CONTENTS

CHAPTER	TITLE	PAGE
	ABSTRACT	i
	ACKNOWLEDGEMENT	iii
	CONTENTS	iv
	LIST OF TABLES	vii
	LIST OF FIGURES	ix
1	INTRODUCTION	1
	1.1 Background and Rationale	1
	1.2 Research Study Objective	2
	1.3 Scope of the Research Study	2
	1.4 Literature Reviews	3
	1.4.1 Organic Waste and Treatment Technologies	3
	1.4.2 Mango Waste Utilization and Treatment	5
2	THEORIES	8
	2.1 Mango Processing	8
	2.1.1 Ripe Mango Processing	8
	2.1.2 Waste Characteristics from Mango Processing	10
	2.1.3 Waste Management	11
	2.2 Anaerobic Digesters of Fruit Wastes	12
	2.2.1 Functional Requirement for the Process	12
	2.2.2 Types of Anaerobic Digester for Solid Waste	13
	2.2.3 Biogas Yield and Methane Content	15
	2.2.4 Volatile Solid Reduction and Solid Digestate	15
	2.2.5 Main Components of the System	16
	2.2.6 Controls and Safety Devices	18
	2.2.7 Gas Storage	18
	2.2.8 Anaerobic Digester (AD) Products	19

CONTENTS (Cont')

CHAPTER	TITLE	PAGE
	2.2.9 Costs of Anaerobic Digestion and Biogas Production	20
	2.2.10 Lifetime of Plants	22
	2.3 Wastes Disposal and GHG Emissions	22
	2.3.1. General Concept	22
	2.3.2. Assessment of Methane Emissions from	
	Solid Waste Disposal Sites	23
	2.4 Financial Assessment	27
	2.4.1 Plan Financial Assessment	27
	2.4.2. Select/Develop Financial Model	27
	2.4.3. Application Financial Model	28
3	METHODOLOGY	30
	3.1 Study-Site Description	30
	3.2 Description of BAU and Alternative Scenarios: Biogas System	31
	3.3 Mango Waste Production	32
	3.4 GHG Emissions Assessment from Open Dumping of	
	Mango Peel Waste	33
	3.5 GHG Performance Assessment of the Alternative	
	Biogas System	34
	3.5.1 Biogas Generation	34
	3.5.2 GHG Performance of Biogas as Substitute for LPG	35
	3.5.3 Assessment of Amount of Slurry	
	Digestate Generated from Mango Peel Waste	37
	3.5.4 GHG Performance of Digestate Slurry as	
	Substitute to Chemical Fertilizer	38

CONTENTS (Cont')

CHAPTER	TITLE	PAGE
	3.6 Cost Performance Assessment of the Biogas System	40
	3.6.1 Data Collection for Cost Performance Assessment	40
	3.6.2 Costs of Biogas Plants	41
	3.6.3 Operating Costs	44
	3.6.4 Assumptions in Financial Assessment	45
4	RESULTS AND DISCUSSION	46
	4.1 Environmental and Cost Performance Assessment of	46
	Mango Peel	
	4.1.1 Mango Peel Waste Disposal	46
	4.1.2 Mango Peel Utilization as Feedstock for	47
	Biogas Production	
	4.2 Overall Discussion	54
5	CONCLUSIONS	56
	REFERENCES	57

LIST OF TABLES

TABLES	TITLE	PAGE
1.1	Anaerobic digestions of fruit and vegetable wastes	5
1.2	Biogas productions from mango waste	7
2.1	Mango residues composition in term of peels and seed	10
2.2	Characteristics of mango peel from three varieties of mango	11
2.3	Main elements found in mango peel such as carbon,	
	hydrogen, oxygen, and nitrogen etc.	11
2.4	OLR studies for fruit and vegetable waste	13
2.5	Biogas production rate and methane content of mango peel waste	15
2.6	Potential greenhouse gas emissions avoided in fertilizer	
	manufacturing if compost displaces mineral fertilizers	20
2.7	Values for global warming potential in the AR4 WG1,	
	technical summary reflect radiative forcing estimates and lifetime	s 23
2.8	SWDS classification and methane correction factors	25
2.9	Default DOC values for major waste streams	25
2.10	Oxidation factor (OX) for SWDS	26
3.1	Environmental impact factors based on IPCC Guidelines	
	for shallow landfills (open dumping)	33
3.2	Average composition analysis of mango peel	34
3.3	Inventory data for the GHG emissions of biogas (kg flow/MJ)	36
3.4	Inventory data for the GHG emissions of LPG (kg flow/MJ)	36
3.5	Mass balance between the input and output substrate	37
3.6	N, P, K nutrients contented in mango peel	38
3.7	Digestate nutrient concentrations, kg nutrient/tone fresh weight	
	of solid digestate	38

LIST OF TABLES (Cont')

FABLES	TITLE	PAGE
2.0	Eartilizar requirements for mance plantations in Theiland	20
3.8	Fertilizer requirements for mango plantations in Thailand	39
3.9	Nutrient requirements for mango plantations (kg/plant/year)	40
3.10	Cost categories for biogas production used mango peel as substr	ate 41
3.11	Total costs of biogas plants	41
3.12	Functional requirement of the AD process	42
4.1	GHG emissions from mango peel waste open dumping in	47
	the BAU scenario	
4.2	Mango peel composition	47
4.3	Production and characteristics of biogas from mango peel waste	48
4.4	GHG emissions associated with the biogas system	50
	for the mango factory	
4.5	Cost estimation of biogas system based on digester's capacity	51
4.6	Break-down cost of biogas system	52
4.7	Summary of expenditures and saving of biogas system for	53
	small mango processing factory with escalation factor	

LIST OF FIGURES

FIGURES	TITLE	PAGE
2.1	Process flow chart of dry mango sheet productionbase on	
	Charassaeng Limited Partnership (site factory)	9
2.2	Schedule of annual operation of a dry mango processing factor	ory
	(starting since March)	10
2.3a, b	Mango waste management of reference factory	11
2.4	Functions in an anaerobic digester.	16
2.5	Biogas storage systems. Sizable gas storage systems require	
	a considerable investment	19
3.1	Charassaeng's factory	30
3.2	Charassaeng's mango orchard	30
3.3	Processing areas	31
3.4	Simmer process	31
3.5	Mango waste management in business as usual (BAU) scena	rio
	and alternative scenario	32