification is considered a special case when the
number of templates is set to the number of instances in the ¢lass.
In other words, every training sequence is used in femplate
matching and no sequence is discarded.

6. Conclusion and future worlk

In this work, we propose a novel shape-based template match-
ing framework which utilizes a new averaging scheme and averag-
ing functions to generate an accurate set of templates. This set of
templates is used as a dataset for query classification. Compared
with the existing method. our propased method outperforms in
every case in terms of classificarion accuracy, time usage, and stor-
age requirement. In addition, our method can alse be extended to
generate two or more templates for each class when users have
more resources in real-world applications. This research can be ap-
plied to diverse domains where time series classification is needed
and it will be more useful when the system has limited resource in
terms of storage and computational power.
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ABSTRACT

Many algorithms have been proposed to deal with
subsequence similarity search problem in time se-
ries data stream. Dynamic Time Warping (DTW),
which has been accepted as the best distance mea-
sure in time series similarity search, has been used
in many research works. SPRING and its variance
were proposed to solve such problem by mitigating
the complexity of DTW. Unfortunately, these algo-
rithms produce meaningless result since no normal-
ization is taken into account before the distance cal-
culation. Recently, GPUs and FPGAs were used in
similarity search supporting subsequence normaliza-
tion to reduce the computation complexity, but it is
still far from practical use. In this work, we propose
a novel Meaningful Subsequence Matching (MSM)
algorithm which produces meaningful result in sub-
sequence matching by considering global constraint,
uniform scaling, and normalization. Our method
significantly outperforms the existing algorithms in
terms of both computational cost and accuracy.

Keywords: Subsequence Matching, Dynamic Time
Warping Distance, Data Stream, Normalization

1. INTRODUCTION

Due to the age of data explosion, analysis of data
stream in real time is crucial in many data min-
ing tasks including classification, clustering, anomaly
detection, and pattern discovery. Commonly, these
tasks require a subsequence matching algorithm as
an important subroutine. Recently, SPRING [10],
a breakthrough subsequence matching algorithm for
data stream under Dynamic Time Warping (DTW)
distance [9] has been proposed. SPRING can report
an optimal subsequence in linear time. More specif-
ically, it incrementally updates DTW distance, for
each new streaming data point, only in time com-
plexity of the query sequence’s length. After the pro-
posal of SPRING, many authors [1}{7]{13] have in-
troduced fast algorithms to improve performance of
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subsequence matching. In this work, we claim that all
of those past research works [1](10](7][13} are mean-
ingless because the query sequence and candidate se-
quences from the data stream were not normalized.
Normalization {3] is essential to achieve accurate and
meaningful distance calculation, as it normalizes the
data to have similar offset and distribution, regardless
of the distance measure used, especially for DTW dis-
tance measure. Unfortunately, as we have mentioned
above, current subsequence matching algorithms con-
cern mostly about speed enhancement, but neither on
accuracy nor meaningfulness. Fig.1 illustrates sub-
sequence searching in ECG data {3]. Many subse-
quences with similar shape to the query are missed
by the search without normalization.

s 4 A B
VAT A

Query

Threshold

Fig.1: Subsequence searching without normalization
in ECG data. Many subsequences with similar shape
to the query are left undetected.

However, there is an effort to resolve this prob-
lem by trying other approaches; the latest one de-
vises some hardware [11] to accelerate the compu-
tation time. The authors propose two techniques,
i.e. GPUs and FPGAs, to speed up subsequence
matching using DTW with normalization. They have
shown that GPUs and FPGAs can help speed up the
search significantly. However, it is not practical in
real world problems; implementation is hardware de-
pendent, and some systems are not flexibly adjusted
to the problem.

We introduce a novel subsequence matching algo-
rithm called MSM (Meaningful Subsequence Match-
ing) for data stream under DTW distance. MSM con-
sists of two new ideas. First, we introduce a multi-
resolution lower bound, LB_.GUN (Lower-Bounding
distance function under Global constraint, Uniform
scaling, and Normalization) combining with the
well-known LB_Keogh [5] lower-bounding function.
LB_GUN is a new lower-bounding distance function
extended from LB_Keogh. Second, SSM (Scaling
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Subsequence Matrix) is used for lower-bounding dis-
tance estimation of LB_.GUN by incrementally esti-
mating value of normalized data point while guaran-
teeing no false dismissals. The distances for every
scaled query sequence are stored in SSM, and then
MSM algorithm monitors SSM to report the opti-
mal range query or the optimal top-k query when
a new streaming data point is received. From these
two ideas, MSM can monitor data stream nearly in
linear time, and it also achieves much higher accuracy
than existing algorithms as we expected.The remain-
der of this paper is organized as follows. We provide
some essential background in Section 2, and state the
problem definitions in Section 3. MSM, our proposed
method, is described in Section 4. Experimental re-
sults are reported in Section 5, and our work is con-
cluded in Section 6.

2. BACKGROUND

In this section, we provide essential background
knowledge of Dynamic Time Warping distance mea-
sure, global constraint, lower-bounding function for
DTW distance, uniform scaling, and normalization.

2.1 Dynamic Time Warping Distance Mea-
sure

Dynamic Time Warping (DTW) distance measure
(9] is a well-known shape-based similarity measure
for time series data. It uses a dynamic programming
technique to find an optimal warping path between
two time series. Suppose we have two time series
sequences, a sequence X of length n and a sequence
Y of length m. The distance is calculated by the
following equations.

D(X1.. 21, Y1..m1)
qXI...na }/l...m) = d(xna ym)+min D(Xln; Yl.“m—~1)
D(Xl...n—la Ylm)
. _ (1)
where D(X1, 5, 9)=D(@,Y].,) = o0, D(2,2) =
0, and @ is an empty sequence. Any distance met-
ric can be used for d(z;,y;), including L;-norm, i.e.,
d(zs,y5) = |z — y;l.

2.2 Global Constraint

Global constraint efficiently limits the optimal
path to give a more suitable alignment. Recently,
an R-K band (8], a general model of global con-
straints, has been proposed. R-K band represents a
global constraint by a one-dimensional array R, i.e.,
R = (r1,7r2,...,74,...,7), where n is the length of
time series, and r; is the height above the diagonal
in y-axis and the width to the right of the diagonal
in z-axis. Each r; value is arbitrary, making the R-K
band an arbitrary-shaped global constraint.

2.3 Lower-bounding Function for DTW Dis-
tance

Although DTW outperforms many other distance
measures, it is known to require huge computational
complexity. Therefore, LB_Keogh has been proposed
to speed up similarity search. LBgeogn(@, C) between

the query sequence @ = {(q1,92,---,i,---,qn) and a
candidate sequence C = {(¢;,¢g,...,¢i,...,Cn) can be
computed as follows

n lei —ug| ;if e > u;

’ .LBkeogh(Q,C) = !l, - Cil ;if C; > li (2)
. i=1 0 ; otherwise

where u; = max{¢i—r;,...,Gi+r;} and ; =

min{g;—r;,--.,Gi+r;} are envelope elements calcu-

lated from a global constraint R=¢1,7r2,...,7i,...,Tn).

2.4 Uniform Scaling

Many research works [2][12] have been shown that
when the uniform scaling technique is applied, per-
formance, especially the accuracy, significantly in-
creases. More specifically, uniform scaling tech-
nique shrinks/stretches a time series sequence X =
(z1,%2,.. ., Tiy-..,Tp) tO & new time series sequence
Y = (ylayZ: ceesYiye e 7ym)) where Yi = T[jn/m]- We
also define a scaling factor f as a ratio between length
m of new time series Y and length n of original time
series X or f m/n, and define a scaling range
{finins fmaz], Where fiin and fimee are minimum and
maximum scaling factors which give lengths n,,;, and
TNmaz, respectively.

2.5 Normalization

The two time series sequences are compared us-
ing any similarity measure; all the data should first
be normalized. Z-normalization [3] has been pro-
posed and widely used in time series data mining
community, making mean and standard deviation val-
ues of the new time series sequence to be zero and
one, respectively. Suppose we normalize time se-
ries sequence X = (z1,...,Zi,...,Tn) tO Sequence
Y = (y1,---,%i,.--,Yn), we can simply formulate
transformation function as y; = (z; — u,)/0,, where
iz and o, are the mean and standard deviation of
time series sequence X, respectively.

3. PROBLEM DEFINITION

In this paper, we focus on two main query prob-
lems on streaming time series data, i.e., optimal range
query and optimal top-k query. The objective of the
optimal range query is to find non-overlapping nor-
malized subsequences from a data stream, whose dis-
tance between a candidate sequence and a query se-
quence must be less than a threshold &, where the
query sequence is scaled and normalized under uni-
form scaling between scaling range [fimin, fmaz]- On
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the other hand, optimal top-k query reports top-k
non-overlapping normalized subsequences. Neverthe-
less, the scaled query sequences and all candidate sub-
sequences in the data stream must be normalized in
order to return meaningful results. A naive method
to monitor incoming data stream first initializes a set
of normalized scaled query sequences, and then candi-
date sequences are extracted from the data stream us-
ing sliding-window model. After normalization, dis-
tance calculation is performed on the extracted sub-
sequences and non-overlapping optimal results are re-
ported (if any). However, this naive method requires
as high as O(n3) time complexity for each new incom-
ing streaming data point. '

4. PROPOSED METHOD

Since the naive method consumes too heigh time
complexity, we propose a novel approach for sub-
sequence matching which gives meaningful result.
We call our proposed method as an MSM algo-
rithm (Meaningful Subsequence Matching), which
contains two new ideas, i.e., a multi-resolution lower-
bounding function LB_.GUN (Lower-Bounding func-
tion under Global constraint, Uniform scaling, and
Normalization), and SSM (Scaling Subsequence Ma-
trix) which incrementally estimates value of LB_.GUN
under global constraint, uniform scaling, and nor-
malization in linear time while guaranteeing no false
dismissals. Three following subsections of LB_GUN,
SSM, and MSM algorithm are precisely described.

4.1 Lower-Bounding Distance under Global
Constraint, Uniform Scaling, and Nor-
malization (LB_.GUN)

LB_GUN is a lower-bounding function of DTW
distance extended from LB_Keogh [5] whose dis-
tance calculation can be done in linear time. Be-
fore calculation, LB_.GUN first creates an envelope F’
from scaled and normalized envelopes. More specif-
ically, three sequence sets’ are generated, i.e., sets
of @™, R~, and E". The scaled query set Q™ =
{Q:Imm s oz Jis first generated by scal-
ing and normahzmg a query sequence Q to every nor-
malized scaled query sequence Rk, and the scaled
global constraint R~ = {R,, ,...,R},... R}
set is derived from scaling a specific global con-
straint set R~ with all possible scaling lengths from
Tnin tO Thnaz- An envelope F; of a normalized
scaled query sequence Q;c and a scaled global con-
straint R;c for sequence length k is created as in
LB_Keogh, and is stored in the envelope set E~ =
{E, E;, E, E, ..}. Then, E' is generated

Nmin? """

by merging all envelopes in the set E~ together,
where E~ = {(ul ’ ) <‘U.“ L ), R (umaz: lmax>}‘
To find lower-bounding dlstance between a query se-
quence @ and a candidate sequence C under global
constraint, uniform scaling, and normalization, an en-

velope E ofa query sequence (@ is generated as men-

tion above. LBgyn(Q,C,n) is shown in Equation
(3)-
LBeun@.C,n)= (Zaﬁucl ,.Zﬂ>+27,
(3)
» Ci / > u/
G = —Cy ,C; Z l1. (4)
0 ; otherwise
-1 ;¢ >u
Bi=q 1 ;< (5)
0 ; otherwise
_u; ) lz 2 u
Y=< 1 e <1 (6)
0 ,othemlse

where pc, . and g¢, . are arithmetic mean and
standard deviation of data points 1 to n of a candi-
date sequence C, ¢, = (¢; — fic, ,)/0C,. ¢» Nomin and
Timaz are desired scaling lengths, and n, < n <

nmaz'

4.2 Scaling Subsequence Matrix

SSM (Scaling Subsequence Matrix) is another im-
portant component in MSM algorithm. It stores
lower-bounding distances determined by LB_.GUN for
each new incoming streaming data point st at time
t from data stream S. Suppose we have a query se-
quence @; each element of the matrix contains five
values, i.e., v ;, Wt j, Te,j, Y5, and z;, calculated
from time ¢ — 7 to time ¢t. Therefore, values in matrix
element (¢, j) can be incrementally updated from the
matrix element (¢t — 1,7 — 1) according to the follow-
ing equations.

St st > u
Vi =U-15-1F 4§ —s¢ . < l M
0 ,otherw1se
-1 st > u
Wt = We-1,5-1+ 4§ 1 . < l (8)
otherWISe
%2
:Et,j = xt—l,j—l + I_; y St _<_ l] (9)
0 ; otherwise
Yeoj = Ye-1,5-1 + St (10)
Zj = zt-15-1+ (1) (11)
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1
by j=—(vej + pij-wej) + x5 (12)
Ot,5 .
©_ Sth,j Yt,j [z, .
where s, = sl =2 0= 4= — (pej
t ot J i t.J J ( t ])

, u; and l; are from an enveloped generated from a
query sequence Q)l < ] < Nmazy, Mmin S .7 < Nmaz,
and lb;; is a lower-bounding distance LB_GUN for
an element (¢, 7).

4.3 Meaningful Subsequence Matching

Since SSM is updated at every arrival of new
streaming data point st, our MSM algorithm can
monitor both optimal range query and optimal top-
k query. More specifically, for optimal range query,
MSM first calculates and updates values including
lower-bounding distances in SSM, which is an estima-
tion of LB_.GUN and then checks whether best-so-far
distance dpes: is smaller than threshold e. If so, MSM
reports an optimal subsequence when there is no over-
lapping subsequence, and MSM resets dpes: and val-
ues in SSM. For all Ib;; which are smaller than d.s;
in range from 7imin t0 Nmez, LB_.GUN and LB Keogh
are calculated and compared to dpes; respectively to
prune off the DTW distance calculation. If they are
not pruned by any lower-bounding distances, DTW
distance is computed to update dpes: and the optimal
subsequence’s position. Additionally, MSM uses only
two columns of SSM that are values in time ¢ and val-
ues in time ¢ — 1. All lower-bounding distances and
DTW distance are normalized by dividing by 7. The
MSM algorithm for optimal range query is described
in Table 1.

Table 1: MSM Algorithm for optimal range query
MSMOPTIMALRANGEQUERY ALGORITHM
1 Input: a new streaming data point s,
2 Qutput: an cptimal subsequence (if any)
3 update v, wy, x; vy aud z; forall i, 1 €7 <,
and 7b;for all 7, 1y < 1< i

4 if (dyes <€ and Vi, t£79 <1 - 1)
5 REPORT((h. S[tERd, t5tart]
6 ye=k
7 resetvy w, x yand = forall i ¢£04 > 1 -
&  for (7 = fpg, 10 M)
9 if (& o)
if (LB_GUN(Q';. NORMALIZE(S[r— i 1 1])) < dye
if (LB_KEOGH(Q';, NORMALIZE(S[7 -7 : 1])) << dyor
10 distance =DTW(Q';, NORMALIZE(S[7 - i : 1]))
1 if (distance = dyeg)
12 yoge = distamce: thed = 1 — i, 4550 =

13 substitute v/, wy ' x; vy Tand = for v wp x v and g

MSM algorithm for optimal top-k query is imple-
mented based on the optimal range query. With a pri-
ority queue, MSM stores the k-best non-overlapping
subsequence with DTW distance from the result of
MSMOPTIMALRANGEQUERY. First, we initialize
a threshold ¢ to positive infinity. Then, for every new
streaming data point s;, the queue is updated, and

Table 2: MSM Algorithm for optimal top-k query
MSMOPTIMALTOPKQUERY ALGORITHM
I Input: a new streaming data point s,

2 Qutput: update set P of 1op-k subsequence

3 [C dc] =MSMOPTIMALRANGEQUERY(S,. &)
4 IRC#NuLL)

3 P.push(C. d¢)

6 if (size(P) = k)

7 P.pop()

o0

e=Ppeek().dc

the threshold € is set to the largest DTW distance
in the queue. The MSM algorithm for optimal top-k
query is described in Table 2.

5. EXPERIMENTAL EVALUATION

Since none of the current subsequence match-
ing algorithms under DTW distance can handle the
changes of data distribution, offset, and scaling, we
compare our proposed method with naive approach
in terms of computational time only since our pro-
posed method and the naive method will both achieve
the same accuracy. On the other hand, we compare
our accuracy with SPRING, the best existing sub-
sequence matching under DTW distance. Note that
we do not compare our running time with that of
SPRING; while SPRING will have smaller running
time, its results are inaccurate due to lack of normal-
ization, therefore is not a reasonable comparison.

Streaming datasets are generated by combining
training data sequences from the UCR classifica-
tion/clustering datasets [6] and synthesized random
walk sequences. A stream is initialized with a random
walk sequence, and then a training data sequence is
appended to the stream. To smooth the stream, be-
fore concatenation, each sequence is offset by the last
value of the stream. The dataset we used in the exper-
iments are Aidac, Beef, CBF, Coffee, ECG200, Gun
Point, Lighting7, Olive Oil, Trace and Synthetic Con-
trol which are represented by Data 1, Data 2, Data
3, Data 4, Data 5, Data 6, Data 7, Data 8, Data 9
and Data 10, respectively.

In the first experiment, we compare our MSM al-
gorithm with naive method in terms of computa-
tional cost by measuring the number of distance cal-
culations. Fig.2 shows the numbers of all distance
calculations by varying global constraint to 2, 4, 6,
8 and 10 respectively, and in Fig.3, scaling range
{fmin, fmaz] are varied from [0.8, 1.2], [0.85, 1.15],
(0.9, 1.1] and [0.95, 1.05] respectively. The numbers
of all distance calculations are normalized to 100%
which represent numbers of DTW calculations used in
the Naive method. As expected, MSM is much faster
than the naive method by a large margin. Addition-
ally, in MSM, our multi-resolution lower-bounding
function is efficiently used to filter out several can-
didate sequences in linear time while guaranteeing no
false dismissals; therefore, MSM algorithm requires
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Fig.6: MSM outperforms SPRING every scaling range in terms of AoD
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Fig.7: MSM outperforms SPRING every global constraint value in terms of AoD

only a small number of DTW distance calculations
comparing with the naive method.

Then, we compare our MSM algorithm with
SPRING to measure performance in terms of
accuracy, both Accuracy-on-Retrieval (AoR) and
Accuracy-on-Detection (AoD). AoR reflects quality
of an algorithm that is able to find the patterns in
"data stream; on the other hand, AoD reflects qual-
ity of the returned results. Suppose we have data
stream S, a set of expected pattern sequences E,
and a set of retrieved sequences R. We first define
an overlapping subsequence. Let Sfts : te] be the
subsequence starting at t; and ending at t.. Over-
lapping subsequence Ox,y, where X Sla : B

"and Y = Sc : d], and overlap percentage Pxy
are defined as Oxy = S[min{a,c} : min{b,d}]
and Pxy = [0x.v| , Tespectively.

max{b,d} — min{a,c} + 1
Both AoR and AoD can be defined over overlap-
ping subsequence Ox,y and overlapping percentage
P X YeEE
b 20 don = (00K > X € 1Y €5}
S{Pxy|Pxy >p, X €RY € E}
H{Oxy|Pxy >p,X € R)Y € E}|’

and AoD =

e-

spectively,

where p is a threshold of PX,Y that defines a sequence
in R as a discovered sequence. Fig.4 and Fig.5 com-
pare AoRs of MSM and SPRING under various scal-
ing ranges and global constraints, respectively. Fig.6
and Fig.7 illustrate AoDs on every scaling range and
global constraint, respectively. The results show that
MSM produces more meaningful result since SPRING
does not support global constraint (illustrated as one
single column of 100% global constraint in Fig.5 and
Fig.7), uniform scaling, nor normalization.

6. CONCLUSION

This paper proposes a novel and meaningful sub-
sequence matching algorithm, so called MSM (Mean-
ingful Subsequence Matching), under global con-
straint, uniform scaling, and normalization. Two
ideas have been introduced in MSM algorithm, i.e.,
a multi-resolution lower-bounding function LB_.GUN
(Lower-Bounding distance function under Global
constraint, Uniform scaling, and Normalization, and
a Scaling Subsequence Matrix (SSM) which estimates
value of LB.GUN for each candidate subsequence.

Our algorithm can update lower-bounding distance
incrementally under normalization, while guarantee-
ing no false dismissals in linear time. With these two
ideas, MSM algorithm can efficiently monitor data
stream and can answer both optimal range query and
optimal top-k query problems. Since none of the cur-
rent algorithm produces meaningful result, we evalu-
ate our proposed method comparing with the naive
method in terms of time consumption and SPRING,
the best existing subsequence matching under DTW
distance, in terms of accuracies. As expected, our
MSM algorithm is much faster and more accurate by
a very large margin.
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Abstract. One of the most famous algorithms for time series data
clustering is k-means clustering with Euclidean distance as a similarity
measure. However, many recent works have shown that Dynamic Time
Warping (DTW) distance measure is more suitable for most time series
data mining tasks due to its much improved alignment based on shape.
Unfortunately, k-means clustering with DTW distance is still not prac-
tical since the current averaging functions fail to preserve characteristics
of time series data within the cluster. Recently, Shape-based Template
Matching Framework (STMF) has been proposed to discover a cluster
representative of time series data. However, STMF is very computa-
tionally expensive. In this paper, we propose a Shape-based Clustering
for Time Series (SCTS) using a novel averaging method called Ranking
Shape-based Template Matching Framework (RSTMF), which can av-
erage a group of time series effectively but take as much as 400 times
less computational time than that of STMF. In addition, our method
outperforms other well-known clustering techniques in terms of accuracy
and criterion based on known ground truth.

Keywords: Time Series, Clustering, Shape-based Averaging.

1 Introduction

Time series data mining is increasingly an active research area since time series
data are ubiquitous, appearing in various domains including medicine {15}, ge-
ology [13], etc. One of its main mining tasks is clustering, which is a method
to seperate unlabeled data into their natural groupings. In many applications
related to time series data [14], k-means clustering [2] is generally used with the
Euclidean distance function and amplitude averaging (arithmetic mean) as an
averaging method. ’ '
Although the Euclidean distance is popular and simple, it is not suitable for
time series data because its distance between two sequences is calculated in
one-to-one manner. As a result, k-means with Euclidean distance does not clus-
ter well because time shifting among data sequences in the same class usually
occurs. In time series mining, especially in time series classification, Dynamic
Time Warping (DTW) {1} distance has been proved to give more accurate re-
sults than Euclidean distance. Unfortunately, k-means clustering with the DTW

P.-N. Tan et al. (Eds.): PAKDD 2012, Part I, LNAI 7301, pp. 530-541, 2012.
© Springer-Verlag Berlin Heidelberg 2012

125



Shape-Based Clustering for Time Series Data 531

distance still does not work practically [8][7] because current averaging function
does not return a characteristic-preserving averaging result. Traditional k-means
clustering fails to return a correct clustering result since this cluster centers do
not reflect characteristics of the data, as shown in Fig. 1. In this work, we will
demonstrate that our proposed method can resolve this problem.

M“WM;,
Soon e e
Mm asMWJ
Mm,q, wetee?

a)
S N «JfM’\nu e M,fm‘m o

b) i <)

Fig. 1. a) Sample 3-class CBF data [3] and its cluster centers from b) traditional k-
means clustering and from c) our proposed method

We propose a novel method called Shape-based Clustering for Time Series
(SCTS) which incorporates k-means clustering and DTW distance measure, to-
gether with our new averaging method, called Ranking Shape-based Template
Matching Framework (RSTMF) extended from Shape-based Template Match-
ing Framework (STMF) [10] for classification. Unlike STMF, our RSTMF uses
distances from clustering to approximate an order of sequences to be averaged,
giving a few orders of magnitude speedup comparing to STMF. Our evaluation
also shows that our proposed method outperforms other well-known clustering
techniques in terms of accuracy and criterion based on known ground truth. In
addition, the accuracy of our proposed method can future improve when a global
constraint [11] is utilized in distance calculation and data averaging.

The rest of the paper is organized as follows. In section 2 and 3, we offer back-
ground knowledge and related works. In section 4, we explain our new frame-
work for time series clustering, which is Shape-based Clustering for Time Series
(SCTS). The experiments and results are shown in section 5. Finally, conclusions
are provided in section 6.

2 Background

This section provides background knowledge on k-means clustering, Dynamic
Time Warping (DTW) distance measure, and global constraint.
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2.1 K-means Clustering

K-means clustering [2] is a well-known and very simple partitioning clustering
algorithm. Its algorithm tries to group similar data into the same cluster by
using an objective function that minimizes a sum of squared errors between a
cluster center to its members. The algorithm is done as follows:

1. Initialize k cluster centers.

2. Measure the similarity between each data and all cluster centers and assign
data into the most similar cluster.

3. Calculate a new cluster center of every cluster using an averaging function.

4. Repeat steps 2 and 3 until the cluster membership does not change.

K-means clustering consists of two major subroutines, which are a distance
function to measure the similarity between data sequences and an averaging
function to return a new cluster center. Generally, most time series clustering
works use Euclidean distance and amplitude averaging method. However, both
cluster centers and their cluster members are inaccurate. In this work, we resolve
this problem by using the DTW distance measure with our newly proposed
averaging method called RSTMF.

2.2 Dynamic Time Warping (DTW) Distance Measure

DTW distance [1] is an accurate similarity measurement which is generally
used for time series data [9], especially in classification [6]. An optimal align-

ment and distance between two sequences P = (p1,...,P:,-..,Pn) and @ =
(g1,---,Gj,---,qm) can be determined as follows.

dist(pi-1, ;) _
dist(pi,q;) = (p: — ¢;)° + min ¢ dist(p;, gj—1) (2)
dist(pi—1,qj-1)

DTW distance is computed through dynamic programming to discover the
minimum cumulative distance of each element in 7 x m matrix. In addition, the
warping path between two sequences can be found by tracing back from the last
cell.

In this work, DTW distance is used to measure the similarity between each
time series data and cluster centers to give more accurate results.

2.3 Global Const_raint

The global constraint is used when we need to limit the amount of warping in the
DTW alignment. In some applications such as speech recognition [12], two data
sequences are considered the same class when only small time shifting occurs; so,
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Py n

Fig. 2. The warping window of P and @ is limited by the global constraint of size r

the global constraint is used to align the sequences more precisely. The Sakoe-
Chiba band [12], one of the most popular global constraints, has been originally
proposed for speech community and also has been used in various tasks in time
series mining [11]. The size of the warping window is defined by r (as shown in
Fig. 2), the percentage of the time series’ length, which is symmetric in both
above and on the right of a diagonal. In this work, we will show in experiments
that the global constraint plays an important role in improving the accuracy.

3 Related Work

In the past few decades, there are many clustering techniques proposed to cluster
time series data [5], for example, agglomerative hierarchical clustering [13], which
merges most similar objects until all objects are in the cluster. However, this
technique is still inaccurate, especially when outliers are present.

Another popular clustering technique is partitional clustering, which tries to
minimize an objective function. The well-known algorithms are k-medoids and
k-means clustering, which are different in their approaches to find new cluster
centers. For k-medoids clustering application{4], DTW distance is used as a
similarity measure among data sequences, and a sequence with minimum sum
of distance to the rest of the sequences in the cluster is selected as a new cluster
center. However, medoid is not always a centroid of a cluster, so the sequences
can be assigned to wrong clusters.

In contrast to k-medoids clustering, k-means clustering mostly uses Euclidean
distance as a distance metric, and an arithmetic mean or amplitude averaging
is simply used to find a new cluster center {14]. Although the DTW distance
is more appropriate for time series data, there currently is no DTW averaging
method that provides a satisfied averaging result.

According to this, many research works have tried to improve the quality
of the averaging result. Shape-based Template Matching Framework (STMF)
[10]} was recently introduced to average time series sequences. Table 1 shows the
algorithm of this framework; the most similar pair of sequences is averaged by
Cubic-spline Dynamic Time Warping (CDTW) algorithm (in line 6).
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Table 1. Shape-based Template Matching Framework algorithm [10]

Algorithm STMF(D)

1. [D is the set of time series data to be averaged

2. linitialize weight w = 1 for every sequences in D

3. |while(size(D) > 1)

4. | {C1,C2} = the most similar pair of sequences in D
5. Z = CDTW(C,, Ca, wey, we,)

6. wz = we;+ wo,

7. | add Z to D

8. | remove C1, C2 from D

9. |end while

10.|return Z

Given C; and C, as the most similar sequences, first, we find the warping
path between these two sequences. The variables ¢;; and cy; are elements of C}
and Cz, which are warped. The averaged sequence 7, which has coordinates zj,
and z;, can be computed as follows.

_ We; €15 T Wey G2
Wey + Wey

(3)

2,

T

_ We, 14+ Wep C2j,

wc; + wcz

2k, (4)
In equations 3 and 4, w,, and w,, are the weight of the sequences C; and Cs,
. respectively. After we get the result, a number of points in the averaged sequence
is re-sampled by using cubic-spline interpolation [10]. As shown in Fig. 3a), the
averaging result from DTW averaging gives a sequence with 9 unequally spaced
data points, whereas in Fig. 3b), the sequence is resampled with cubic spline

interpolation to obtain a sequence of 7 equally spaced data points.

Fig. 3. The average sequences between C; and C using DTW alignment a) before
applying cubic spline interpolation and b) after applying cubic spline interpolation
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However, according to this framework, finding the most similar pair for each
time of averaging is enormously computationally expensive because the DTW dis-
tance of every pair of the sequences must be computed. Therefore, our RSTMF will
mainly focus on improving its time complexity by estimating an order of sequences
before averaging while maintaining the accuracy of the averaging results.

4 Shape-Based Clustering for Time Series (SCTS)

In this paper, we propose Shape-based Clustering for Time Series (SCTS) by
incorporating k-means clustering and DTW distance, together with a novel aver-
aging function, Ranking Shape-based Template Matching Framework (RSTMF).
Although STMF can still be used to determine a cluster center, it is computation-
ally expensive; therefore, computational time of k-means clustering significantly
increase.

We provide an overview of the proposed clustering algorithm in Table 2; the
DTW distance is used instead of the Euclidean distance in a membership as-
signment process. After we finished assigning each data sequence into the most
similar cluster, RSTMF is utilized to average all of the sequences within each
cluster until all cluster centers are updated. Unlike STMF, RSTMF approxi-
mates an order of averaged sequences by looking at the Dist value, which is
the DTW distance between data sequences in M and all cluster centers in C.
Accordingly, RSTMF can provide the average sequence by using less compu-
tation time than that of STMF, which calculates the distance between every
pair of data and the most similar pair of sequences is averaged, making it very
computationally expensive.

Table 3 shows our RSTMF averaging algorithm, which determines a cluster
center by using Cubic-spline Dynamic Time Warping (CDTW) [10] to average a
pair of time series sequences. RSTMF utilizes Dist to approximate a similarity
distance between every sequence pair, defined by distoppros. After that, CDTW
is used to average a pair of sequences with the minimum distoppror value. Then,
we update S and continue the averaging until only one sequence remains.

In RSTMF algorithm, the distopproz between each pair of the sequences can
be computed by using the Dist value. Suppose P and @ are data sequences
in M, we have Distpyp,.. = (Distmp,c,,---> Distyp,cy,- - - Distmp,cy) and
Distyy,... = (DistMQ’cl, ..., Distayg . cise- s DistMQ,cK> where Distp, ¢, and
Distumg,c, are the distance between P or Q and its k** cluster center, and K
is a number of cluster. By applying the triangular inequality theorem, p; and
gx are assumed to be two sides of a triangle. Then, the distoppror of P and @,
which is another side of the triangle, can be approximated by equation 5 and
collected into S.

distappmz(DistM,,,,,_, DiStMQ,W) = max |Distyp,c, — DiStMQ’Ck (5)
1<k<K

After finishing an averaging of two sequences, we insert the resulting sequence
into M and delete these two sequences. Then, we update S by using the algorithm
in Table 4.
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Table 2. Shape-based Clustering for Time Series (SCTS)

Algorithm SCTS(D, K)

©XND AW

= -
[

[ ———
> s

[\
o

=
o

o
w

— b
o N

19.
.|return the cluster members and the cluster centers

D is the set of time series data
C is the set of cluster centers
K is the number of cluster in C
M is the set of data in each cluster
Dist is the matrix of the distance between data sequences and all cluster centers
initialize C as cluster centers of K clusters
do
for i = 1:size(D)
for k = LK
Distp;.c, = DTW(D;, Ck)
end for
if(Distp;.c, is minimal)
assign D; into My
end if
end for
for k = 1:K
Cr = RSTMF(My, Dist)
end for
while(the cluster membership changes) .

Table 3. The RSTMF algorithm

Algorithm RSTMF(M, Dist)

oo ND W

M is the set of data in each cluster
Dist is the matrix of the distance between data sequences and all cluster centers
S is the matrix of the distance between data sequences in M
initialize weight w = 1 for every sequences in M
for i = 1:size(M)

for j = i+1:size(M)

SMi'Cj = SMj,CiZ diStapproz(DiStM,-,.“ ,DiSth,... )

end for '

end for

.{while(size(M) > 1)

Sm;,c; = minimum value in S
M, = CDTW(M;, M;, wm,, wMJ-)
wM, = WM;+ WM;

add M. to M

UPDATE(S, 4, j, 2)
remove M;, M; from M
.lend while
.{return M,
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Table 4. The UPDATE algorithm

Algorithm UPDATE(S, a, b, 2)
S is the matrix of the distance between data sequences in M
for i = 1:size(S) '
SMz,Mi = SMisz.= min(SMa-Mu SMbuMi )
end for :
remove Snr,,. ., S.. M., SM,,..., S....m, from S

Al ol i

By using the dist,ppror and the UPDATE method, our RSTMF can achieve
large speedup because we can estimate an order of the sequences before aver-
aging. In contrast, the original STMF needs to calculate the DTW distance to
select the most similar pair of the sequences every time of averaging.

5 Experiments and Results

In this work, we evaluate our method by comparing it with other clustering
techniques, which are typical k-means clustering-with the Euclidean distance
and amplitude averaging function, k-medoids clustering with the DTW distance
[4], and k-hierarchical clustering {13] using both the Euclidean and the DTW -
distance. We compare our SCTS using RSTMF with that using the original
STMF. Our experiments are evaluated on ten datasets from the UCR datasets
classification/clustering archive [3] in diverse domains, as shown in Table 5.

Table 5. The details of datasets

[ Datasets  [Number of classes[Length of data[Size of training set[Size of test set|

Synthetic Control 6 60 300 300
Trace 4 275 100 100
Gunpoint 2 . 150 50 150
Lightning-2 2 637 60 61
Lightning-7 7 319 70 - 73
ECG 2 96 . 100 100

Olive Oil 4 570 30 30
Fish 7 463 175 175

CBF 3 128 30 900

Face Four 4 350 24 88

We execute each algorithm for 40 times with random initial cluster centers,
and the k value is set to the a number of classes in each dataset. With the luxury
of labeled datasets used in all experiments, an accuracy, which is the number of
correctly assigned data sequences in all clusters, is used evaluation. Fig. 4 shows
the accuracy of our proposed method, comparing other well-known clustering
methods mentioned above. According to the results, our method outperforms
others in almost all datasets.
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Fig. 4. The accuracy of our RSTMF method on 10 datasets, comparing with a) general
k-means clustering, b) k-medoids clustering, and k-hierarchical clustering using c) the
Euclidean distance and d) the DTW distance, respectively |

To re-emphasize our finding, we also use another criterion based on known
ground truth [5] to measure a similarily between two sets of clusters, i.e., ground-
truth clusters and results from clustering algorithms. Suppose G and C are sets
of k ground truth clusters and the clusters from our clustering technique. The
similarity between G and C is calculated by the following equations.

k
. 1 . '
Sim(G,C) = Eiﬂlréljag(kSzm(Gi, Cj) (6)
. 2|1G; NG|
Sim(G;, Cj) = 7
(G G) = 161+1c) "

In Fig. 5, we compare our proposed work with the general k-means clustering
and the k-medoids clustering using this criterion. The results show that the
clusters obtained from our method are more similar to the ground-truth clusters
because the RSTMF averaging method does give the new cluster centers that
represent the overall charactheristic of the data within each cluster.
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Furthermore, RSTMF can reduce the time complexity by> a few orders of
magnitude (as shown in Fig. 6a), while still providing comparable accuracy to
STMF (as shown in Fig. 6b).
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~

K-medoids Clustering with DTW
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K-means Clustering with Euclidean
distance and amplitude averaging

as 1

°

Our proposed work Our proposed work

a) b)
Fig. 5. The criterion based on known ground truth, comparing our proposed method
with a) general k-means clustering and b) k-medoids clustering
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Fig. 6. a) The speedup achieved by our proposed work. b) The accuracy of our proposed
work comparing with that using STMF.

In some cases, it appears that SCTS with DTW distance achieves a lower
accuracy than the general k-means clustering. In an attempt to alleviate this
drawback, we experiment on the global constraint parameter of DTW, Sakoe-
Chiba band. We can improve the clustering accuracy, comparing with the orig-
inal k-means clustering (warping window size is 0%). Fig. 7 shows the accuracy
of our proposed RSTMF and STMF, which are comparable, as warping win-
dow sizes vary. In almost datasets, the larger warping window size does not
always provide the better accuracy; so, the appropriate warping window size is
around 20%. However, in some dataset such as ECG, the wider warping win-
dow can lead to pathological warping and make the accuracy of clustering de-
creases.
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Fig. 7. The accuracy of Shape-based clustering using STMF and our proposed RSTMF
of a) CBF, b) ECG, c) Trace, and d) Synthetic Control datasets

6 Conclusion

In this paper, we propose time series data clustering technique called Shape-
based Clustering for Time Series (SCTS), which incorporates k-means clustering
with a novel averaging method called Ranking Shape-based Template Matching
Framework (RSTMF). ‘

Comparing with the other well-known clustering algorithms, our SCTS yields
better cluster results in terms of both accuracy and the criterion based on known
ground truth because our RSTMF averaging function provides cluster centers
that preserve characteristics of data sequences within the cluster (as shown in
Fig. 8). Furthermore, RSTMF does gives a comparable sequence averaging result
while consuming much less computational time than STMF in a few orders of
magnitude; therefore, RSTMF is practically applied in clustering algorithm. We
also used global constraint to increase an accuracy of our clusters. The results
show that our SCTS can provide more accurate clustering when the width of
warping window is about 20% of time series length.

e Y A el e

a) b) ©)

Fig. 8. The cluster centers obtained from a) our proposed method and b) the original
k-means clustering of c¢) sample 4-class Trace data
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Abstract— Motif discovery algorithm or finding of frequently
occurring patterns, one of the fundamental data mining tasks, has
drawn numerous attentions in the past decade. However, all of the
previous altempts require some predefined parameters, e.g., a length
of the underlying patterns. Unfortunately, such information is very
difficult to determine. The next problem is that once the motifs are
discovered in various lengths, il is exceedingly arduous to rank them.
In this paper, we propose a novel parameter-free algorithm (o
discover time series motifs with a proper length. Our ranking scheme
to determine the best motifs is hased on an ability to compress the
time series data by its motif. Exiensive experiments in both planted
and real datasets confirm the validity and effectiveness of our
algorithm.

Keywords: motif discovery; time series mining.

L. INTRODUCTION

Motif discovery algorithm [1][6][7]{8][9][15][16] is
basically a search algorithm for patterns within time series
sequences. It has the implications in higher level data mining
tasks such as clustering and anomaly  detection
{10][11][12](21). There are a plethora of motif discovery
algorithms with various techniques—the great advancement.
For example, MK motif discovery algorithm has utilized the
use of early abandoning to prune off many unnecessary search
spaces. The time complexity of the algorithm has reduced to be
essentially linear [2]. However, users do suffer from selecting a
set of parameters{13]; an initial window size is a typical one.
Therefore, a parameter-free motif discovery algorithm is highly
in demand. A common approach is to find a motif at every
possible window size. However, the problem yet remains, as
there is no criterion to judge the quality of the solutions among
different window sizes, not to mention the cost in terms of time
required to perform on every possible window size. [9]
proposed a fair method of ranking system that allows all
possible motifs compete across window size. The algorithm,
nonetheless, costs an over-pruning problem— yielding
mediocre quality of answers. To address and resolve these
problems, our paper proposes a novel parameter-free
algorithm. Our first priority is to propose an algorithm to
measure and assure the quality of the solutions. The paramount
mechanism is to use compression as a ranking scheme. In this
work, the minimum description length [10] (MDL) concept is
used for motif discovery. The MDL allows parameter-free
nature. Furthermore, it is quite effortless to utilize parallel
computing techniques to speed up the algorithm.  The
extensive experimental results confirm our proposed
compression-based ranking scheme. Fig.1 shows the typical
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total bitsave plotted for every window size of the time series
dataset.
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Figure I. A plot of total bitsave or fitness of each window size. Notice
there are two peak values which match the size of various classes of the motif.

I1.

In order to understand terminology in this context, the
definitions are clarified. First of all, we begin by defining the
data type in this context, a time series:

DEFINITION AND NOTATION

Definition 1: A time series T of length n is an ordered set of
real numbers of a sequence £;,7,,45,...,7, .

We are interested in finding subsequences or patterns of the
time series:

Definition 2: A subsequence C of length m of the time series
T of length n is a subset of an ordered sequence

Lyl with the

£t t

P25+ T2 Vi m—
In order to obtain subsequences, we extract the time series
into sliding windows:

consecutive position

| wherel <i<n—-m+1.

Definition 3: The sliding windows of length L are all
possible subsequences of the time series extracted by a

window of length L .
When we have sliding windows, an overlapping pair of

motifs may occur. This kind of overlapping pair is called a
trivial match.

©ICSEC 2012, October 2012, Pattaya, Thailand
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Definition 4: A pair of the subsequence of length L is trivial
when at least a single pair of positions is overlapped.

We give a discrete string T of alphabets for simplicity.

T = tkxyxyxypplldppllqzas

To illustrate, if we consider sliding windows of length 4,
the pair {xyxy, xyxy} is not preferable because it has
overlapping part, i.e., it shares common {xy} which is
considered trivial. In other words, the pair {ppil, ppll} is more
interesting subsequence pattern, as it is not considered trivial.

Definition 5: A pair of the subsequence of length L {X,Y},

is too good when the difference of the boundary deviates less
than a standard deviation of a set of the difference in each
position from position 1 to position L.

Here is the reason why we need to define the word “too
good” above. Consider the following example:

TABLE L AN EXAMPLE OF BITSTRING
T = psabcdefgxnmhbfabcdefgopos?iiibbohifilimmz
Subsequence Length Position
abcdefg 7 a=3
abcdefg 7 a=16
hijk 4 h=27
hijk 4 h=34

For simplicity, we use an alphabet string to represent a time
series sequence. Assuming that the algorithm runs from left to
right for any length of sliding windows, there are two pairs of
pattern here: abcdefg and hijk. In the case of sliding windows
of length 4, there are two possible choices: abed and hijk.
Unfortunately, typical algorithms will discover only a pair of
subsequence abed. To resolve this, we need to make sure that
abcd is a true motif for this sliding window. In this case, it is
easy to sec that by moving forward one data point from
position (6, 19) to (7, 20) of time series T above. Itis (‘e’, ‘e’)
which is the same. Therefore, it is considered too good (to be
true) motif. The other sliding window lengths will eventually
find this subsequence too. The sliding window of length 4
disregards this subsequence and retries the next pair. The next
pair of the subsequences is hijk at the position (27, 34). In this
case, by moving forward or backward one data point, none of
the pairs of data, (26, 33) = ('s’, ‘o’) and (31, 38) = (‘b’, T’),1s
the same. This means a pair of subsequence hijk is considered
not foo good at this window length.

34
Definition 6: The time series motif of length L (L-length-
motif) of a time series 7 is an unordered pair of subsequences
of length L that has the smallest distance among sliding
windows of length L, which is not considered too good.

This definition tells us that, in the window of length L, we
disregard the smallest distance which is too good. This action
allows the larger length of window to find the abandoned
subsequence instead while this length still finds a proper pair
of subsequences.

Definition 7: A potential candidate for a motif of the time
series T has the following properties,

Similarity. the candidate is the L-length-motif.

Frequency: the candidate has many neighbors that are
similar to the candidate itself.

Competitiveness: the candidate can be a motif evenhandedly
regardless of the length of the sliding windows. '

Many readers may be familiar with a motif that is the most
similar pair of subsequences. However, this work prefers a
motif that is not only similar, but also frequent. These two
propertics seems conflicting to each other. Therefore, our
proposed work manages this into two steps. First is to find the
most similar pair -of subsequence and not too good or L-
length-motif. Here, the similarity has a major role. The
“winner” or L-length-motif will be a representative of length L
to compete with other window sizes. The scoring function will
base on both similarity and frequency. One of the most
important properties of scoring function is competitiveness.
This work achieves these three properties by using
compression-based algorithm for the ranking scheme. While
many compression techniques are available, our work utilizes
an MDL framework [10] because it supports parameter free
nature, but yet easy and quite intuitive. Nonetheless, the MDL
framework requires discrete data to represent a bit for
compression.

Definition 8: A discrete normalization function is a function
to discretize the real value of time series into a-bit discrete
values of range [1, 2°] as follows

DiscreteNorm(T') := round (ﬂ) *2°-D+1
max— min

where min and max are the minimum and the maximum
value of subsequence T, respectively.

In this work, we simply use Euclidean distance as a
distance function for similarity comparison.

Definition 9: The distance between two subsequences is
defined as the Euclidean distance, given by
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L
Dis«(T,,T,) = \/ﬁ
i=0

In information theory, Shannon entropy is widely used for
defining the lossless compression technique. It quantifies the
expectation value of the information. In other words, it
represents the lower bound of expectation value (or average)
of number of bits required to perform the lossless data
compression on each data point [22]. In this context, we
simply call it entropy.

Definition 10: The entropy of a time series 7 is defined as:

|
Entropy(T) = z p; log,(—)

where p, is the probability that a symbol in T, will occur.

Notice that the time series is already discretized (Definition
8) before calculating the entropy. We have the expectation
value of each data point. Now, we are ready to define the
description length (DL) of the time series. See [10] for more
information.

Definition 11: The description length DL of time series 7 of
length m is the total number bits required to represent it, given
as

DL(T) .= m* Entropy(T)

Definition 12: A hypothesis H is a subsequence used to
encode one or more subsequences with the same length.

Definition 13: A Description Length of a Group (DLG) C is
the number of bits required to represent all subsequences in
the group.

DLG(C):= DL(H)+ ) DL(A~ H) - max(DL(4~H)

AeC

The center of the group is hypothesis H obtained by the
average of all members in the group.
Definition 14: A bitsave is the number of bits saved after
applying an operation. It can be calculated from the difference
of the description length, before and after, 1.e.,

bitsave = DI{old)— DL(new)
In this context, there are two operations: creating a group
and adding a member to a group. They are defined as follows,

Creating a new group C' from subsequence A and B
bitsave = DI(A)+ DI(B)— DLG(C")
Adding a subsequence A to an existing group C:

bitsave = DI( A)+ DLG(C)— DLG(C")

Definition 15: The potential motif windows are ranked by the
ability to compress the time series 7 . In other words, they are

35
ranked by total bitsave of a group created by potential
candidate i descending order.

[I1. THE INTUITION BEHIND ALGORITHM

There are three main techniques here: lower bound,
checking for a true motif, and the use of Minimum Description
Length (MDL) {5][14]. The lower bounding techniques have
been used extensively for Euclidean distance due to the
utilization of the triangular inequality properties. The
Euclidean distance is a part of the algorithm. The reason why
we use Euclidean distance is that the calculation is fast, and yet
it is a basis unit for distance measurement. First of all, the
algorithm runs on every possible sliding window size. For each
windows of size L, the algorithm searches for the most similar
pair of subsequence of length L. This pair cannot yet be L-
length-motif (Definition 6) because it needs to be checked for a
true motif. Then, we check that this pair is a true motif. If it
fails, we then look for the next pair and repeat the process. If a
pair of subsequence passes the checking conditions, it will be
used to create a group of motif by using the MDL technique. If
the pair is similar, it has a significant amount of bitsave. Then,
at the next step, we find the next neighbor by comparing the
subsequence in sliding windows with the center of the group.
At this stage, the Euclidean distance is used in conjunction with
the lower bounding technique.

A.  Lower bound

A brute force algorithm to find a pair of motif has o(n%)
complexity. However, it is possible to use a heuristic approach
to prune off the unnecessary computation. The technique is
known as early abandoning [2]. The key approach is to
randomly select a sliding window as a pivot. Then, calculate
distance of all sliding windows, and sort the other sliding
windows by their distance to the pivot. This linear ordering of
the data has useful heuristic information, as shown in Fig.2
Notice that the result of the sorted data has its own “lower
bound” distance between adjacent pair. Therefore, the search
will begin by using the best-so-far to enhance the speed. To
illustrate, consider this example,

Dist(0, 2)

T

Dist(0, 1)

——

©—0 -© L 4 © —&-

0 1 2 3 4 m

Figure 2.  Linear ordering of the data. O is a pivot.

In the Fig2, we assume O is a pivot. The other

subsequences in sliding windows are calculated by distance
which used pivot as a reference. So, we have Dist(O, 1),
Disi(0, 2), Dist(O, 3) ..., Dis{O, m). Without loss of
generality, we focus on positions 1 and 2 as illustrated in the
example. We can determine the lower bound distance
between position 1 and position 2 by using the triangular
inequality property as follows.

Dist(0,1)— Dist(0,2) <Dist(1,2)
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By searching for the smallest distance, we are now ready to
search and prune off the unnecessary parts, i.e., a variable
used for recording the best-so-far distance. By scanning from
left to right and broadening the offset, it is possible to have all
m(m 1) pairs in this search [2]. In each offset, we scan for the

2
best-so-far distance and update the best-so-far value. If the
best-so-far value is not updated in all the pairs at the same
offset, we know that the rest of the unsearched pairs will not
be able to update the best-so-far value as well. Therefore, we
can disregard the unsearched pairs. This would save us
enormous amount of computation time.

B.  Checking for the true motif

After a candidate motif is found, it might be a “too good” to
be true motif. What does the word “too good” exactly mean?
A possible situation is given by a time series T1 as in Fig.3. In
case of small window length, the first motif found might be at
data point 2, regardless of data point 1. In essence, we do not
need data point 2 since other window lengths would find this
data point 2 as well. Moreover, it makes much more sense if
the smaller window lengths find the data point 1 as a true
motif, It seems impossible to know whether it is good enough
to be a true motif because the only indicator used in this
context is a distance measure; sometimes the distance measure
gives zero value without telling us much on whether or not it
is a true motif. One possible approach is to broaden our
perspective. The approach is divided into two phases: learning
and detecting the deviation of the difference between
particular points of a subsequence pair. For example, it is
typically a pair of subsequence that has smallest distance. If
we statistically collect the data of the difference value, we will
have a set of data. The set of data can be used to make a model
of normal distribution curve. The next step is to find
difference at the outside of the boundary as in Fig.3. The key
insight here is the use of standard deviation as an indicator. If
the difference between the outside of the boundary deviates
less than a standard deviation, it is most likely foo good
(Definition 5). In this manner, the other sizes of the window
will find this pair of subsequences instead.

—
A
\_// \\\_/
A
_____/ \&
Too good Not too good
Figure 3.  (left) The sliding window find this pair but it is too good because

there is some room left on both outer boundaries as indicated with yellow
areas. (right) This sliding window is fit to the length of the pattern, and thus
considered as not too good (or true motif).

C. The use of Minimum Description Length (MDL)

After a true motif of length L is found, a group of two
subsequences is ready to be constructed. We then find a
nearest neighborhood in order to add to a group and calculate
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bitsave (Definition 14). The bitsave is an indicator of the

fitness. The description length of a group specifies how many
bits are required in representing a group of subsequences.
Therefore, at first, we construct a group of two subsequences
along with the calculation of bitsave after creating a group. In
this manner, bitsave is merely the ability to compress
subsequences as they are similar to each other. As in definition
13, the entire element of the group is subtracted from the
center or hypothesis of the group in order to calculate bitsave.
The algorithm runs until they can no longer be compressed
any further or the neighbors are all used up. In short,
Minimum Description Length is the lowest number of bits
required to represent the time series sequence. In other words,
the maximum number of bitsave {in this case, we consider as
the fitness function) of that window size is what we are
looking for.

IV. OUR ALGORITHM IN DETAIL

Algorithm : MDL based motif discovery

Input: Timeseries Ts

Output: the potiential motif windows (Definition 15)
1 for w=2 to Ts.Length/2

2 do

3 bst := RefreshPivot(ts,w)

4 (A,B) = NextPair(ts,bsf,w)

5 while CheckTrueMotif(A,B,w)= false
/lcreate new group

6 {G,bitsave} .= createGroup(A,B,w)

7 while HasNextNeighbor

8 C := NextNearestNeighbor( ts,center,w)

9 bs ;= AddToGroup( G, C,w);

10 if bs > 0 then bitsave := bitsave + bs

11 else break

12 end while

13 window[w] := bitsave

14  end for

15  sort(window)

Here, the algorithm is essentially parameter-free because the
only input is a time series sequence. The output is the
potential motif windows (see Definition 15 for more detail).
The algorithm runs at all possible window lengths in this
context, from 2 to Ts.Length/2. The core concept of this
algorithm is the use of description length of a cluster of L-
length-motif (see Definition 6) and their neighbors. As
mentioned above, the smaller value of description length of
the cluster means it would take fewer bits to represent the
whole cluster. In other words, an element in the cluster is
similar to each other. Therefore, the bitsave (Definition 14)
objectively represents the fitness of the potential candidates
(Definition 7) regardless of the length of the sliding windows.
There are two main loops in the algorithm: finding the L-
length-motif, then using it as the creator of the cluster and
finding all neighbors of the L-length-motif and computing
bitsave value. The algorithm terminates in two conditions:
either the next neighbor cannot compress anymore or the
neighbors are all used up. '
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The algorithm begins by entering a for loop (line 1). Notice
that each w in the for loop is independent. Hence, the parallel
computing technique can further improve the speed of this
algorithm. In the do while loop (lines 2-5), RefreshPivot and
NextPair together are the process of finding a motif in a
sliding window of length w. These two functions could be
grouped together. However, in practice, this loop is a hot spot
because the RefreshPivot takes O(nlogn) for sorting distances
between every sliding window and a pivot. The motif
extracted from these two functions must be inspected whether
or not it is too good to be true by calling checkTrueMotif
function. The checkTrueMotif function helps us find a fair
pair of motifs that essentially belongs to the length of the
sliding windows. The optimization could assuage the hot spot
by finding the next pair until the bsf cannot be further updated,
then RefreshPivot is called.

At line 6, 4 and B indicate the location of subsequence in
time series. The function createGroup is called. The function
creates a set G = {(center), less} where center = (4+B)/2 and
less is the minimum value of {4, B}.

At lines 7 — 12, in this stage, we have a group containing a
pair of motifs. The NextNearestNeighbor takes a center of the
group or cluster as a reference to find another neighbor C.
Then, a neighbor C is added to the group. This loop continues
until bs < 0 or there is no next neighbor left. Finally, every
possible sliding window has its own total bitsave and stores it
to a window (line 13). The windows are sorted to produce the
potential motif windows.

V. EXPERIMENTAL RESULTS

We demonstrate the usefulness of minimum description
length technique in our scoring scheme. Here are the extensive
datasets in both planted datasets and real datasets. We use
planted datasets for measuring accuracy and validity of the
result because we know the predefined patterns and sizes. This
section has three subsections, and is organized as follow: Gait
Dynamic dataset, One-class dataset, and Multi-class dataset.
The full datasets plotted in terms of bitsave and motif
discovery in excel files are available at [20]. We also provide
an open-source code in C++ language for reproducibility and
for interested readers.

A.  Gait Dynamic dataset

Gait analysis is the systematic study of human motion. In
particular, gait analysis is commonly used to assess, plan, and
treat the individuals with conditions affecting their ability to
walk. The raw data were collected by using force-senseitive
resistors. (see Fig.4(a)). This experiment is set on the test on
short data [3] (approximately 3,000 data points).The reason
we select this dataset is to demonstrate the benefit of
Minimum Description Length in ranking system as the scoring
scheme. The human walk cycle is periodic as in Fig.4(a). The
periodic nature of time series is difficult for many motif
discovery algorithms because the proper length of the motif is
not known in advance.

After running the algorithm, Fig.4 (b) shows the plot of
total bitsave for each window size. Notice that the optimal or
peak point is at position 279. This means the potential motif
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window (Definition 15) size is 279. The key point is that there

are typically motifs of a specific iength which repeatedly
occur. So, they are the potential candidate (Definition 7).
Fig.4 (a) annotates the discovered motifs. The very first pair of
motifs found in this length is annotated in red. This pair is
called a potential candidate. The group is created by a
potential candidate and bitsave is calculated. As a next step,
the potential candidate looks for neighbors as shown in
colored highlight. These neighbors are added to an existing
group and then the bitsave is calculated. The result shows that
all patterns of length 279 are discovered.

2
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Figure 4.  (a) A left foot signal dataset recorded at gait speed of 1.4 m/s.
The result of motifs discovered at a window of length 279. The colored
highlights.are all discovered motifs. (b) The typical plot of total bitsave at
each window size. We omit the size of more than 500 for brevity. The x-axis
represents length of sliding windows. The y-axis represents the total bitsave.
The top peak is at window of length 279, as highlighted in red circle.

B.  One-class dataset

This dataset is planted with patterns of length 470 from the
beef dataset {4]. The graph of bitsave for each sliding window
is plotted. According to Fig.5(b), a peak of this plot occurs at
the window length of 474 which is close to the planted size of
470. The highlights indicating various groups of motifs
confirm correctness of the result, see Fig.5(a).
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Figure 5. {(a) A beef pattern that were planted in this dataset. The result of

the motifs discovered at window of length 474. The colored highlights are all
discovered motifs. (b) The typical plot of total bitsave at each window size.
The top peak is at window of fength 474 as highlighted in red circle.

©ICSEC 2012, October 2012, Pattaya, Thailand



Artificial Intelligence and Data Mining

C. Multi-class dataset

This dataset is planted with two classes of patterns: The
length of 150 data points from gun-point patterns and 275 data
points for trace patterns (see Fig.6(a)) [4]. The graph of
bitsave for each sliding window is plotted. According to
Fig.6(b), two peaks occur at the window lengths of 151 and
276, which are very close to the planted patterns of sizes 150,
and 275, respectively. The colored highlights indicating
various groups of motifs confirm correctness of the result.
Fig.6(c) shows the plot of motif discovered at length of 151.
The second peak occurs at window of length 276, as shown in
Fig.6(d). Our algorithm manages to find all of the motifs, as
they are considered potential candidates (Definition 7).

VL

Even though the worst case time complexity of the
algorithm is O(n’), equaling that of brute force manner, we
manage to optimize this complexity by the use of lower bound
[2]. In essence, the complexity is reduced to be essentially
quadratic. Moreover, the algorithm to check for a true motif is
designed to be parallelizable. Specifically, each of the window
length in the outer for loop is independent. This is, in fact, the
model of SIMD (Single Instruction Multiple Data). The
parallelism nature of the algorithm has a significant role in
achieving a speedup. Lastly, the algorithm is compatible to the
quantum computers due to the design that allows the quantum
parallelism [17][18]{19], and thus is worth exploring on the
future work.

SCALABILITY

VIL

In this work, we introduce a parameter-free motif
discovery algorithm that utilizes the minimum description
length (MDL) technique. Our algorithm is specially designed
to be further enhanced for speed by the use of parallel
computing technique because each of the window lengths can
be executed independently. The outcome of the potential motif
window depends on both similarity and frequency of the
motifs. This algorithm discovers the proper length of the
sliding windows on various datasets including periodic
datasets. We are also exploring the approach to other
applications.
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Figure 7. (a) The gun and trace pattern that were planted in this dataset. (b) The typical plot of total bitsave at each window size. The x-axis
represents length of sliding windows. The y-axis represents the total bitsave. (c) The result of motifs discovered at window of length 151. (d) The
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Abstract—1-Nearest Neighbor classification with Dynamic Time
Warping distance measure is mainly used for time series
classification. In large datasets, major concerns for the
classification problem are CPU time and storage requirement.
Recently, Shape-based Template Matching Framework (STMF)
was proposed to resolve these problems by constructing a
template as a representative for each class of the data, and then
STMF uses these templates to classify a query sequence.
However, a single template per class may not well represent the
overall characteristic of the data. In this paper, we propose a new
method called Multiple Shape-based Template Matching
(MSTM) extended from STMF. Our method constructs multiple
templates by clustering each class of data and also learning the
global constraiunt to increase the accuracy. In the experiment, we
evaluate by comparing with STMF which uses only one template
per class and the original 1-NN classification with global
constraint. Qur proposed method also minimizes the number of
templates and still classifies the query sequence effectively.

Keywords-Shape Averaging; Template Matching; Time Series
Data Classification;

L. INTRODUCTION

Time series classification [3] is one of the major time series
mining tasks and has been applied to a variety of domains and
applications, especially when a wide range of real world data
can be meaningfully transformed into time series such as
biometric [9] and multimedia data [10]. For time series
classification, Dynamic Time Warping (DTW) distance [1]
measure, a well-known similarity measure for time series data,
has been proven to be a suitable choice since it allows more
flexibility in sequence alignment than the Euclidian distance
metric.

1-Nearest Neighbor (1-NN) classification based on DTW
distance is considered one of the most accurate techniques to
classify time series data. Unfortunately, in large datasets, this
classic 1-NN may not be practical since it needs to compute
DTW distance between the query sequence and every single
candidate sequence in the entire dataset, making it very
computationally expensive. Although recent research works
have tried to speed this up using many techniques such as
lower bounding [4] and indexing (7], they are still considered
impractical for applications with limited storage.

Template matching is an approach that can solve both
computational complexity and storage problems; one template
for each class can be used as its representative, thus reducing
the size of the training set down to just a number of classes to
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a) b)

Figure 1. a) The template obtained from a sample of data b)
from Fish dataset.

produce its template is a sensible approach. Shape averaging
must be used instead of amplitude scaling to be able to capture
the actual features of all the data. Prioritized Shape Averaging
(PSA) algorithm [6] has been proposed to produce one
template for each class using shape averaging scheme. Fig. 1
demonstrates the idea of the template approach. In particular,
each pair of sequences is averaged in an order according to a
hierarchical clustering result. However, since PSA algorithm
uses uniform scaling to reduce the length of the averaged
sequence, some errors increase in the resulting template. Then
Shape-based Template Matching Framework (STMF) {8] was
proposed in an attempt to reduce this error by averaging most
similar pair of the sequences using Cubic-spline Dynamic Time
Warping (CDTW). CDTW uses cubic spline interpolation [8]
to re-sample the averaged sequence instead of the uniform
scaling. Even though the cubic spline is a better approach, the
accuracy of 1-NN classification using this template matching is
much lower comparing to the classification accuracy when the

- entire training dataset is used since one single template may not

be able to represent the overall characteristic of data within the
class.

In this work, we extend the idea of CDTW further and
introduce a novel framework called Multiple Shape-based
Template Matching (MSTM). Specifically, we cluster each
class separately using hierarchical clustering, validate the
cluster quality with Silhouette index [12], and create multiple
templates for each class. We will demonstrate that our multiple
templates can better represent the data characteristics especially
when subclasses are present. We also utilize a global constraint
[11] that is the Sakoe-Chiba band {13] which is learned to find
an appropriate warping window size for DTW distance
measure, which can boost up the accuracy of classification.
Our experiments will compare our method with STMF/CDTW
technique in 1-NN time series classification problem. The
result shows that our method can improve the accuracy
effectively while greatly reduce the size of the training data.
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IL.

BACKGROUND

A. Dynamic Time Warping (DTW) distance measure

DTW distance measure [1] is the similarity measurement
which is typically used for time series data. DTW distance can
discover an optimal alignment between two sequences using
the following equation.

disig,,. ¢;)
disi(g, ;) = disi(q,, ¢;) + min dist(q,, c;.y)
dis{q, . ¢i.1)

M

Given two time series O and C where g, and ¢, are their
elements, respectively. DTW can discover a minimum
cumulative distance between @ and C using dynamic
programming. As shown in Fig. 2, the warping path can be
found by tracing back from the final cell’s alignment (top right)
down to the first (bottom left) element after the minimum
cumulative distance calculation is completed.

Warping Path

C

! n

Figure 2. The warping path between two time series sequences.

B. Hierarchical Clustering

Hierarchical Clustering [2] is a method to group similar
objects using DTW distance as a similarity measurement and
using the maximum distance between objects of each cluster to
merge similar clusters. In this work, complete linkage inter-
cluster distance is used. Merging is made in a bottom-up
fashion until a desired number of clusters is reached.

C. Silhouette Index

Sithouette index [12] is a well-known technique to validate
the quality of clustering using the distance among data object
within the same cluster and across difference clusters.

_ b®-al)
max{b(i), a()}

S=%Zs(i)

i=1

s() @)

In equation (2), s(i) is the Silhouette index of time series
data object /, where a(i) is an average value of all distances
between instance i and every time series object within the same
class, and b(i) is a minimum average value of distances
between object i and every time series object in different
classes. The Silhouette index, S, of a dataset can be computed
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Figure 3. The averaged sequence a) before re-sampling and
b) after re-sampling using cubic spline interpolation.

according to Equation (3), where n is number of time series
instances in the dataset and the maximum index gives the best
clustering separation.

D. Cubic-Spline Dynamic Time Warping (CDTW)

CDTW (8] has been introduced to average two time series
sequences with an additional feature of maintaining their
original shape using cubic spline interpolation. Suppose we are
to average the sequences Q and C. Firstly, we find the warping
path (W) between these two sequences. Each w, element
consists of the value i and j which are the indices of the
element g, and ¢, respectively. The average sequence
Z(z)(x), z,(y)) is calculated as follows.

Wqq,t ¢
3 = —— @)
wgto,
W,q, + O
2() = ———— ©)

Wy tw,

In equations (4) and (5), w, and w, are weights of the
sequences () and C. Since the resulting sequence will be longer
than or at least have the same length as the original ones (as
shown in Fig.3 (a)), the cubic spline interpolation is used to re-
sample the number of points of an averaged sequence (as
shown in Fig.3 (b)).

E. Global Constraint

For some applications such as speech recognition [13], the
global constraint is typically used to limit the warping window
of sequence alignment to increase the accuracy of the
classification. Additionally, the global constraint with the help
of lower bounding can help reduce both CPU and I/0 times [4].
Sakoe-Chiba band {13}, one of the well-known global
constraints, was introduced by Sakoe and Chiba in speech
recognition community, and has been practically used in
various time series mining problems [11].

Suppose there are two time series sequences to be averaged
using Sakoe-Chiba band. The sequences simply are allowed to
align only within the limited window (as shown in Fig.4). The
width of the warping window is defined by r which is a
percentage of the time series’ length, specifying how much
warping is allowed above and to the right of the diagonal cells.

[I.  MULTIPLE SHAPE-BASED TEMPLATE MATCHING

STMF [8] constructs one single template from every time
series sequence within the same class as its representative.
However, this single template may not be able to preserve all
of the characteristics of every time series sequences within that
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Figure 4. The Sakoe-Chiba band, global constraint to limit the warping path.

class. In this work, we propose a novel framework called
Multiple Shape-based Template Matching (MSTM) to increase
the number of templates for each class by clustering the data
within each class into subclasses and constructing one template
for each subclass. We will later demonstrate that these
templates better represent the characteristics of overall data
within the class.

TABLEL AN ALGORITHM TO CLUSTER EACH Crass OF Data

Algorithm Clustering (D)
1. Do is the set of time series data of class C
Num. is the number of time series in class C
num is the number of subclasses in class C
for n = 1:Numg
HierarchicalClustering(D.)to n subclasses
§ = SilhouettelIndex(D.)
if 5, is less than S,
num = n-1
break
. end if
0. end for
1. return num

WOy YU W

Table 1 shows our clustering algorithm which separates
each class into subclasses using hierarchical clustering and
validates clusters with the Silhouette index. After we get the
number of subclasses, we construct one template for each
subclass. The algorithm is shown in Table II.

We construct templates from every subclass following an
approach proposed in [8]. We continually average the most
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similar pair of data sequences until we get one final template.
Once completed, we obtain multiple templates for the training
dataset which are used to classify the query sequences.

Additionally, we utilize the global constraint (in line 14.) to
increase the classification accuracy. The best warping window
(r) will be returned as a result from template learning, as shown
in Table IIL.

TABLE 11, AN ALGORITHM TO LEARN GLOBAL CONSTRAINT

Algorithm LearningConstraint (T)

1 T is the set of templates

2 D; is the set of training data

3 r is the size of warping window

4 acc = accuracy of 1-NNClassification
5 for i = 1:100

6. acc = 1NNClassification(D;, T, i)

7 if acc; is more than acc;,

8 r=1

S. end if

10. end for

11. return r

1V. EXPERIMENTS AND RESULTS

We evaluate our proposed method, MSTM with global
constraint, by comparing the accuracy with STMF, which uses
single template and the full 1-NN classification. The
experiment uses ten datasets from the UCR datasets
classification/clustering archive {5] as shown in Table IV.

In the experiment, we construct templates from the training
data and evaluate our templates with the test data. Table V
compares the 1-NN classification accuracies of STMF (one
template per class), our MSTM (multiple templates per class),
and the full 1-NN classification with no templates. The best
warping path sizes () are also reported. Note that warping
window constraint learning is applied in the full 1-NN to give
their optimal accuracies. In most datasets, our MSTM gives
better classification accuracy than the STMF, and also gives
comparable accuracy to the fulf 1-NN classification.

In Table VI, we report the number of templates for each
datasets, along with the average number of templates per class,
which is very few compared with the size of the training
dataset; our templates can classify the query sequence
practically and also require much less storage. Fig. 5 shows
two templates obtained from one of the classes of Fish dataset.

TABLEI. AN ALGORITHM TO CONSTRUCT TEMPLATES
wITH GLOBAL CONSTRAINT TABLEIV. THE DETAILS OF DATASETS
Algorithm Templates (Dy) Datasets Number | Length S.iz.e of Size of
1. D, is the set of training data ‘ ofclasses‘ of data training set test set
2. D; is the set of data in class C | Synthetic Control 6 60 300 300
3. N is the number of classes in training data ° Trace 4 275 100 100
4. D; is the set of data of subclass § Gunpoint 9 150 50 . 150
S. T is the set of templates o
6. N is the number of subclasses in class C Lightning-2 2 637 60 61
7. r is the size of warping window Lightning-7 7 319 70 73
8. Ng = Clustering(DC) ECG 2 96 100 100
. f i = 1:N, - n
9. for i = il Olive Oil 4 570 30 30
10. for j = 1: Ng
11. T = STMF(D;,.) Fish 7 463 1735 175
1) E
12. end for CBF 3 128 30 900
13. end for o - " -
14, r - LearningConstraint (T) Swedish leaf I3 128 500 625
15. return T, r Two Patterns 4 128 1000 4000
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TABLE V.

THE ACCURACIES COMPARED WITH RIVAL METHODS
1-NN Classification Accuracy
Datasets MSTM with 1-NN with
STMF Learning Learning
Constraint (r) | Constraint (r)

Synthetic Control 0.97 0.95(7) 0.98(6)
Trace 098 1.00(13) 0.99(3)
Gunpoint 0.64 0.90(2) 0.91(0)
Lightning-2 0.56 0.79(25) 0.87(6)
Lightning-7 0.66 0.71(17) 0.71(3)
ECG 0.70 0.69(11) 0.88(0)
Qtive O1f 0.80 0.80(1) 0.87(1)
Fish 058 0.70(3) 0.84(4)
CBF 096 0.98(25) 1.00(6)
Swedish leaf 0.70 0.76(4) 0.83(2)
Two Patterns 0.97 0.95(43) 1.00(4)

TABLE V1. Tt NUMBER OF TEMPLATES AND DATA REDUCTION
Sm of Number Average Rc_ducing
Datasets training sets of templates jze 0 f

(number of templates per class training

classes) sets (%)
Synthete 300(6) 12 2 96.00
Trace 100(4) 8 2 92.00
Gunpoint 50(2) 4 2 92.00
Lightning-2 60(2) 4 2 9333
Lightning-7 70(7) 15 2.14 78.57
ECG 100(2) 4 2 96.00
Olive Oil 30(4) 13 325 56.67
Fish 175(7) 16 229 90.86
CBF 30(3) 12 4 60.00
Swedish leaf 500(15) 33 22 93.40
Two Pattems 1000(4) 8 2 99.80

In most datasets, our MSTM with global constraint is more
accurate than STMF because multiple templates can preserve
the characteristics of data better than a single template.
Moreover, our method can even give better accuracy than the
full 1-NN classification in some datasets because the templates
can decrease noise in the data. However, the accuracy of our
method is slightly less than that of STMF in some datasets
since the nature of data is too nbisy; therefore, the noisy data
can be clustered into subclasses. We would like to point out
that even though multiple templates are used, our
computational time still is quite comparable to that of the
single template because global constraint is used.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel framework called
Multiple Shape-based Template Matching (MSTM) with
global constraint. Our method clusters each class into
subclasses and utilizes shape-based averaging to construct
multiple templates as representatives for each class. We also
use the global constraint to improve the 1-NN classification
accuracy. Our multiple-template method in general yields
higher accuracy compared with the single- template approach
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a) b)
Figure 3. a) The muitiple templates obtained from
a sample of data b) from Fish dataset.

100 200

and can reduce size of the training data by a large margin.

For future work, if we can improve shape-based averaging
algorithm to provide a real averaged sequence, it will be useful
for many other applications.
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Abstract— One significant task in time series mining research
area is motif discovery which is the first step needed to be done in
finding interesting patterns in time series sequence. Recently,
many motif discovery algorithms have been proposed in place of
the untenable brute-force algorithm, to improve its time
complexity. However, those motif discovery algorithms still need
a predefined sliding window length that must be known a priori.
In this paper, we present a novel motif discovery algorithm that
requires no window fength parameter. This sliding window
length is seasitive in that a small difference in the value can lead
to huge difference of motif results. The proposed algorithm
automatically returns suitable motif lengths from all possible
sliding window lengths; in other words, our algorithm efficiently
reduces a large set of possibilities of the sliding window lengths
down to a few truly-interesting variable-length motifs.

Keywords-Motif discovery; Time series; Variable length

[ INTRODUCTION

Research area in time series mining {12]{17}{15]{13](3] is
increasingly important for a wide variety of applications
including prevalent electrocardiogram in medical field [5] and
stock market prediction [7). Motif discovery [12] which
focuses on finding patterns occurred repeatedly, is among the
most common time series mining tasks. Time series motif is a
pair of the most similar subsequences in time series. An
example illustrated in Figure 1 is a motif in gun-point dataset
[6]; a motif of length 150 data points is discovered at locations
450 to 599 and 1,647 to 1,796, respectively. A straightforward
approach is a “brute-force” method that applies a sliding
window of a predefined length of 150 to search for the best
matched subsequences. However, the problem here is twofold;
the length of sliding window must be known or chosen a priori,
and the brute-force approach is simply untenable in practice.
To the best of our knowledge, almost all of the works on time
series motif discovery are focusing on the latter problem of
increasing efficiency especially its time complexity or speed of
motif discovery algorithm to replace the brute-force approach,
but almost none has mentioned about the choice of the sliding
window length. In the past decade, many motif discovery
algorithms have been proposed. In the beginning, there were
several fast approximate algorithms [1]{2]{4][10]{11]{16]{18]
to discover motifs faster, with some tradeofTs of increased error
rates. Recently, the latest algorithm {12], Mueen-Keogh (MK),
has been proposed; it is the first and only exact algorithm
which uses triangular inequality to prune off unnecessary
calculations. It is however still based on a fixed length motif
scheme; so, the problem still remains.
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‘We would like to demonstrate how important the variable
length problem is and see what would happen if the length of
sliding window is varied. It is quite a challenging problem;
other than adding more computational complexity to the
problem itself, its exact definition of an optimal sliding
window size is still unclear. In typical time series motif
discovery problem, the length of the sliding window must be
predefined, usually by domain experts, by trial and errors, or
simply by inspection of the time series plot. We will show that
the choice of this parameter is in fact crucial and quite
sensitive, and thus should not be neglected; only a small
difference in the window length can cause a big change in the
discovered motifs as illustrated in Figure 2.

| TS
5
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Figure . A motif in gun-point datasct (6] with 2,000 data points. The motif
of length 150 are located at data points 450 to 399 and 1,647 to 1,796.
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Figure 2. Two completely different motifs of lengths 352 and 333 data
points discovered from the face-four dataset of 5,600 data points in length.
The first motif locations A, and A, are at 2,376 t0 2,727 and 3,777 10 4,128

while the second motif locations B and B, are at 341 t0693 and 5,239 0
5,591.
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In this work, Variable-Length Motif Discovery (VLMD)
algorithm is proposed to automatically find a set of suitable
variable-length motifs. Specifically, our VLMD algorithm
iteratively separates different-length motifs into groups based
on sensitivity. Within a group, a motif representative with
minimum normalized distance between subsequence pairs is
selected. Finally, VLMD returns a set of useful motif
representatives which is extremely small comparing with all
possibilities of sliding window lengths.

The rest of the paper is organized as follows. Related work,
definitions, and background are provided in Section II. Our
proposed algorithm is described in Section III, and in Section
1V, our proposed method is evaluated. Finally, Section V
concludes our work.

‘1I.  RELATED WORK, DEFINITIONS, AND BACKGROUND

A. Related Work

To the best of our knowledge, two algorithms for time
series variable length discovery are k-motif-based algorithm
[19] and grammar-inference-based algorithm [8]. K-motif-
based algorithm utilizes Motif Concatenation ~which
concatenates motifs into one segment. This process analyzes a
collision matrix and puts the matrix as an input for the
algorithm before using three predefined parameters to constrain
a motif searching range for concatenation. Unlike &-motif-
based algorithm, grammar-inference-based algorithm uses the
idea of grammar induction to find approximate motif length. In
addition, grammar-inference-based algorithm is designed
specifically for discrete data; therefore, it uses Symbolic
Aggregate Approximation (SAX) [9] to first discretize time
series into strings before applying grammar induction on the
strings, and then converts the strings back to time series
subsequence. The grammar-inference-based algorithm needs
the initial variable length, the numbers of SAX segments, and
alphabet size. However, both works require many additional
parameters, especially an initial sliding window length, where
in this work, no parameter is required.

B. Definitions

All definitions we use in this work will be stated in this
section.

Definition I: Time series T is a sequence of real values
continuous in series, defined as T={¢,,1, ..., ¢,

Definition 2: Subsequence S} is a smaller sequence of time
series T, where i is its starting point and w is a sliding window
length, defined as S = {t; +j,....%; ,,.,}, where w> 1.

certiowe}

Definition 3: Euclidean distance EUC(S}” S}") is a distance
between two subsequences S; and S}", where w is a sliding
window length, 1 <i<n , and 1<j<n, defined as

, , " 2
BUC(S?.S)) = | Zi-/(x x-l'tk+j-l) -

Definition 4: Time series motif M,, is a pair of the most
similar subsequence in time series 7 with specified sliding
window length w. It is defined as M,, = (L; L, , Where
L, and L, are the starting locations of subsequences in time
series T, L; < L, and MDist is the normalized Euclidean
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distance  between S;,  and calculated

MDist=EUC(S} .St )/w.

S,

by

Definition 5: Two motifs A; and M; are overlapped when
(ML, < ML[ < ML} ior ML; < MLI < A/{;L;‘!’j) and (A/I, L; <
A’[]'.Lz < M,’.L;‘*’f or A/IJLZ < ML) < ML2+1)

Definition 6: Motif group MG is a group of motifs, where
two contiguous motifs are overlapped, and is defined as
MG ={M| M, and M; are overlapped, 1 <i<j <n/2}.

Definition 7: Motif group representative R is a time series
motif which has minimum MDist among all motifs in a given
motif group MG.

Definition 8: Overlapping length of two motifs M; and M,
is an average value between percentage of overlapping

sequence between S;, and S’L, and percentage of overlapping
sequence between S7, and S; >

Definition 9: Sensitivity of a motif M, is an averaged value
of an overlapping length between M, and M,., and an
overlapping length between M, and M,.,. This sensitivity
ranges from zero to one, where the value is close to one is very
sensitive.

C. Background

Motif discovery is used to retrieve hidden relevant
information. In addition, motif discovery is needed for other
time series mining algorithms such as subsequence matching
{14] gnd discord detection [3]. Intuitively, a motif discovery
returns the most similar subsequences of a long time series
sequence given a fixed-length sliding window, where
Euclidean distance is typically used as a distance measure. In
this work, we utilized MK Motif Discovery algorithm which is
the fastest algorithm to discover the motif to date. However,
other motif algorithms can simply be utilized as well. Due to
space limitation, details on MK algorithm can be found in [12]
for interested readers.

HR

In this work, we propose a novel parameter-free motif
discovery algorithm called Variable-Length Motif Discovery
(VLMD) that returns a small set of variable-length motifs.
Given a time series sequence 7" as an input, VLMD returns a
set of motif results as an output, where the number of motif
results is significantly smaller than the number of all possible
motif lengths.

VARIABLE-LENGTH MOTIF DISCOVERY

Specifically, VLMD consists of two steps. Firstly, VLMD
finds a set of motif groups by searching all possible lengths of
sliding window to get motifs with different lengths. If the
current motif and the previous motif overlap, the current motif
is added to the same motif group of the previous motif;
otherwise, a new motif group is created. Then, for each motif
group, a motif representative is selected from the motifs with
minimum normalized motif distance.

Given a time series sequence T of length n, the maximum
possible motif length is » / 2 since the motif is defined as a pair
of non-overlapping subsequences. In addition, the minimum
possible motif length is 2 since from the definition, the sliding
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window length must be larger than 1. VLMD iteratively finds a
motif with length from 2 to n/ 2. In each iteration, after a motif
is discovered by an exact motif discovery algorithm, if the
motif with a sliding window length w overlaps with the
previous motif of a sliding window length w — 1, the motifs M,
and M, are assigned the same motif group MG; otherwise, a
new motif group MG is created by adding M, as the first
member. In particular, M, and M,,_, are considered overlapping

if subsequence S}, of M, overlaps with subsequence SZ:/ of
M., and subsequence Sy, of M, overlaps with subsequence

‘S}:l of M,.,. All motif groups are stored in a motif group set
MGS.

After all motifs generated from all possible sliding window
lengths are retrieved, the motif representative R is selected for
each motif group, and is stored in a set of motif results MRS.
The motif representative R of a motif group MG is a motif M,
that has minimum MDist in the group MG. The number of

motif representative R will be very small comparing to the

number of all possible sliding window lengths fromw=2ton/
2. The pseudo code of VLMD is provided in Table 1.

TABLE 1. VARIABLE LENGTH MOTIF DISCOVERY ALGORITHM
[MRS] V ARIABLELENGTHMOTIEDISCOVERY (7)
1. | Let n be the length of time series 7
2. | Let MGS be a set of motif groups
3. | Let MRS be a set of motif results
4. | Let i be a group count
5.1i=0 )
6. | For(w=2ton/2)
7. M, =MK_MoTiF_DiSCOVERY(T, w)
8. If (M,, overlaps with A4,_)
9. MG;<- M,
10. Else
11. it+
12. End If
13. | End For
14. | For each MG in MGS
15. R = M, with minimum MDist, M,, € MG
16. MRS <-R
17. | End For
18. | Rewrn MRS

IV. EXPERIMENT

We use gun-point dataset and face-four dataset from the
UCR Clustering/Classification archive [6] in our experiments.
First, we interleave each of the 150 gun-point patterns with 150
data points in length into a random-walk data of 22,500 data
points in length, giving a time series of 45,000 data points.
Then, we further divide it into 15 sets of data, each with 3,000
data points. Second, 88 Face-Four patterns of 350 data points
in length are similarly interleaved into a random-walk data of
30,800 data points in length, giving a time series of 61,600 data
points. Then, we further divide it into 11 sets of data, each with
5,600 data points. Examples of both datasets are shown in
Figure 3.
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Figure 3. Examples of a) Gun dataset and b) Face Four dataset.

Our VLMD is mainly proposed to eliminate a sliding
window length selection "in motif discovery problem. As a
result, it returns a very small set of motif representatives. Table
I shows that VLMD can significantly reduce as much as
99.13% in a set of answers for the Gun dataset and as much as
9929% for the Face Four dataset.

TABLE IL VLMD CAN SIGNIFICANTLY REDUCE A SET OF POSSIBLE
ANSWERS
Gun (total w = 1499) Face Four (total w =2799)
Dataset Numbe'r R Reduced N"mbe‘r of Reduced
motif motif
representatives percentage representatives percentage

1 23 98.47% 27 99.04%

2 25 98.33% 19 99.32%

3 26 98.27% 25 99.11%

4 19 98.73% 32 98.86%

5 23 98.47% 32 98.86%

6 13 99.13% 29 98.96%

7 21 98.60% 40 98.57%

8 17 98.87% 25 99.11%

9 26 98.27% 22 99.21%

10 30 98.00% 26 99.07%

1| 34 97.713% 20 99.29%

12 20 98.67%

13 19 98.73%

14 26 98.27%

15 22 98.53%

In VLMD algorithm, motif groups are constructed based on
sensitivity of motifs as defined in Definition 9. In other words,
our proposed algorithm, VLMD, retums an exact solution to
the variable-length motif discovery problem. We plot the
sensitivity of motifs from some sliding window lengths in
Figure 4. The dashed vertical lines in the figure show the
separator between motif groups. This means VLMD can
correctly group motifs according to sensitivity value. In
addition, ten motif representatives of the 23 discovered motif
representatives in Dataset 1 of Gun dataset are also shown in
Figure 5.
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Figure 4. Sensitivities of a) Dataset 1 of Gun dataset and b) Dataset 1 of
Face Four dataset.
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Figure 5. Ten motif representatives from Dataset | of Gun dataset.

V.  CONCLUSION AND FUTURE WORK

In this work, we introduce a novel parameter-free variable-
length motif discovery called VLMD which returns a small set
of motifs from a given time series sequence. VLMD eliminates
the need of a predefined crucial parameter, the sliding window
length, of the typical motif discovery algorithm. We have
demonstrated that this particular parameter is very sensitive; a
small difference of sliding window may lead to huge difference
in the discovered motifs. VLMD models the sensitivity of the
sliding window length, and accordingly returns a set of most
sensible motifs. VLMD can prune off a large possibility of the
length of sliding window up to 99.29%, while being able to
return an exact solution to the motif discovery problem. We
can further extend this work by devising some ranking scheme
to the algorithm such that suggestion of the most
useful/interesting motifs is returned to the users.
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