Contents

		Page
Acknow	ledgement	a
บทคัดย่อ		b
Abstrac	t	С
Contents		d
List of Tables		f
List of I	Figures	g
List of Abbreviations		1
List of Symbols		j
Glossar	y	k
Chapte	r 1 Introduction	1
1.1	Background and Statement of Problems	1
1.2	Literature Review	4
1.3	Objectives	9
1.4	Expecting Benefit	9
1.5	Scope of Study	9
Chapter 2 Theory		10
2.1	Introduction the Concept of Using PCM for Reducing Solar	10
	Cell Module Temperature	10
	Relation between Enthalpy and Temperature	13
2.3	Finite Difference Method for Analyzing One-dimensional Phase Change Problem	16
2.4	Boundary condition	19
2.5	Initial Conditions	22
2.6	Algorithm with MATLAB Programming	22
2.7	PCM for Simulation	25
Chapte	r 3 Experimental Setup	27
3.1	Experimental Setup	27
3.2	Experimental Procedure	28
3.3	Problem During the Experiment	31
3.4	Expected Results	31

Chapter 4 Results and Discussion	32
4.1 Temperature of Solar Cell Module with PCM	32
4.2 Temperature PCM in 2 Consecutive Days	33
4.3 Simulation Validation	34
4.4 Appropriate thickness of PCMs	41
4.5 Power Generation	48
4.6 Correlation of Output Voltage and Output Current	49
Chapter 5 Long Term Analysis	54
5.1 Electrical Generation for Each Month	54
5.2 Economic Analysis	59
Chapter 6 Conclusions	
6.1 Temperature of Solar Cell with and without PCM	62
6.2 Numerical Enthalpy Method	62
6.3 Appropriate Thickness of PCMs	62
6.4 Correlation of Output Power of Solar Cell	62
6.5 Unit Cost of Electricity Generate by Solar Cell	63
6.6 Suggestion for Further Research	63
References	64

List of Tables

		Page
Table 2.1	Heat capacity and heat store in 5°C for different PV	12
	material, water and RT42 PCM.	
Table 2.2	Review numerical method and programming tool for	24
	solving phase change problem.	
Table 2.3	Thermo-physical properties of PCMs [24].	25
Table 3.1	Electrical characteristics of EMS250-156 at Standard	27
	Testing.	
Table 3.2	Accuracy of the experimental equipment.	31
Table 4.1	Deviated ±10% of the simulation result with the	40
	experimental data.	
Table 4.2	Goodness of fit of optimum voltage.	51
Table 4.3	Goodness of fit of optimum current.	52
Table 5.1	Average day of the month and average daily solar	53
	radiation of each month at Chiang Mai.	
Table 5.2	The maximum and minimum ambient temperature at	57
	Chiang Mai, Thailand.	
Table 5.3	Condition for economic analysis.	59
Table 5.4	Expenses on materials.	60

List of Figures

		Page
Figure 1.1	Primary world energy consumption 1965-2014 [1].	1
Figure 1.2	Total energy consumed in 2014 [1].	2
Figure 1.3	Solar cell global capacity, 2014 [3].	2
Figure 1.4	A circuit of electrical generation from solar cell [4].	3
Figure 1.5	Theoretical efficiency of a solar cell as a function of	4
	band gap and high temperature [6].	
Figure 1.6	Curve in difference solar cell module temperature.	5
Figure 1.7	Cooling solar cell by water flow [9].	5
Figure 1.8	PV cooling by air [10].	6
Figure 1.9	PCM and their typical range of point and enthalpy	7
	(picture: ZAE Bayern).	
Figure 1.10	Classification of PCMs [14].	7
Figure 2.1	Heat and cold storage method [13].	10
Figure 2.2	Heat storage as sensible heat (a) and latent heat in case	11
	of solid-liquid phase change (b).	
Figure 2.3	Temperature control of solar cell by PCM.	13
Figure 2.4	Enthalpy and temperature relationships: (a) is isothermal	14
	and (b) is non-isothermal.	
Figure 2.5	Spatial discretization step Δx of the PCM.	16
Figure 2.6	The discrete spatial divided into finite volume elements	17
	indicated by node i.	
Figure 2.7	Energy from neighboring nodes conducted to the control	18
	volume of node i.	
Figure 2.8	Heat transfer at top surface of module PV-PCM.	19
Figure 2.9	Heat transfer at the bottom.	22
Figure 2.10	The initial temperature and the position of PCM.	22
Figure 2.11	Flowchart of enthalpy method for solving heat transfer	24
	in PCM.	
Figure 2.12	Enthalpy and Temperature relation base on spec from	26
	manufacturer RUBITHERM® RT42.	
Figure 3.1	Schematic diagram of experimental setup.	28
Figure 3.2	Module solar cell PV-R (left) and PV-PCM (right).	29
Figure 3.3	RT42 PCM.	29

Figure 3.4	Measuring instrumentation.	30
Figure 4.1	Comparison of module temperature of PC with and	33
	without RT42 PCM of the experiment.	
Figure 4.2	Temperature profiles of PCM top, PCM middle, PCM	34
	bottom, ambient temperature and irradiance, in Chiang	
	Mai, December 2-3, 2015 (experiment).	
Figure 4.3	The weather data collect at Chiang Mai, Thailand.	37
Figure 4.4	The validation of the model with the experimental data	40
	at Chiang Mai.	
Figure 4.5	The validation of PCM temperature between experiment	41
	and simulation in 6 days.	
Figure 4.6	Weather data on April 27, 2015.	42
Figure 4.7	The simulation with various thicknesses of RT42	45
	(simulation).	
Figure 4.8	Surface temperature at various thicknesses of RT PCM	47
	(Simulation).	
Figure 4.9	Comparison of the surface temperatures with the PCMs	48
	with different melting points (simulation).	
Figure 4.10	Electrical power on clear sky and partial cloudy day	49
	condition.	
Figure 4.11	Collecting electrical output of solar cell.	50
Figure 4.12	Optimum voltage is function solar radiation and module	50
	temperature.	
Figure 4.13	3D view of data and fitting curve of optimum voltage,	51
	V(IT,T).	
Figure 4.14	Optimum current, solar radiation and module	52
	temperature.	
Figure 4.15	3D view of data and fitting curve of optimum current,	53
	I(IT,T).	
Figure 5.1	Verification of solar cell PV-R module temperature with	54
	experimental data (February 15, 2016).	
Figure 5.2	Flow chart of simulation to determine tilt surface solar	58
	radiation.	
Figure 5.3	Daily electrical energy output of solar cell each month.	59

List of Abbreviations

BIPV Building-Integrated Photovoltaic

CO₂ Carbon Dioxide

PCM Phase Change Material

PV Photovoltaic

PV-PCM Photovoltaic with PCM

PV-R Photovoltaic for Reference

R-square This statistic measures how successful the fit is in explaining the

List of Symbols

Area, m² Α Specific Heat Capacity per mass, kJ/kg-K C_P Specific Heat Capacity per volume, MJ/m³-K C_{PV} Liquid volume Fraction g Specific Enthalpy, kJ/kg h Heat Transfer Coefficient, W/m²-K h Current, A Solar Radiation, W/m² I_T Thermal Conductivity, W/m-K k Thickness, m L Specific Latent Heat, kJ/kg Ν Number of Nodes Electrical Power, W P_e $Q^{'}$ Heat Rate, W Τ Temperature, °C or K Ambient Temperature, °C or K T_{∞} Time, s t Voltage, V Emissivity ε Density, kg/m³ ρ Increment Δ Optical Efficiency of PV τα Stefan-Boltzmann Constant σ Subscript Liquid Node Position Melting Reference ref Solid

Initial

Glossary

R-square This statistic measures how successful the fit is in explaining

the variation of the data.

RMSE Root Mean Squared Error: This statistic is also known as the fit

standard error and the standard error of the regression.

ZAE Bayern The Bavarian Center for Applied Energy Research (ZAE Bayern)

is a registered, non-profit association.