CONTENTS

CHAPTER	TIT	LE		PAGE
	ABS	STRAC	Γ	i
			LEDGEMENT	ii
		NTENTS		iii
		Γ OF TA		vii
			GURES	xii
			BBREVISIONS	XV
1	INT	RODU(CTION	1
	1.1	Ration	nale	1
	1.2	Objec	tives	3
	1.3		of Research Work	3
2	BIO	MASS	OF SUGARCANE PLANTATION SYSTEMS	6
	IN T	HAILA	AND	
	2.1	Metho	odology	6
		2.1.1	Site selection	6
		2.1.2	Description of field survey sites	7
		2.1.3	Assessment of total biomass in sugarcane	9
			plantation system in Thailand	
		2.1.4	Estimation of carbon storage in sugarcane	12
			biomass in Thailand	
	2.2	Resul	ts and Discussion	13
		2.2.1	Sugarcane biomass in Thailand	13
		2.2.2	Carbon storage in sugarcane biomass in Thailand	19
	2.3	Sumn	nary of findings	20
3	SUC	GARCA	NE FIELD OPEN BURNING IN THAILAND	24
	3.1	Metho	odology	24
		3.1.1	Description of sampling sites	24
		3.1.2	Questionnaire design	27
		3.1.3	Data collection and processing	27

CHAPTER	TIT	LE	1	PAGE
	3.2	Result	s and Discussion	28
	3.3	Summ	nary of findings	32
4			CONSUMPTION AND COMBUSTION FACTOR	33
	OF S	SUGAR	CANE FIELD BURNING IN THAILAND	
	4.1	Metho	odology	33
		4.1.1	Estimation of sugarcane biomass fuel consumption	33
		4.1.2	Determination of combustion factor	34
			of sugarcane field burning	
	4.2	Result	ts and Discussion	36
		4.2.1	Combustion factor of sugarcane	36
			field burning in Thailand	
		4.2.2	Quantity of sugarcane biomass consumption	39
			by open burning	
	4.3	Sumn	nary of findings	41
5	GHO	G EMIS	SIONS FROM SUGARCANE FIELD BURNING	43
	IN T	HAILA	AND	
	5.1	Metho	odology	43
	5.2	Resul	ts and Discussion	44
		5.2.1	Emissions from sugarcane field burning in Thailan	d 44
		5.2.2	Trends of emissions from sugarcane field burning	47
	5.3	Sumn	in Thailand nary of findings	49
6	CONT	RIBUT	TION OF ROOT RESPIRATION TO SOIL	50
	RESP.	IRATIO	ON IN SUGARCANE PLANTATIONS IN THAILA	ND
	6.1	Metho	odology	50
		6.1.1	Site description	50
		6.1.2	Experimental design and measurement	52

CHAPTER	TIT	LE	PA	AGE
	6.2	Result	ts and discussion	53
		6.2.1	Seasonal variation of soil respiration rate	53
			in sugarcane plantation in Thailand	
		6.2.2	Contribution of root respiration to total soil	55
			respiration under sugarcane plantation in Thailand	
	6.3	Sumn	nary of findings	58
7	EFF	ECT O	F SUGARCANE FIELD BURNING ON GHG	59
	EMI	SSION	S FROM SOILS	
	7.1	Metho	odology	59
		7.1.1	Experimental site	59
		7.1.2	Flux measurements and GHG emissions calculation	61
	7.2	Resul	ts and discussion	63
	7.3	Sumn	nary of findings	71
8	EFF	ECT O	F SUGARCANE FIELD BURNING ON SOIL	72
	CAF	RBON S	STOCK	
	8.1	Metho	odology	72
		8.1.1	Study site description	72
		8.1.2	Soil sample and analysis	74
		8.1.3	Calculation of soil carbon stocks	75
	8.2	Resul	ts and discussions	77
	8.3	Sumn	nary of finding	80
9	EFF	ECT O	F SUGARCANE FIELD BURNING ON CARBON	81
	STC	RAGE	IN SUGARCANE BIOMASS	
	9.1	Metho	odology	81
		9.1.1	Study site description	81
		9.1.2	Biomass sampling and analysis	82
		9.1.3	Assessment of carbon storage	84
			in sugarcane biomass	

CHAPTER	TITI	L E	PA	GE
	9.2	Results	s and discussion	84
	7.2		Sugarcane plant growth	84
			Sugarcane biomass	85
			Carbon storage in sugarcane biomass	87
	9.3		ary of findings	89
10			NCE UNDER BURNED AND UNBURNED	90
10			NE AREAS	70
		Method		90
	10.1		Assessment of GHG balance in sugarcane	90
		10.1.1	G	90
		1012	plantation systems	02
		10.1.2	Determination of emissions from sugarcane	92
		1012	field open burning	02
		10.1.3	Determination of emissions from fossil fuel combustion	93
			sources used in sugarcane plantation systems	0.5
			Determination of emissions from microbial process	95
			Determination of annual carbon stock change in soils	
		10.1.6	Determination of annual carbon stock change	96
			in sugarcane biomass	
	10.2		s and Discussion	96
		10.2.1	Emissions from sugarcane field burning	96
		10.2.2	Emissions from fossil fuel combustion sources	98
		10.2.3	Emissions from microbial process	99
		10.2.4	Annual carbon stock change in soils	100
		10.2.5	Annual carbon stock change in sugarcane biomass	101
		10.2.6	GHG balances in sugarcane plantation system	101
	10.3	Summa	ary of findings	103

CHAPTER	TITLE	PAGE
11	CONCLUSIONS AND RECOMMENDATIONS	104
	11.1 Overview of the study	104
	11.1.1 Sugarcane biomass in Thailand in 2012	104
	11.1.2 Sugarcane area burned in Thailand in 2012	105
	11.1.3 Sugarcane biomass burned during open burning	105
	in Thailand in year 2012	
	11.1.4 Emissions from sugarcane field burning	106
	in Thailand in year 2012	
	11.1.5 Effects of open burning on GHG balance	106
	under sugarcane plantation in Thailand	
	11.2 Policy and measure recommendations	108
	11.3 Recommendations for further research studies	111
	REFERENCES	112
	APPENDIXES	119
	Appendix A: Sugarcane production in Thailand	120
	Appendix B: Carbon storage by sugarcane production in Thailan	d 124
	Appendix C: Questionnaire (in Thai)	128
	Appendix D: Sugarcane burned areas in Thailand	132
	in the cropping season 2012	
	Appendix E: Amount of sugarcane biomass burned in Thailand	136
	for the cropping season 2012	
	Appendix F: GHG emissions from sugarcane field burning	140
	in Thailand for the cropping season 2012	

LIST OF TABLES

TABLES	TITLES	AGE
2.1	Field survey site description for collecting the aboveground	8
	biomass in sugarcane areas	
2.2	General information about the experimental sites for collecting	8
	belowground biomass in sugarcane areas in Thailand	
2.3	Moisture content of sugarcane biomass in Thailand	14
2.4	Fraction of dry mass in each sugarcane component	14
2.5	The sugarcane residue-to-product ratio (RPR)	15
	in Thailand during harvesting periods in year 2012	
2.6	Summary of dry above-ground biomass in sugarcane areas in 2012	16
2.7	Sugarcane biomass in the experimental sites	17
2.8	Dry mass of below-ground biomass in sugarcane cropping system	18
	in Thailand	
2.9	Dry mass of sugarcane biomass in Thailand in cropping season of year 2012	19
2.10	Carbon content in sugarcane biomass in Thailand	20
2.11	Carbon storage in sugarcane biomass in Thailand	20
3.1	Number of samples and sampling area for questionnaire survey	27
3.2	Distribution of burned sugarcane areas in Thailand during	31
	harvesting season (November 2011-April 2012) in year 2012	
4.1	Site descriptions for measuring the combustion factor	34
	of sugarcane field burning in Thailand	
4.2	Combustion factor of sugarcane field burning in Thailand	36
4.3	Fraction of sugarcane biomass burned under pre-harvest	37
	burning system in Thailand	
4.4	Quantity of sugarcane biomass materials consumed by	39
	open burning in Thailand during harvesting season	
	(November 2011-April 2012)	

LIST OF TABLES (Cont')

TABLES	TITLES PA	GE
5.1	GHG emissions from sugarcane residue burning in Thailand	44
	during November 2011 to April 2012	
6.1	Soil Properties of the sugarcane plantation at	51
	the experimental site	
6.2	Root contribution to total soil respiration from sugarcane	55
	plantations in Thailand	
7.1	Nitrogen fertilizer application in the experimental site	61
7.2	Soil characteristics of the experiment in this study. Standard errors	61
	Are in parenthesis	
7.3	Emission from soils under sugarcane burned and unburned areas	71
	in Thailand	
8.1	Soil profile description at the experimental site	73
8.2	Soil bulk density in the sugarcane areas with and without	77
	burning in Thailand	
8.3	Soil carbon content in the sugarcane areas with and without	78
	burning in Thailand	
8.4	Soil carbon stocks before-tillage and after-tillage under	79
	different sugarcane residue management techniques	
9.1	Fertilizer application in the experimental site	82
9.2	Average values and standard errors of the biophysical parameters	85
	of sugarcane fields during the growing season of sugarcane	
9.3	Total carbon in sugarcane biomass at the experimental site	88
10.1	Dry mass of sugarcane biomass fuel available for burning $(M_{\mbox{\scriptsize B}})$	98
	and the combustion fraction of sugarcane biomass burned at	
	the burning site (C _f)	
10.2	Emissions from sugarcane field burning at the burning site	98
10.3	Diesel oil consumption for each agricultural operation in the	99
	burned and unburned areas	

LIST OF TABLES (Cont')

TABLES	TITLES	PAGE
10.4	Emissions from diesel consumption for farm operation at the	99
	burned and unburned sites	
10.5	CO ₂ emissions from soils under burned and unburned plots	100
10.6	Annual GHG emissions from sugarcane soils in this experimen	nt 100
10.7	GHG emissions and removals in the sugarcane areas with and	102
	without open burning. Emissions are marked with a positive (+	-)
	sign and removals are marked with a negative (-) sign	

LIST OF FIGURES

FIGURE	TITLES PAG	GE
1.1	The overall research framework for assessing the effects of	5
	open burning on GHG emissions from sugarcane cultivations	
2.1	Above-ground biomass sampling under (a) no-burning and	10
	pre-harvest burning plots and (b) post-harvest burning plots	
2.2	Below-ground biomass sampling in sugarcane field experiments	11
2.3	The ratio of below-ground to above-ground biomass in	18
	sugarcane areas at soil depths of (a) 0-30 cm and	
	(b) 0-100 cm. Bar indicates the standard errors about the mean.	
2.4	Spatial distribution of total biomass (considering total	22
	below-ground biomass at 0-100 cm soil depth)	
	in sugarcane cultivation areas in Thailand in the cropping	
	season of year 2012	
2.5	Spatial distribution of total carbon storage (considering	23
	total below-ground biomass at 0-100 cm soil depth)	
	in sugarcane biomass in Thailand	
3.1	Study area for questionnaire survey	26
3.2	Proportion of sugarcane area burned in relation to	29
	total sugarcane area harvested in Thailand	
	(November 2011-April 2012)	
3.3	Spatial distribution of the amount of burned areas in sugarcane	30
	Plantation systems in Thailand between November 2011 and April 2012	
3.4	Monthly distribution of sugarcane area burned in Thailand	31
	classified based on harvest burning systems: (a) pre-harvest burning,	
	(b) post-harvest burning to protect new crop cycle from fire,	
	(c) post-harvest burning to facilitate soil preparation, and	
	(d) summary of all burning systems	
4.1	Sugarcane biomass in (a) pre-harvest burning sites and (b)	35
	post-harvest burning sites	

LIST OF FIGURES (Cont')

FIGURE	TITLES PA	GE
4.2	The relationship between combustion factor and (a) biomass fuel	38
	moisture content, (b) biomass fuel load, and (c) relative humidity	
	under sugarcane field open burning in Thailand	
4.3	Spatial distribution of the amount of sugarcane biomass burned	40
	in Thailand during cropping season in year 2012	
4.4	Monthly distribution of sugarcane biomass consumption in	41
	Thailand classified based on harvest burning systems: (a) pre-harvest	
	burning, (b) post-harvest burning to protect fire burning the	
	new plants, (c) post-harvest burning to facilitate soil preparation,	
	and (d) summary of all burning systems	
5.1	Monthly temporal distribution of GHG emissions from	45
	sugarcane field burning in Thailand classified by (a) regions,	
	and (b) burning systems	
5.2	Spatial distribution of total GHG emissions from sugarcane	46
	field burning in Thailand between November 2011 and April 2012	
5.3	Sugarcane production and fraction of burned sugarcane	47
	production in Thailand during 1998-2012	
5.4	Trends of GHG emissions from sugarcane open burning in	48
	Thailand during 1998-2012	
6.1	Study area located in Nakhon Sawan province	51
6.2	Conducting trenching experiment for monitoring soil respiration	52
	in sugarcane crop	
6.3	Soil CO ₂ respiration rates in the control plots (R _t) and in	54
	the trenched plots (R _m) as affected by (a) soil volumetric moisture	
	content in the control area (MC $_{c}$) and the trenched area (MC $_{t}$),	
	and (b) soil temperature in the control area (T_c) and the trenched	
	area (T _t). Values are means and vertical bars indicate standard erro	rs

LIST OF FIGURES (Cont')

FIGURE	TITLES	PAGE
6.4	Seasonal changes of (a) root respiration rate (R _r) and	56
	(b) the contribution of root respiration to total soil respiration	
	(R_r/R_t) compared with soil moisture content (MC _r), and soil	
	temperature (T _r). Values are means and vertical bars indicate	
	standard errors	
6.5	Contribution of root respiration to total soil respiration (R _r /R _t) under	r 57
	sugarcane area. The black line is fitted for the model	
6.6	Correlation between the contributions of root respiration	57
	to total soil respiration (R _r /R _t), measured in the experiment	
	and calculated using Eq. (6.3).	
7.1	Climatic conditions at the experimental sites	60
7.2	Soil GHG emissions measurement in the experimental sites	62
7.3	Examples of diurnal cycle of soil CO2, CH4, and N2O flux	64
	at (a) the middle of sugarcane plant-rows and (b) the spaces	
	between-rows of the burned area (measurements of	
	23 March 2012, i.e. during the dry season)	
7.4	Diurnal cycle of soil CO ₂ , CH ₄ , and N ₂ O flux measured	65
	over the 12-hours periods during a wet season in	
	(a) cane-row and (b) between-row positions under sugarcane	
	(b) plantation in Thailand	
7.5	Soil CO2 flux, soil volumetric moisture content, and	66
	soil temperature from burned and unburned sugarcane areas	
	over 379 DAP in (a) cane row and (b) between-row position in	
	a plant crop. Arrows represent dates of N fertilizer application	
7.6	Daily CH4 flux, soil volumetric moisture content, and soil	68
	temperature from burned and unburned sugarcane areas over	
	379 DAP in (a) cane row and (b) between-row position in	
	a plant crop. Arrows represent dates of N fertilizer application	

LIST OF FIGURES (Cont')

FIGURE	TITLES	AGE
7.7	Soil N ₂ O flux, soil volumetric moisture content, and soil	69
,	temperature from burned and unburned sugarcane areas over	
	379 DAP in (a) cane row and (b) between-row positions in	
	a plant crop. Arrows represent dates of N fertilizer application.	
8.1	Soil sampling at the experimental sites	75
9.1	Sugarcane yield component in the area with and without burning.	
	Bar indicates the standard errors about the mean. The values with	
	the same letter or with no letter are not significant by LSD ($p \le 0.05$	
9.2	Sugar yield in the burned and unburned treatments. Bar indicates	86
	the standard errors about the mean. The values with the same letter	
	or with no letter are not significant by LSD ($p \le 0.05$)	
9.3	Effects of open burning on (a) total aboveground biomass and	87
	(b) total belowground biomass at the 0-100 cm soil depth.	
	Standard errors are represented by the vertical lines on the bars.	
	The values with the same letter or with no letter are not significant	
	by LSD ($p \le 0.05$)	
9.4	Carbon content in sugarcane biomass for burned and unburned	88
	treatments. Bars indicate the standard errors about the mean.	
	The values with the same letter or with no letter are not	
	significant by LSD ($p \le 0.05$)	
10.1	Greenhouse gas emissions and removals in the sugarcane	88
	plantation system	
10.2	Sugarcane biomass sampling (a) before burning and (b)	93
	after burning	
10.3	Machinery used for sugarcane plantation system in this study	94

LIST OF ABBREVISIONS

ASEAN Association of South East Asian Nations

BC Black carbon

C Carbon

CO Carbon dioxide

CO₂ Carbon dioxide

CH₄ Methane

COP₃ Third Conference of the Parties to the UNFCCC

CO_{2eq} Carbon dioxide equivalent

CCS Commercial Cane Sugar

DAP Day after planting

GC Gas chromatography

GHG Greenhouse gases

IPCC Intergovernmental Panel on Climate Change

LAI Leaf area index

N Nitrogen

N₂O Nitrous oxide

NO_x Nitrogen oxide

OC Organic carbon

PM Particulate matter

ppmv Part per million on a volume basis

RPR Residue to product ratio

 R_r/R_t Contribution of root respiration to total soil respiration

UNFCC United Nation Framework Convention on Climate Change

USDA United States Department of Agriculture

VOC_s Volatile organic carbon