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ABSTRACT

This paper describes a method of electric field analysts for configurations consnstmg of

‘oblate spheroidal objects. In:the method, electric potential is expressed as a sum of
_ oblate spheroidal harmonics. The method utilizes the re-expansion and the image

schemes of a dieléctric oblate spheroid and a conducting plane to determine the -

solution of potential that satisfies all the boundary conditions involved. Electric field is

calculated for an oblate spheroxdal void enclosed in a solid dielectric near an electrode. .

The object of the calculation is to clarify the electric field inside the void which varies

* with (1) the separation between the void and the electrode, (2) the ratio of the major to. -

‘minor axes of the void and (3) the dielectric constant of the solid dielectric. The results

show that the effect of the electrode on the field inside the void is negligible when the

separation is greater than the major semi-axis of the void. The presence of the electrode
‘near the void mitigates the electric field on the axis of symmetry of the void. However,
higher field stress exists at the region away from the axis, and the field maximum is not

significantly. reduced by decreasing the separation, in particular for flatter voids. In .

order to present the potential induced by the void, higher order multipoles must be
incorporated. The effect of the planar electrode on the equlvalent multipole moments of
“the void is also discussed. .

Index Terms — Electrlc fields, sphero:ds, elllpsmds, Laplace equations, cavities,
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‘bubbles, electrodes, electrostatic analysis.

1 INTRODUCTION

A variety of numerical methods, such as the finite element -
method or the boundary element’ method can be used for.

_ electric field calculation. However, they may accompany
. .considerable error in cases of a-curved surface near another
surface [1]. On the other hand, the analytical approach permits
of a strictly -correct solution of the electric field. Analytical
E methods are also convenient when the equivalent charges the
electrostatic: force, or the interaction between objects are of
interest (2, 3]. The present work explains an analytical method
based on the spheroidal harmonics, which can be used for
. calculating electric field i in configurations of oblate sphero:dal
objects in a similar manner as the method: presented for a

sphere [4, 5] and that for a prolate spheroid [6]. A re-.

" expansion formula lS apphed to the 1mage charges of

‘Manuscript received on 22. March 20/ 2, in ﬁnal form 22 July 2012.

spheroidal harmomcs in order to obtain multlpole images
representing the potential induced by the spheroidal object.
The analytical method can realize high accuracy of calculation
results even when a spheroxd is located near an electrode or
another spheroid. '

Usmg the method, we study the distribution of the electric
field in the configuration of an oblate spheroidal void in a
solid dielectric. Solid dielectrics play -an important role in
high-voltage insulation systems. They aré used in any systems
as the main insulating material or as supporting components. -
Solid dielectrics have high dielectric strength, in comparison
with gaseous or liquid materials. However, the presence of
cavities (voids) in a solid dielectric is critical to the insulating
performance. The electric field in a void is higher than that in
the enclosing solid medium because of the lower dielectric

“constant of the medium inside the void, usually gaseous one.

The fundamental characteristics of electric field in composxte’
d:electrlcs are explained in [7] When the electric field 1s

1070-9878/12/825.00 © 2012 IEEE
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excessively hlgh partial discharge (PD) initially takes place in
the void. The PD activity involves chemical, mechanical, and
thermal processes, which can cause deterioration in the solid

dielectric. In critical cases, PDs may result in breakdown or
insulation failure of the msulatlon system.[8, 9] 7

The electric field inside a void embedded in-a solid
- dielectric has been studied in a number of works, as the field
strength is a decisive factor for PD inception. In early studies,

Salvage analyzed the electric field in an oblate spheroidal and .

elliptic cylindrical void located at the middle point between
_ parallel plane electrodes. Spheroidal harmonics were utilized

- to obtain the approximate solution whenthe diameter of the.
‘spheroidal void was not greater than the distance ‘behwee_nthe
electrodes. The electric field along the axis of symmetry of the .

- void was -investigated for various separations between the
void and the electrodes [10]. The results clearly’ show the
. influence of the void shape on the’ electric field. The analytical
approach was applied to a similar confi iguration of a

conducting spheroid between parallel electrodes [11]. The

field variation with the dimensions of a circular cylindrical

void and the electrode spacing was calculated by using the

finite difference method [12]. It was found that the mean
electric field on the void- axis increased with the ratio of the
radius to the axial length of the void. Chang et al. calculated
the electric field in a void using the finite element method for
circular cylindrical shapes. They reported the effect of the
void orientation on the electric field including the cases where
‘ multiple voids exist near each other [13]. The maximum
electric field in the void decreased with increasing number of
-voids in. series. Note that a rather high dielectric constant
‘values. (10-10000) of the solid’ dielectric was used in this
work. Ghourab and El-Makkawy applied - the  charge
_ simulation method to the calculation of the mean electric field
in 'spherical voids [14]. They reported the effect of the

dielectric constant on the maximum electric field along the -

void axis. Also investigated are the location of a void, and the
. orientation of a void in its proximity. Hossam-Eldin et al. used
. the indirect boundary element method to analyze the electric
~field in .configurations of a spherical void and those of a

circular cylindrical void [15]. Their results showed again a | -

* variation of the maximum field stress on the void axis with the
" shape and the position of the void. Field behavior was found

to be similar between a spherlcal void and a correspondmg
cylmdncal one. :

The solution of clectrostatlc potential in a void also has an
application in the analysis of transient behavior of charge
* associated with partial discharge in a void [16-19]. Ellipsoidal

and- spheroidal voids were treated in the works with the
. simplification that omitted the influence of electrodes on' the
potential and neglected multipole potential. In the other ‘work
related to the field calculation of a spheroidal object, an on-
“axis field approximation was given for evaluating electric
~ field outside a conducting prolate spheroid under a uniform
field [20], however, only for the.case-of an isolated spheroid.”
As mentioned above,. the previous works mamly treated

spherical voids or cylindrical voids. For cylindrical voids,

small height-to-width ratios were used because the field. is
© higher in the void than in the surrounding medium. On the

B Techaumnat and T. Tt akuma Electrtc Field Analysts usmg Image Charges of Spherotdal Harmomcs and its Applzcatwn .

. other hand there is still lack of detalled analysns on the ﬁeld

behavior for a spheroidal void; in particular when the void is
located in the vicinity of an electrode. Note that in this case, -
the symmetrical property of potential in the vemcal direction '
is not applicable; therefore, the simplification used in [10, 11]
is not appropriate to obtain the harmonic solutions. The
objective of the calculation in the present work is to clarify the

* field behavior in a void in the PD-free condition, as it _

contributes to the space charge distribution during PD process.

'2 CONFIGURATION OF ANALYSIS

The configuration of analysis is an oblate spheroidal void
enclosed in a solid dielectric near a planar electrode, as shown
in Figure 1. The major and minor semi-axes of the void are
denoted by & and <, respectively. The void is separated from
the electrode by distance s. The configuration is subjected to
uniform electric field E, in the downward- direction parallel
with the minor axis of the void. E, represents an electric field
due to a potential difference applied between the planar
electrode and the other electrode located so far from the void
that its interaction with the: 'spheroid .is negligible. The
dielectric constant of the void and that of the surrounding
solid dielectric are denoted by & (= 1) and &, respectively. In
the current analysis, we vary the axis ratio b/c of the void, the
separation s, and the dielectric constant & to observe the
behavior. of electric field. Typical values of dielectric constant
& =12 and 4 are used for the solid dielectric. The condition of
no space charge is assumed for the calculation. :

Planar electrode

. Void—¢ .
By I

Solid dlelectne
&

I .
Y

o

Figure 1. Configuration of analysis.

'3 METHOD OF CALCULATION

341 OBLATE SPHEROIDAL COORDINATES AND
‘ . HARMONICS

Figure 2 shows the oblate sphermdal coordinates ({, é o -
used for the electric. field analysis. They are related to the
Cartesian coordinates (x, ¥, z) and-the cylindrical coordinates
(55 z; @) by the followmg equations:

z = ag
Xo= L pese )
y = psing : i
p = afl+1-£
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where the 'coordmates §=20, -1<¢6<1, 0<p<2z,and a

'is a constant associated with the spheroidal coordinates. Any .

_ surface £ ;;0, defines " an ~oblate  spheroid . having
bsa\/1+¢‘,i ,c=a§’, and foci at p=aon the z = 0-plane.

For{ =0, ‘the surface degenerates to a circulaf_ cylinder of -
radius a and zero thickness (i.e., a circular disc) on the z = 0.

‘plane, as shown in figure 2. The scale factors &y, h; and k3
w1th respect to ;’ { and pare as follows [21]
a $2+&

l+{

ol
It

af+£7)1-¢%)

Figure 2. Oblale spherondal coordmates

For the analysis in this work the potentlal is ax13ymmetnc
mdependent of ¢. We may express the potentxal gina general
form as a sum of oblate spheroidal harmomcs dand ¥ as-

HED=N, D+0.6H ¥e)
¥, (0.0 ZB 0, (n;)P ® @
Cego-YLaione O

In these equations, B, and L, are the potential coefﬁciehts,

= J-_l is the imaginary unit, and P, and Q, are the nth-order
Legendre functions of the fi rst and second kinds, respectively.
Note that the potential ¥ is singular at ¢'= 0 and vanishes as 4
- — o, On the other hand, ® is bounded-at { = 0 but singular at
infinite 4. The subscripts of the harmonic potentials denote the
coefficients associated with them, for example Band L of Wg
and @;. Due to the. property of P(id) and .Q.(ig), the
coefficients L, and B, must be imaginary numbers for odd and
even orders n, respectively, for ® and ¥ to ‘be"a real number.

3.2 POTENTIAL OF AN OBLATE SPHEROID

Consider an oblate spheroid defined by £'=¢,. The spheroid
is subjected to external potential ¢~ due to any sources

b= 1’1;*" e
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located outside the spheroid. We can write’ ¢”’ in the form of
equation (5). ’

¢ —dm(c &)= ZM ACAQ ' (6)
. n=0
Because the poterma] ¢ inside the oblate spheroxd 42, is
finite, we express the potential as

S =0,0.0- ZLAP,,OQP ©) for ¢ s, ™
n=0
The potentlal (f in the exterior of the spheroid is the sum of
¢ and the potential due to charge induced on the spheroid
surface; which vanishes as ' — . Therefore, we represent the
induced potential with ‘Pg, and wnte for £2¢,,

¢- ¢“’+‘*’ (é’,f) D, (¢, 5)+ZB Q.G0P(E) (¥

n=0
The coefﬁcients M,, L, and B, must fulfill the boundary
conditions of potential and electric field on the surface-of the
spheroid. That is, for £= o, o )
p' =¢° : ' -9)
and. ]
£zEE - €,E} = (10)
iy
where o is free-charge density at the interface, so is the
permittivity of free space, and

11

In the absence.of free charge at the . boundary interface,
from equatlons (7)(11), we can deduce the coefﬂcnents L,
and B, in the terms of M, as.follows:

Ly =M, (12)
| B, =0 (13)
and forn>1, A
o '[Q;(iqo)_gn(im]
Lo LA RG] -
-[e_, Q,',(l§o)_Q,,(l§o')] - -
& Pi¢)) B (idy)
1]
= - ——=M, (15)
[s_, QL(!(a)_Q,.(lCo_)] -
Eg B.,(i_é’o)-_ip:a(i.go) . '

‘In equations (14) and (15), P’, and Q'y are the derivatives

“with respect to { of P, (i) and Q,(i{), respectively.

3.3 IMAGE CHARGE REPRESENTATION OF OBLATE

: SPHEROIDAL HARMONICS

'For the condition of no space charge, the potential ¥ in
equation '(8) originates from charges on the surface of the
spheroid. From each term of -the harmonic potential -



‘21 68 o

' ZB 0, (r{ )P, (f) in- equatron (4), we can deduce the image

n=0

charges of an oblate spheroid. An oblate spheroidal harmonic -
of even order n corresponds to a single layer charge on the g'=.
© 0 circular disc. The ‘charge density p;, can be deduced by’

using the Gauss’ s theorem with the following limit:

Pin __ '

26, B,.P,.(f) ”lfl[}m‘l’ d;Q (IC)] (16)
T_he deriv‘atlve of Q,, has_a finite value at =0,

[ o O, (l()] =i(=1)? (s 1)"(n 1)) (17 -

From equatrons (16) and (17), we obtain the charge densrty
asa functlon of £fand n as

i )5+11n!!(n+'1) P(&)
. a (n+1)t |

_for any even order n.- ‘Equation (18) indicates that the image

255 (18)

charge density p,,, is infir mtely large at the edge:-of the {= 0

disc.

For an oblate spheroidal “harmonic of odd order n, the

correspondmg image charge is.a double layer charge or drpole

" on the = 0 disc. There isno singularity of the-charge density”

- for odd order n. We can deduce the dipole density p;, from
‘the drscontmurty of potential values across the disc.

) pd,n

. =B”Pn(§)[th"(|§)] for £>20 - 19)
. 2£E . {0 3
The value of Onat {=01is expressed by
’ - . "nH
= =R (20)
_ Therefore, we obtam the drpole density
. nl o
Pan _(_ 1)2 (” ) FEER (B, for £20 @1

2.5 E

3 4 RE-EXPANSlON OF THE OBLATE SPHEROIDAL
HARMONICS

" Consider an' nth-order unit. prolate spheroidal harmonic in
coordinates (4' &, (o')

%, (=0,GRE) 22)
where r' is the vector from.the origin O to the point of
calculation, as shown in Figure 3.

We want . to re-expand Y3, in the form of dJM about the
~origin O .of. coordinates (£, & .¢), which is at a drstance o
below the center O*(see figure 3). That is,

)= 0= M, (c)P ©)

m=0

wheré the vector r is from O to the point of calculat1on and

M m are the coeffi cients of the re-expansion from. Wg, to

‘Pn’.<i0>=§1’m<i¢>

(23)
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@) We can determine M, by using: the orthogonal
property of the Legendre function, ' :
v 1 : .
|P(EYP (E)dE = — ifn=m
[POROE = =g ifn=m
T = 0 v-ifnim . (24)
' . 1. (n+DN '
P©O) - =(-n"?——
() ( ) n+l it

/A

x"

ZO= GCO

x ¥
. Figure 3. Re-expansron of prolate spherordal harmonics.

For even order m, P,,,(f) Pn(~&), i.e. the potential is the
same -on the upper and lower sides of the disc cj = 0.
Therefore for even m,

M, =A(*1)""2(2'n+ )

mi(m + l)

(" +H

2s)
lﬂr(r AGLY

For odd order m, P,,,(g‘)—— n(—&). The mtegral in equation
(25) becomes- zero for odd m. Therefore, in order to

determine M, , we consider electric field in the & dlrectron,

which is again invariant across the disc ' = 0. From the
identity of the Legendre function,

" m!! )
. z‘-_l(_l.)z( DT

we can write the electric field E; on the dise as

e

ey  (m 1)" |§|
" Consider the upper half, where E;=E;, we obtam
. m+]
M}, =i(-1) ? (2m+1)(’" 1) .
- (28)

x aol[—g‘f‘s,n (r')]me(Q ds '. :
for odd m. ' v

Equations (25) and (28) can be numerically-'eveluated to

determiné the coefficient M, from B,.
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35 CALCULATION PROCEDURE

- For the conﬁguratlon shown in figure 1, in addition to the
boundary conditions (9) and (10) on the spherond surface, the

" potential ¢ in the exterior of the spheroid must also satisfy the .

condition of a constant potential on the planar electrode. If we

.consider the single layer charge psp and double layer (dipole):

charge p,p. representing’ the induced potential Wp by the
- spheroidal void, the constant-potential condition can be fulfilled

" by placing the image charge in the opposite side of the electrode -

at the same separation d, as shown in figure 4. The image charge

.- Bsc and dipole p,¢ are of the same magnitude and at the same
distance from the electrode. p, ¢ has the same polarity with p,5
but p;c has the opposite polarity to p.5. We express the
potential W¢ due to p;c and pyc as '

¥, =3 C0¢RE)

- n=0

(29)

where the coordinates {’and &' are taken with respect to the -

center of the image (charge or dipole) layer. It can be read:ly
~shown that

C,=(-)""B, (30)

"Image

. charge P ¢ :!

- and-pyc.

Planar electr_ode

' Voide 14
‘surface\,‘f -—-o
V4 \
\ i
SN _ 7

. . Single layer charge psp and
. double layer charge py 5 '
representmg ¥p

- Figure 4. Image charge with respect to the planar electrode for sausfymg the
condmon ofa constam potential on the electrode

The soluﬁoh of the potential ¢ outside and ¢ inside the
-.void for- the configuration in figure 1 is determined using an
. iterative procedure similar to that used in [5] as follows:

1. The calculation begins with the potential @ of the

- externally applied field Eo. Taking the center of the
~ spheroid as the origin, we note from equation (1) that
aP\(i)Py(d) =iz Therefore,

O™ =¥, —iaE R (i{)A(E) (31)

_where ¥ is a constant depending on-the potehtial‘of
the planar electrode. We may notice that equation (31)

. 2169

is in the form of equation (6) wrth My = Vo and M.

] —1an N -
2. . We use equations (7), (8) and (12)«15) to obtain the' '

potential ¢ and ¢ that satisfy the boundary conditions
on the spheroid surface

¢ =0 + l{f‘” (32

where the superscrlpt ‘(1) indicates the step of
lteratlon

"3, As the condition of a constant potential on the
conducting plane is not. fulfilled by & due to the
added term ‘Pf;’-, potential due to the image charge

inside the conduéting plane is applled to modlfy the
. potentral That is, .

=07+ WP + B0 33

4.  Using the re-expansion formulae in equati()ns ('25):

and (28), we can re-expand ‘P( Y in term of D, ,and
rewrite equatlon (27) as '

§= 0"+ + @) 34)

5. The potential P& ‘or ®Uin turn perturbs the
boundary conditions on the spheroid surface. In order
‘to fulfill the conditions again, we consider @ as the
external potentral -and apply equations (7), (8) and .
(12)~(15) with respect to the potcntlal Thus,

# =0 + ¥ + Of) + P

6. - Perform Steps 3 to 5 to satrsfy the “boundary
conditions on the conductor and those on the spheroid
surface repetitively until the solution of ¢° converges.
Then, the potential # can be determined ' using
equations (14) and (15)

4 CALCULATION RESULTS AND
DISCUSSION

- The method described in Section 3 is apphed to the fi eld
analysis for the void shown in Figure 1. The highest order N

- of the harmonics is about 20, depending on the axis ratio of -

the void and the separatlon between the void and the
electrode. The, accuracy of the calculation results is evaluated
from the boundary conditions of the normal components of
the e]ectrlc field on the void surface, as-the har_r_nomc
potentials naturally satisfy the Laplace equation. In all cases
of calculation, the ratio of the normal electric field -differs
from g/ by less than 0.2%.

4.1 lSOLATED VoID -

This ‘section brleﬂy explains the electric field behavror
where the ratio s/c.is so large that the influerice of 'the

. electrode is negligible. It is well known that the electric field
" Ej in this case is uniform everywhere in the void [7, 21, 22].

35
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For external uniform electnc field Eo parallel to the. major axis
of the vmd : : :

E, : ;5,:/8,
(e le)-leg e -1k

The constant & in equatlon (35) is a functlon of the
eccentnclty, ’

(36)

p=y1- (c/b BNEY)
=L 1—."1_‘87 arcsih,B (38)

=7

The value of a varies from 1/3 for a sphere to unity for an
infinitesimally thin spheroid or # = 1 (See Appendix ‘B).
Figure 5 shows the magnitude of the electric field normalized
. by E, inside the spheroidal void as a function of the dielectric-

constant ratio gy/g for different values of the axis ratio b/c. It .

is clear from the figure that the electric field inside the void
increases with the dielectric-constant ratio The field reaches

its limiting value (1 — o)™ depending on the b/c ratio when

gr/g is suffi iciently large. For the same dielectric constant
ratio, the field is higher in a void having larger axis ratio b/c,
ie. a flatter void. Theoretlcally, E/E, in equation (36)
converges to £z/g as blc — oy however, from figure 5 we can

see that the field is still considerably lower than thlS {imit -

when b/c = 6. : P

10

Flgure §. Electric field msxde an lsolated oblate sphermda] vond under electnc
field Eo.

4.2 FIELD VAR!ATION WITH SEPARATION

‘This section presents the effect of the electrode -on the
electric field inside the void. Figure 6 shows the electric field

distribution also normallzed by E; on the axis of symmetry,
* the minor axis, for the spheroidai voids of different axis ratio
+ blc values located in a solid dielectric having & = 2. In each

graph, -the field is given. for the normalized separation s/c
ranging from zero to infinity. It is clear from the figure that
_the electric field on the axis is reduced when the void is

located near an electrode. AThls beha_vnor is similar to those

- B._ Téchaumnat énd T. Takuma: Electric Field Analysis d'sing Image Charges of Spheroidai Harmonics and its Application‘

reported in [6-8]. For small ratlo b/c in Figure 63, the field
reduction with decreasmg s/c is relatively prominent at the top

pole (zle = 1). However for larger ratio b/c in Figures 6b and
6c, the electric field is reduced more umformly along the axis
when s/c becomes smaller. ‘In all cases, the on-axis.field.
converges well to its minimum when s/c is about 0.1. Similar -
plots of the electric field are.shown in Figure 7 for & = 4. We

can see that the effect of the electrode is the same as that in

Figure 6. In comparison ‘with Figures 6, Figure 7 exhibits .
higher reduction of the electric field and stronger effect on the .

" field at the top pole for the same ratio b/c. .

1.5 — — T

)
N
[q N
051 1
0 —
1 0 1
z/c¢
(@
2 T
. ) ~-—--—-—-'—-—-— e
g: 74 ]
Ry
Cost ]
1 0 1
z/c
(b
2 T
. 1-5 '.—..'..—..—.':.'..'.ﬁf.r,ﬁ..’..’..—.,~‘..-_-.-.-.'.ﬁ..'..ﬁ'
S
8t 1
R
, 05t ]
0 *
1 0 1
z/c

©(e)

Figure 6. Electric ﬁeid on the axis of symmetry of the spheroidal void inside a
solid dielectric of & =2 for different separanon s from the electrode: (a) b/c =
"2,(b) blc=4and (c) blc=6.
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E/E,

E/Ey

E/Ey.

Figure 7. Electric f eld on the axis of symmetry of the sphermdal void inside a
solid dielectric of g = 4 for different separation s from the electrode: (@) blc=
2,(b) ble =4 and (c) ble=6.. !

ln Flgure 8 “the electrlc ﬁeld E; on the void surface is"

plotted for different separation s when &z = 4. The abscissa is
the coordinate £ of points on the surface, e.g. £=1land~1at
the top and bottom poles of the void, respectlvely ‘As can be
seen from Figure 8, the effect of the electrode is negligible
when the separation s is greater than the major semi- -axis b of

the void, ie: s/c > 2, 4.-and 6 in Figures 8a, b and c; .

respectively. For smaller separations, the electric field
mitigation is more pronounced on the surface at the top-pole

area. The voids with larger axis ratio b/c in Figures 8b and 8¢

also clearly exhibit field mitigation at the bottom pole. On the
area between the poles, however, the degree of field reduction
. is smaller. The field maximum js located approximately at a
small 5" value. Thls maximum decreases only slightly when the

Vol 19 No. 6; December 2012
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normahzed separation s/c decreases from 1 0 to zero. The field

distribution on the void surface for e=21is similar to that in
Figure 8, although it is not shown here. The- difference

“befween t_h_e field maximum when s = oo and tllat whens=0is.
reduced with decreasing & for the same axis ratio c/b.

E/Ey

E/Ey.

ZEERNARRAR LA LALAL YL

E/E,

(c)

Flgure 8. Electric field on the void surface for =4 for dlfferent separatlon
s:(a) blc =2, (b) blc =4 and (c) b/c 6.

43 ELECTRIC FIELD IN THE LIMIT 5 > 0

This ‘section considers the extremlty of field reductlon,
whlch takes place in the limit s — 0, i.e. the void is in contact -
with the planar electrode. Flgure 9 compares the electric field
in such cases for different axis ratio 5/c. The solid dielectric £
is 4 for the figure. The electric field in a spherical void (ble =
1) is also included in the figures for comparison. It is clear
that the field shown in Figure 9a follows the behavior

t
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explamed in the previous section. For a spherlcal void or an
oblate spheroidal void with-small ratio b/c, the field reduction
on the axis of symmetry is prominent near the top pole. With a
larger axis ratio or-a flatter shape, the field distribution is

rather uniform on the axis, although the field minimum is still -

at the top pole. The minimum field stress increases with the
-”aX|s ratio b/c.

25—

E/Eq

E/E
|

o fo=1 ———
05 F 2= -]
4 ........
- 6 ..............
0 1
-1 0 1
3

®

Flgure 9. Electnc field |n5|de the void for diffefent axis rahos c/b in the limit
5— 0.for g=4:(a)on the axis and (b) on the surface.

In’ Flgure 9b the electnc field on the void surface is
" maximal at the bottom pole for b/c =1, i.e. a spherical void.
On the spherical void, electric® field is. rather uniform on a
- large portion of its surface. For an oblate spher01d with b/c =

. .2, the field dlstnbutlon remains more or less uniform except at

the top-pole area. With. increasing ratio d/c to 4 and 6, the

peak of the electric field and the shift of its posmon can be .

clearly observed in the figure.
Figure 10 displays. the distribution” of the potential and
- electric field inside spherondal voids in the limit s — 0 when

.the solid dielectric constant gz = 4. In the figure, the potential

in relation with the electrode potential and the magnitude of

the electric field are presented on the color scale given as the

inset on each plot. The contours of equipotential and constant
field magnitude are also plotted so as to clearlyrepresent the
distribution. From the equipotential lines in figure 10a for-&/c
=2, it can be seen that the electric field direction is diverted
from the minor axis of the void, which implies the reduction

. of the on-axis electric field. The corresponding electric field -

dlstnbutlon of the void is shown in Figure 10b. It is clear from

~.whose dielectric © constant
surrounding solid dielectric. However, the top pole is closest

' B. Techdumnat and T. Takuma: vElectric Field Analysis using Image‘Chl.zrges of Spheroidal Harmonics and its Application

the-figure that 'the region of the field maximum is located near
the side surface of the void. Figure 10c shows the field

‘variation inside the void having larger ratio b/c.

The. aforementnoned field behavior. may be explained by
considering the image of a void with respect to the plane

" electrode. The electric field near the axis of symmetry tends to

divert from the axis due. to the existence of the image void
_is smaller . than that of ‘the

to its image and thé distance from the image increases when

‘moving away from the pole. Therefore, such shielding effect -

results in the ﬁeld maximum near the side surface of the voxd

87 201 26 - - 230

©

Figure 10. Potential and electric field inside the vmd of different ratios b/c in

“the limit s ~ 0 for & = 4: (a) potential for b/c =2, (b) electnc field for b/c = 2,

and (c) electric fi eld for b/c = 6.

It is worth noting here that the confi iguration of Flgure 1is
identical in electric field to a confi guratlon of two spheroidal
voids aligned with vertical ‘separation2s in_parallel with
external field E,. Calculation results-in the past showed the

‘reduction of maximum field stress in the cylindrical voids
-when they were ahgned parallel to an electric field [13- 15]
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' However, the electric field distributions- in Flgures' 7-10
exhibit that for a spherical void or a void with small ratio

* . ble, the:field reductionis local at the region closer to the

~ other void.  The remaining portion of the .void is still

subjected to approximately the sa_rne field stress as for the
-isolated void. For a flatter void (larger ratio b/c), the electric.

field is reduced more uniformly along the axis of symmetry;
" however, higher electric field still exrsts at the snde of the
- void volume. :
" Figure 11 presents the variation of the maximum electric
. field inside the oblate spheroidal voids in the limit s — 0
with the dielectric constant ratio £/. In- comparison with
the ‘corresponding case of the isolated void (Figure 5), the
reduction of the maximum field increases with &g, For
example, the maximum field is reduced by 1.3, 2.0'and 2.4%
in’ the spherical void (b/c = 1) for & = 2, 4 and 10,

respectively. The- field reduction is more prominent in the,

- oblate spheroidal void, but the reduction is still only by 1.7,
.5.3 and - 10.3% with b/c = 6 for g =

axis electric field for the gz values treated here.

o blo =1 110=
. -3 F B BETTEPPEPS ]
S P I
Woast R A\ :
S N
5 2F - ]
E ....................
LS b _

1 23 4 5 6-7-8 9 10

epl gy
Figure 11. Maximum electric field . inside the void as a funcllon of the
dlelectnc constant ratio in the hmlt s—0.

4.4 EQUIVALENT MULTIPOLE MOMENTS OF A
VOID :

 The mﬂuence that the void exerts on the electnc ﬂeld in the
: extenor can be represented by using equlvalent charges [23,

24). Define axisymmetric potential P of the kth order

multipole p; in spherical coordinates (r, 6, ¢) as

W (r,6) = %—pTHP (cose) (:39)
dmegr

Note that factor k! is excluded from this def' nition for’

' elmpllclty Conventlonally, an equivalent dipole moment p, is

utilized to represent the induced potential and the higher order’
‘terms are omitted. It is well known that for an isolated ~

‘spherical void, pu is sufficient for the representation of the
induced potential [23]. For an oblate spheroidal void,

equuvalent multipole moment p; can be determined from the -
_potential coefficient B, by the corresponding image charge of
density p;, and image dipole of density. py,; corresponding to . -

B.

2, 4 and 10,
respectively. Therefore, the discharge inception ‘voltage

should not be significantly reduced as expected from the on-~ -Where By is determined from M,

 From equation (41),

" factor (k + 2)7

2173
- For an even nth order harmonic, o
: v 2/ 1 (k+DN _-
=4 k+1 ___l k/22n12_ B : . 40
Py = Amr (1) (k.—n)'(k+l)(k+n+l)!!'." “0)
fofké0,2i4,...
"For an odd nth order,
. k=1
k+l n-l T ' k"
(-1 227 —— B, 1)
Py =4ma () k- n) (k+nni” “l)
2 ) :
forvk—l 3,5, ... More details on the determination of p; are
mAppendle

For an isolated oblate spheroidal void under extemal

_uniform. field 'E, parallel to its minor axis, the mduced

potential

W, =¥, = BOGOARE) (42)

= gk, by using equation (15).

kb

_4m**‘( n? '
p

—B, foroddk
(k+2)"

For even k, Pe = 0. Equation (43) indicates that even for an |
isolated spheroidal void under a uniform field, multipole

3)

-moments must be mcorporated to completely represent the

induced potential, which is W, in this case. As the magnitude
pi/py decreases only gradually with the multipole order by the
in equation (43), it is obvious ‘that the
multipole moments of higher orders cannot be ignored for.the
potential to be evaluated accurately near the void.

Figure 12 shows the equivalent multipole moments py,
noimalized by the p; in the corresponding cases of the isolated

- void, for different separation s values. Although the results in

the preceding sections illustrate the change of the electric field -

~ distribution_inside the void with separation s, the variation

with s of the equivalent multipole moments is small in Figure

12 With decreasing s/c ratio, the multlpole moments of odd
~ orders slightly decrease. On'the other hand, the moments of

even order k become roticeable. The even orders arise from
the influence of the -image charges ‘with respect to -the
electrode. The changes are observed more clearly at lower

“order multxpoles The comparison between Figures 11a (b/c =

2) and 11b (b/c = 4) indicates that the reduction of the
equivalent multipoles at low odd orders are slightly enhanced

* with increasing the axis ratio. With higher & valiie in Figure

12¢c, we can observe the change in p, more clearly. Since for
higher order k the multipole potential vanishes faster with the -
distance from the multipole, we may consider only the change
in p; in order to approximate the influence.of the electrode on -

B the induced potentlal outside the void.

5 CONCLUSIONS

" This" work presents a method for calculating the . electnc
ﬁeld in configurations of an oblate spheroidal object. The

~ method is applied to the study of electric field in a spheroidal ,



2174.

void.located in a solid dielectric below a planar electrode
" under an external uniform electric field. The results obtained
" from the stirdy can be summarized as follows:

=" Electric field in the void increases with the axis ratio b/c and
with -the dielectric constant of the surrounding solid

dielectric.

- The influence of the electrode on the field is neghglble if'
. the separation s between the ‘electrode and the void is larger
than the major'semi-axis of the void, |

"~ With smaller separation, the electric. field on the axis of

_ symmetry of the void is reduced by the presence of the

electrode near the void. The field distribution becomes

rather uniform with increasing b/c.. ' ,

In a void -having large ratio b/c (flatter void), the field

“maximum-is not on the axis of symmetry but on the region
near the side of the void. _

The reduction of the maximum ﬁeld with decreasing s is not

as significant as that of the on-axis electric field.

-Equivalent multipole momentsof hlgher orders vary only

. slightly with decreasing the separation between the void and
- the electrode

APPENDIX A

- The equivalent multipole moments that give the same
potential as Wg,, can be determined from the image charge
~ described in Section 2. For a ring of charge on z =0 plane, its

- equivalent multipole moments. at the orlgm are based on the

following relation [25]:
1
P = (- — 1 (k+D)1

R"Q for k 0,1,2,.
(k+1). A

- (A1)

where R is the radius of the ring charge and g, is the total -

charge of the ring. For a ring of dlpole having . radnus Ron the
z=0 plane,
1 e+

C Pea = (=D k+1)R* (A2
P s (D G ST kDR, ")
fork=0,1,2, ..., where Q, is the total dlpole moments of the
ring.

- Consider the i 1mage charge on the drsc ¢ =0 of an oblate
spheroid. From equation (A1) and the distribution of charge in
equation (18), we determine p; from’ even ‘order harmomc B,
by using an integral -

~ 1 (kDU p:_n(s‘)
p_k-{(—_l)“’ lzzrp* P

k+1) &N d ]B" (A3)

- where & =: /1 —(p/a)® . The 'inte_gr_al (A3) yields

(!s). o
2/ 1. (k+DU B (A4).

k—n),_(kﬂ_) (k+n+n)t "
. 2 ~ ._ . ‘ bv .
fork=0,2,4, ....and p; = 0 for odd k values.

From equation (A2) and. the distribution of charge in

‘ equatxon (19), we can determine Pe from odd order harmomc
* B, in a similar manner.

P = 4‘7mk+1(_1)uz gnl2
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Figure 12. Variation of equivalent multlpole moments with sepératldn s (a)
c/b=2and &z =2;(b)c/b=4 and &-=2; and (¢) c/b=4 and & = 4.

APP.ENDlX B ) _
From equation (38), it is clear that @ approaches unity for
an infinitely thin void (8 = 1). On the other hand, for the

limiting value of a when the v01d shape becomes a spherlcal
one, we expand :

B BB
=5 =1-5 8 16 (BI)
arcsin'ﬁ:/ﬂ’: 3ﬂ - (B2)

The hmrt of equation (38) is then written’ as - '

1ima=nmi2[1—( e )] :
B 2 . 6 :
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_which ylelds
1
dima =— .
A0 3
Flgure B1 shows. the- varlatlon of the a value as p increases
fromOto 1.
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Figure B1. Variation of a value with fbetween 0 and 1.
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Study on the Electromechanlcs of a Conductlng Partlcle

under Nonumform Electrlc Fleld

- Nisarut Phansiri and Boonchai Techaumnat

Department of Electrical Engineering, Chulalongkorn Umver51ty
Phyathai Road, Pathumwan .
Bangkok 10330, Thailand

'ABSTRACT

This paper presents the study on the electromechanics of a conducting partlcle under
nonuniform electric field between nonparallel electrodes. The purpose of the study is to
mvestlgate the feasibility of particle manipulation by the dielectrophoretic (DEP) force
for insulation systems. A numerical simulation of the particle motion under electric
field has been carried out to clarify the particle behavior without the application of
particle manipulating technique. The results show that the charged particle moves to
the region of lower electric field (wider gap), and the displacement .increases with. the

tilt angle between the, electrodes The experimental measurement of the particle

displacement agrees with the numerical results. For particle manipulation, the

“dielectric layers of silicone rubber and polyimide are placed on the grounded electrode.

Numerical field calculation shows that with the dielectric layers, the DEP force attracts .

" -the particle to the region of higher field (smaller gap) and immobilizes it at the
termination of the dlelectrlc layers. Experiments are carried - out to verify ‘the

theoretical prediction.

-Index Terms — Electric fields, electromechanical effec_ts, force control, spheres, gas

insulated switchgear, boundary ele’ment method.

"1 INTRODUCTION

GAS insulation .is - widely used . for ‘various high—uoltage _

~ equipments in electric-power transmission’ and distribution. For
example, the gas insulated switchgears (GIS) and gas insulated
lines (GIL) are the important components of power systems. The
advantages of the gas insulation systems are high reliability and
infrequent requirement of maintenance due to their closed

structure. However, it is known that ‘the existence of small‘

~"particles i ina -gas insulation system can signifi cantly reduce the

insulating capability of the system. [1].: Particles may appear in.

-the-insulation system in the process of manufacture assembly or
maintenance: .

Up.to now-the dynamic behavior- of conductmg (metalhc)' :

- particles under electric field has: been studied in a number of
. ‘works. A’ conducting particle acquires charge ‘when it makes a
coiitact with an electrode under electric field [2-4]. The

interaction between the electric field and the induced charge -
" results in the. Coulomb force that tends to. move the particle -
. toward the other electrode [2]. Hence, depending on the electric-

* field strength, the particle can be lifted from the electrode on
which it is situated [5]. When the particle moves close to the
other electrode, it may induce micro-discharge due to. high

. Manuscript received on 26 July 2012, in final form 8 Novemher 2012.

electric field near it surface, resulting in the reduction of
dielectric strength of the insulation system [6].

Under nonuniform electnc field, particles also exhibit lateral
movement along the electrode surface due to the electric gradient
force {7, 8]. The theoretical and.experimental studies on the

_horizontal movement of a spherical conducting particle on a

coated electrode indicate that the particle can move to the region
of higher field by the gradient force and then initiate discharge in
the system for dc voltages [8] and ac voltages [9].- More complex

- behavior of particle has been reported in the presence of spacer

[10]. In the work, it has béen found that the particle may adhere
to the spacer aﬂer its movement under electric field, depending
on the spacer geometries. The adhesion of particle on the spacer .
affects considerably the surface flashover along the spacer [11,
12]. As the deactivation of particles becomes more important

. with the miniaturization of high-voltage equipments, particlé

controlling methods have been proposed based on the movement
of charged particles under electric field (See references.in [7] for.
details). :

The present work follows the study of particle behavior in a

configuration of nonparallel plate electrodes. Whereas the

previous works stress on the'chargmg mechanism in the case of

dielectric-coated electrode [8), the. current work mainly deals -

with the manipulation of small conducting particles (diameter
less than 1 mm) We study the movement of a charged particle

 1070-9878/13/$25.00 © 2013 IEEE



IEEE Tmnsaar_'ons ort Dielectrics and Electrical Insulation v

under nonuniform electric field in the atmospheric air. The
‘experimental results are compared with the simulation results.

" With the purpose of paiticle deactwatlon, we apply a dielectric

layer. of appropriate thickness to restrain the particle from both
- direct charging by contact and indirect charging by micro-
. discharge in the background medium.. The dielectrophoretic
' (DEP) force or the electrical gradient force functions to initiate

the particle movement into the high-field region and trap the

. 'particle at the " desrgnated position. (In - practical . systems,
" appropriate conducting - or dielectric profiles could :be
incorporated to create the field nonumfonmty) Although' the
DEP force is widely -used for manipulation of particles in
micrometer sizes, the'application for insulation systems requires
attention "on the high electric field, which may bring about
dielectric breakdown of the systems.

- 2 THEORETICAL BACKGROUND

Figure 1 shows the conﬁguratlon of the conductmg particle
. used in this work..In the. configuration; a spherical conducting
particle is locatéd in the gap between nonparallel plate

electrodes -making a tilt angle . The lower electrode is -

grounded whereas potential ¢ = ¥, is applied to the upper

electrode. The surrounding medium is assumed to be air. A "
dielectric of thickness D may be inserted between the particle -
and the grounded electrode in order to prevent the particle .

from being charged. To indicate a position in-the gap, we use
the polar coordinates (p, '6) or Cartesian coordmates @, z) as
shown in figure 1 where '

x =pcosf

1
"z =psing O
~ and the relationship between the unit vectors are
' a, =cosfa, +sinfa, (2')
a, =-sinfa, +cosba,
| ¢=T
ool
et
W . -
- " Spherical Dielectric
i‘ pamclc@ /Ia\er
7]

Do
(}roundcd Lleetrode

IE

Figure 1. Conﬁgurauon of a spherical conductmg pamcle in nonparallel plate
electrodes.

" 24 INDUcED CHARGE‘A AND COULOMB FORCE
- It is well known that a conducting particle in contact-with

ani electrode under an electric field acquires ‘charges from the
electrode. For a conducting sphere of radius @ under uniform

electric field E, the analytical \(alue of the charge q on the

' . sphere is determined by [2, 3] A .
q—-{ (2)47e,a’E » - )

where £{2) is the Riemann’s zeta functlon 1r 6, and positive

" E is taken in the direction into the electrode; Ini the absence of
" the dielectric layer, the applied- electric field £ = Vy(p6,)”" in

Vol. 20, No. 2; 'April 2013
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-the conﬁguratlon of F1gure 1. We can approximate the charge
induced on the sphere whose center is at (xp, a) as

A : o .
], ¥ ——mate,—2- . 4
qp 3 0 ppe ( )
where 2, =_-Jx,2, +a” . While the particle stays on the electrode,

it is subject to the Coulomb force F, that tends to detach the
particle from: the electrode. The force is expressed by

F, = 0832qPEa S (5

When the particle is well separated from any electrode the
Coulomb force can be simply estimated by

<F—qu . o (6)

.22 DIELECTROPHORETIC FORCE
"“The dlelectrophoretlc (DEP) force Fpee of the electrical

gradient force acts on a particle having different polarization

from the surrounding medium under nonuniform electric field.
The DEP force can be estimated based on the effective dipole
moment p.gof the particle. For a conducting sphere,

peﬂ = 47:50 A E : N ¢))
The DEP force acting on this dipole is e'xpressed as [13]
Fpgp = =Py - V)E 2”50 3VE2 . (8)

For the nonparallel electrode configuration in figure 1, the
analytical expression of Fpep in the special case that D =0.is .
. , yt ' , :

F, =—-4n€,0° ——a , : - (9)

.~ DEP 0 p; 602 | p - . A
The DEP force attracts the condlicting particle to the region of
higher electric field (so-called “positive dielectrophoresis™).
Note that ‘equation (9) neglects the higher-order multipolar
forces [14].- More detalls on the DEP force are referred to

references [13, 15].

The other forces acting on-the sphencal partlcle are the.

‘gravitational force F, the friction force F, and the viscous

force F,. The viscous force for a sphere having velocity v is
F, = —6anav 10y

. where the coefficient of viscosity 7 is about: 182 p.Pa-s for the

air. The total force F, on the particle is .
F =F, +FDE,,+F +F +F,

Ial

an

‘Note that F, in equatlon (1 l) is appllcable when the sphere is

on the lower substrate

2.3 MOTION ONSET CONDITION

The motion onset voltages of the particle have already been
analyzed for thé lévitation (lifting) and for the lateral movement
when the particle is on a grounded electrode without a dielectric
layer [6] or on a grounded electrode coated with a thin dielectric
[8]. In brief, when the particle radius @ is much smaller than
coordinate xy, the onset voltages can be estimated as follows:

The levitation-onset voltage V; and electric field E; of the -
particle centered at Cartesian coordinates (x,, a) on the
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grounded electrode without the dlelectrlc layer are determmed
by equatmg the gravntatlonal force with the Coulomb force. -

g =Y 05 |8 (12)
ppeo ¥ &
where p, is the mass dens:ty and g is the gravrtatlonal
.acceleration.
The condition for the lateral ‘motion of the particle must be
considered separately for (a) the case without a dielectric layer
~and (b) the case with a dielectric layer on the grounded

electrode. Consider a particle that is directly on the grounded
electrode, for which the static friction coefficient is 1 The, ~
onset voltage Vy and electric field Ey for the lateral motion are "

" determined from the condition

FQEP :”(Fg Fq) (13)
which yields
V,
E, =i /lapm (14)

- 2,0, €ol4p+(3a/ P, )]
Note that for the conducting pamcle resting on the grounded

_' electrode, Vi is always smaller than V; because when the '

Coulomb force F, is comparable with the gravitational force,

the frictionis considerably reduced and the particle is ready

-for the lateral motion. In practice, however other adhesive
forces may inhibit the lateral movement of the particle before
levitation.

If a very thin dielectric layer exists between the partlcle andv

_the "grounded electrode, and we assume the particle is
uncharged, the Coulomb force is omitted from equation (13).
Asa result; the condltlon of the lateral motion onset becomes

HPnEP, 1)

E =
H 3e,

which is higher than that by equation (14). However, it is .

worth noting that this condition may not hold due to two
factors. First, with a thin dielectric layer, the electric field is
" highly intensified near the contact point [16].. Thus, the
particle is possibly charged to a.certain degree. Although the

charge amount may not be as large as that in equation (4), the -
' particle charging reduces the motion-onset voltage. The other-

_ factor is that even when the net charge is-zero on the particle,
“there is still the interaction between the induced charges on
the partlcle and the grounded electrode, which is also

neglected in equatlon (15). The force on the induced charge

results ‘in the. enhancement of the adhesron between the
'partlcle and the electrode. -

3 EXPERIMENTAL SETUP

Aluminum and. stainless steel spheres of 0.4 mm radius..

(Micro Surface Engineering) were mainly used as the patticles

in the expetiments. The particles were cleaned by sonication

and kept at 80-120 °C prior to each experiment.

Figure 2a shows the schematic diagram of the experimental
setup for the observation of particle motion. The lower
electrode was set on a 3-axis linear positioning stage, and the
upper electrode was attached to a goniometer 'stage for the
angle adjustment. The electrodes. of diameter 27 mm ‘were
- made from stainless steel and had appropriate contours in

order to prevent excess_lvely high electric field at thelr edges
(Figure 2b). The tilt angle §, = 3° was used for investigating the
basic behavior of, particle, and 8 = 15° was used for the
experiments on’ particle. manipulation. For the experiments, we

" placed a dielectric sheet about 1.0 mm in thickness_on the

grounded electrode. Poly-dimethylsiloxane or PDMS (KE-106 :
xf), a silicone rubber, was selected as the material due to
fabrication convenierice. A polyimide film of 74 pm thickness
(Kapton, Dupont) was attached to the top surface of the PDMS
to reduce the friction force. The dielectric constants -of the

PDMS and the polyimide are equal to 3.1 and 4, respectively.

HY
. electrode

- | Signal
‘generator

= C_mundcd
electrode

- (®)

Figure 2. Ex_periment setup: (a) schematic Diagram; (b) electrodes,

Thelower electrode was grounded, and the high voltage ¥,
was applied to the upper electrode. The voltage was generated

. by a high-voltage amplifier (Model 610E, Trek) receiving the

input from a signal generator (Model AFG3021, Tektronix).
The electromechanical basics of the particle on the grounded

" electrode was observed by applying a dc voltage for 500 ms. '

For'the DEP trapping experiments, we applied contmuous 50-
Hz ac voltage of the sinusoidal waveform

The motion of the partrcle was- observed through a’ 1/3 inch
charge-coupled device (CCD) camera (Model 902H3
Ultimate, Watec) with a telecenteric lens. The camera was

~ connected to.a PC for recording i images at 30 fps rate. -

4 RESULTS AND DISCUSSION

4.1 PARTICLE ON THE GROUNDED ELECTRODE
*'WITHOUT DIELECTRIC LAYERS

A prehmmary experiment was carried out to measure the
levitation-onset voltage for gaps of 2 and 4 mm without the
dielectric layers. The difference between the measured values
and the estimation by using equation (12) was about 10% for
the aluminum particles and 3% for the stainless steel particles

_used in this work. To observe the electromechanical basics of .
the particle under the electrode system, the study began with

the case in which the particle was on the grounded électrode
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in the absence of the dielectric layer, We carried out a-
numerical simulation of the partrcle trajectory for .6, = 3°, 6°
and 9° when the applied voltage ¥y was -higher- than the

levitation-onset voltage ¥;. The particle velocity v, before and
v, after the 1mpact wrth the electrodes are related by

VZ. =—k vln ’

(16)
and

. VZI kV“

(17),

where , “and Ic, are the coefficients of lmpact and the
subscripts ‘#’ and ‘¢ denote the normal and tangential
directions of the velocmes 'We used &, and % equal to 0.6 and
0.7, respectwely, obtained - from an experiment of the
aluminum particle on the electrode.

To validate the. numerical results, an experiment was done
.to measure the drsplacement of the aluminum particle. In the
experiment, a PDMS film of thickness 30 um was placed on
“the grounded electrode near the initial position of the particle.
After the voltage appllcatlon of a DC voltage, the particle

repeatedly moved up-and down across the air gap. The

position of the PDMS sheet was chosen so that the particle fell
on the sheet after two round trips. Because the sheet inhibited
thé particle from exchanging charges with the grounded
electrode, the particle adhered to the PDMS layer after the
impact, as schematically shown in Figure 3. The displacement
" Ax of the particlé from the initial position was then measured
arid compared with the simulation results. For x, = 106 mm, 6,
= 3°and ¥, = 4 kV, the average value of the measured Ax was
. 0.75 mm whereas the numerical simulation yielded Ax =.0. 83
_ mm, about 10. 7% different from ‘the measured value.

S PDMS
ooy film

Figure 3 Schenratic diagram for the measurement of panicle disolacementr

The calculated tra_|ectory of the aluminum particle for a

longer time (270 ms) is shown in Figure 4. It is clear from the
figure that when the levitation takes place the particles move -

"to the right hand side (loweroﬁeld ‘region). When the particle

.~ is lifted from the electrode, the Coulomb force is predominant -

over the DEP force. The particle makes an impact with a
electrode in-a direction slightly deviated from the normal

direction due to its velocity, and departs from the electroder

" -witha larger angle of devratlon because k, > k.

Figure 5 shows the numencal results of the horizontal
displacement Ax-of the aluminum particle as a function of time
for the same 7, but dlfferent values of the tilt angle &,. The
particle is subject to the same electric field strength at the

- initial posmon i.e. constant pBo at the time ¢ = 0. The figure )

illustrates that with increasing. the tilt angle of the upper

electrode, the particle moves faster to the right hand side. Tt is .

worth noting that when the applied Voltage Vo is larger than

.V but smaller than V7, the particle is initially moved along the

lower electrode by the DEP force to the higher-field region
(left hand side), and then levitates from the electrode when the
Coulomb force is strong enough [6]. The subsequent
trajectory should follow the tendency shown in figures 4, i.e.
toward the lower-field region.

5

s

= {mm)
R
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AT T 12 T TR
X (mim) ’

Figure 4. Calculated trajectory of the aluminum particle at initial x, = 106 mm .

for Vo =4 kV and tilt angle & = 3°.
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Figure 5. Displacement Ax of the aluminum particle as a function of ume 1 for

Vo=4kV.and dlfferent tilt angle & values.

4.2 PARTICLE ON THE GROUNDED ELECTRODE
- WITH THE DIELECTRIC LAYERS

" The aforementloned results clearly present the difficulty in
deactivating a conducting particle at a specific position within
the electrode system. From the extensive experiments on
diverging plate electrodes with a spacer by Hara’s group, it
has been found that in addition to the oscillation -across the.
electrode gap, when a particle is charged, it may adhere to a -
spacer surface and move along the surface under high electric
field [10]. In this section, we deal with a simple configuration
to manipulate the conducting particle by using the DEP force.
In this configuration, the nonuniform electric field at the
termination of the dielectric layer is employed to trap the
partticle. Note that although we can design the electrode
profiles or utilize a small gap to achieve high field gradient for
the particle trap, such the confi iguration is more vulnerable to
partial discharge.

As already mentioned, the PDMS sheet was -placed on the -
grounded electrode to prevent the particle from being charged

by direct contact with the electrode. We chose the thickness D

of the sheet greater than the particle radius a in order to avoid
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' excesswely hlgh electric field at the contact point between the
particle and the dielectric, which would also increase the

charging possibility. Another role of the thickness D was to
_ reduce .the normal (adhesive) force between the induced.

charge on the particle and the grounded electrode.

~ 4.2.1 NUMERICAL RESULTS
To investigate the influence of the dielectric sheet on the

electric field strength in the gap, we calculate the electric field in . .

 the air gap with the presence of the dielectri¢ layers numerically
by using-the 2D boundary element method [17]. As the
polyimide film is very thin, only the PDMS sheet is considered in
the calculation. Figures 6a and 6b present the calculation results
of the electric field distribution in the air gap between the
dielectric surface and the upper electrode for Vo= 1kV, &=15°,

" x=11-24 mm, corresponding to upper electrode height z, = 3.0~
. 6.4 mm. Two D values, 0.6 and 1.0 mm, are used to observe the
effect of the thickness, respectively. The -contours of constant
field strength are also drawn-in' the figures to make clear-the
variation of the electric field. From Figure 6, we can see the

" increase of the electric field strength from right to left due to the
shorter gap length. The influence of the dielectric layers becomes
.. more prominent with decreasing the gap length, as we can see the

lines of constant field deviate from the constant-r relationship. -

“The electric field is intensified to the maximum value at the

termination of the dielectric on the left. Another local peak of the
electnc field is located on the upper electrode, which termmates _

near the upper left corner of the figure.

01g 033 . 040

(b

Flgure 6. Calculation results of the electric field dlétrl,butlon in the air gap.
1kV, &=15°"

between the dielectric surface and the upper electrode for Vo=
and(a)D 0.6 mm; (b) D= lOmm

Figure 7 shows the electric field strength at helght 0.4 mm
(particle radius) above the dielectric surface. It can be seen
~ from the figure that for the same x value, the field strength is
slightly higher on the thicker dielectric layer. The maximum

— particle residing in the air gap is determined as [18]

field strength is-about 0.38 kV/mm for D = 0.6 mm and 0. 40‘ ‘
kV/mm for D 1.0 mm.

- 045 ! T - T T — T
A 0.6 mm - ]
1O mm ==memee

E (kVimm)

12 4. 16 (8 20 22
x (mm) '

Figure 7. Electnc field strength at 0.4 mm above the dlelecmc surface for Vo .
=1kV, &= ]5°andD 0.6 or 1.0 mm. .

.03 . 028 - 043
o e
Figure 8. Distribution of {4 for the uncharged conducting particle in the air

" gap fora=0.4 mm, ¥%,=1kV, &= 15°and (a) D= 0.6 mm; (b) D= 1.0 mm.

The electric ﬁeld energy Wy for an unéhargcd conducting'

1-}(16)_".'

Figure 8 shoWs'the profiles of | W in the air gap.-A'gai'n,-t‘h'e
variations similar to those in Figure 6 can be observed from
Figure 8 for which higher energy magnitude is in the case D= .

W, =-275,8°E*

1.0 mm. Equations (8) and (16) imply that the DEP force can

be: determined from the energy gradient. Therefore, we may

" deduce the force direction from the contours of constant W in
-Figure 8. When a conducting particle is on the dielectric sheet,

the DEP force attracts the particle to the field maxnmum at the -
termmanon of the dlelectnc sheet.
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Figure 9a- shows the m'agnifude_ of the DEP_ force

estimated by equation (8) for dielectric thickness D = 1.0
mm. Note that the maximum force magnitude in the figure is
limited to 100 nN for the color scale in order that we can

clearly observe the. force variation in the whole gap. The’
actual force is significantly stronger than 100 nN near the

termination of the dielectric sheet. The force increases from
a few nN on the right hand side of the figure along the
dielectric surface to .over 100 nN, on the left hand side.
Figure 9b-displays the DEP force direction in the region
near the dielectric termination. Due to large “difference in
force magnitudes in the region, all the force vectors are

normalized to the same length. The figure illustrates that a.

conducting particle is attracted by the DEP force to the
termination of the dielectric sheet, provided that it is not
levitated so high from the dielectric.surface.

385 -

, Dielectric surface *

o ()

"Figure 9. DEP force for Vo=1kV, 6!;= 15°and D = 1.0 mm: -.(a)‘Magnitude_,-
of the force on color scale; (b) Direction of the force near the termination.
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Figure 10. DEP f(_.)rceb acti'n‘g on the particle when it is on the sﬁrface of the
dielectric sheet for ¥o=1kV, & =15° for D=0.6 or 1.0'mm.
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In Figure 10, the horizontal component F, \ of the DEP force
is plotted for the conducting spherical particle located on the
dielectric sheet, i.. at z, = 1.0 and 1.4 mm for D = 0.6 and 1.0

' mm, respectively. It can be seen from the figure that when the

particle is far from the termination of the dielectric sheet, it is
subject to the force in the —x direction. This force magnitude

‘increases with decreasing x, and is stronger for D = 1.0 mm-

‘than for D .= 0.6 mm. The maximum positive F,, which
_prevents 'a moving particle from breaking the DEP trap, is
very high at the dielectric termination. The configuration with
D = 0.6 mm yields slightly larger magnitude of the negative
- force, possibly because of the smaller curvature applied to the _
_dielectric termination in the geometrical model. ;

From a preliminary measurement on the polyimide surface,

. the static friction ranges from 380 to 730 nN for the aluminum

particle and from 368 to 1270 nN for the stainless steel
particle. The DEP force varies proportionally with ¥,* in
‘equation (9). Based on the numerical field calculation results -
and the higher values of the measured friction force, the
motion-onset voltage of the particle for D = 1.0. mmis
estimated to be 5.0 kV for the aluminum particle and 6.6 kV
for the stainléss steel particle at x, = 18.66 mm, corresponding
t0 z, = 5 mm. With these V, values, the maximum background -
electric fields (in the absence of the particle) at the dielectric
termination are about 2.03 and 2.7 kV/mm for the particles,
which are still below the critical field stress of the air for the -
experiment conditions: However, it is to be noted that the

* actual maximum field depends heavily on the geometrical

‘profiles -of - the dielectric. In addition, the presence of the
particle also intensifies the electric field in its proximity. Thus,
the particle is possibly charged to a certain degree. However,
“if the amount of charge is sufficiently limited so that the
levitation does not take place, the particle is still attracted to
the dielectric surface by the DEP force, as shown in Figure 9.

L 422 EX_PER_IMENTAL RESULTS
To verify . the - numerical prediction, we performed
experiments for the tilt angle &, = 15° of the upper electrode.

" The thickniess' D = 1.0 mm was chosen for the PDMS as the .

numerical results showed that the thicker - dielectric  sheet

-enhanced the DEP force. We employed two kinds of the

dielectri¢ termination. For- the first kind of fermination, the

PDMS sheet and the polyimide film were terminated at the

same position. For the second kind, the polyimide film was
extended longer than the edge of the PDMS sheet about 1-2
"Figure 11 shows the recorded images of the particle motion,
on the dielectric layers when the first kind of dielectric
termination is used. The particle was initially at x, ~ 16.4 mm,
corresponding to upper electrode height z, = 4.4 mm (Figure

“11a). After increasing the applied voltage ¥, to 3.5 kV, the

particle began to move along the dielectric surface to the left -
hand side (Figure 11b). When the particle reached the
termination of the dielectric layers, it was trapped at the edge

* of the PDMS layer, as shown in Figure 1ic. The particle

remained- stabilized at. this position under the continuous

- voltage application. From a series’ of experiments on this
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conﬁgufation, we found that the particle mlght be trapped at

the termination of the dielectric layers or move. through the'
smallest gap without deceleration. The probabilities of the fail -

and successful immobilization were approximately the same,
The particle charge could be a critical factor for the particle
. behavior at the dielectric termination. Although the use of
dielectric layers and appropriate gap length: successfully
suppressed the particle levitation, the particle was still charged

to a certain degree. At the dielectric termination, the particle

was ‘closer to the electrode and the Coulomb fqrce possibly
negated the DEP force used for immobilization.

. Lower electrode

'Flgure 11 Temporal sequenoe of the particle positions when the first kind of
the dielectric termination was used: (a) initial position; (b) movement after
voltage appllcauon (c) final posmon ‘The thickness of PDMS sheet is | mm:

Accordmg to. the dlrectlon of the DEP - force shown in
: Flgures 9 and 10, it is lmphed that when the particle slightly
passes the position of field maximum, it is still subject to the

DEP force having a conip_on_en_t in the —x direction, pulling the -
particle back to the field maximum. Based on this observation, -

the second kind of dielectric termination was applied. in the
"experiments, as-shown in figure 12a. The initial position of the

“conducting particle was ‘approximately the ‘same as that in-
Figure 11a. The polyimide film was 1-2 mm longer than the.

PDMS. With the voltage application, the particle moved to the

N Phansm and B. Techaumnat. Study on the Electramechamcs ofa Conductmg Pardcle under Nonumform Electnc Fteld

Jeft hand’ side; and oscnllated back and forth in the high ﬁeld
region (Figure 12b). The particle finally stopped ‘at a point
‘near the posxtlon of maximurm field as shown in Figure 12¢.”

®)

Figure 12. Temporal sequence of the panicleifnage's when the secdndv kindof.
the dielectric termination was used: (a) initial position; (b) movement and
oscillation after voltage application, (c) final position. The thickness of PDMS

‘ - sheet is 1 mm.

* The motlon-onset voltage VH was measured for the partlcles
mmally at the upper electrode height z, between 4.5 and 6.0

-mm. The average values of the measured Vy as a functiqn of
* z, are shown in Figure 13. For comparison with the theoretical
-Vy values, we also measured the friction force between the

particles and the polyimide surface by using .an angle-_

‘adjustable " tilted plate. However, the measurement. results

varied significantly between experimental runs. The estimated
Vi values based on the minimum and maximum magnitudes
of -the friction force are also given in -the figure for

.comparison. From Figure 13, it is clear that ¥V values from

the experiments increase with the vertical. gap length z,. It is
still inconclusive that the measured Vy values are hlgher or
lower than the theoretical estimation.

The peroentage of successful patticle lmmoblhzanon in the
experiment also depended on the initial position of the particle.
The aluminum particles initially at the upper electrode height z,
=5, 5.5 and 6.5 mm were trapped-at the dielectric termination

‘ _b'y 100, 43 and 14% of the experimental runs, respectively. The:
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stainless steel particles at z, = 4.5, 5 and 5.5 mm were trapped

by 100, 100 and 60%, respectively. With higher z, values, the -

kinetic .energy of the particle when it reached the dielectric
termination was larger. The higher kinetic- energy reflected the
 difficulty of particle immobilization. In addition, because hlgher
" electric field was required to initiate the particle- motion with

increasing z,, the interference by the Coulomb force was also

- greater at the posmon of deactwatlon
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~ Figure 13. Measured motion-onset voltage (syrnbols) for the lateral tovement
“of the aluminum and stainless steel particles in comparison with the minimum
and maxnmum of the estimated values (sohd and dashed lmes)

7 CONCLUSION

'In this work, we studied theoretically and experimentally the

particle manipulation by using the DEPforce. The simple
configuration of nonparallel-plate electrodes.was used with the
insertion of dielectric layers to initiate and deactivate the particle
motion. A numerical calculation was performed to confirm the
distributions of the electric field and the force in the system. The
“experiments on the conducting particles were carried out to
“verify the theoretical prediction. We applied two kinds: of the

dielectric termination for the ‘purpose of the . particle.

deactivation. The -experimental ‘results confirmed the
applicability of the DEP force for trapping; however, the
performance deactivation still depended on'the initial’ position of

the particle. The motion-onset voltage of the particle from the -

experiment increased with the gap-length.
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Numerical Analysis of DC-Field-Induced Transmembrane
Potentlal of Sphemldal Cells in Ax1symmetr1c Orlentatlons
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ABSTRACT

This - ‘paper presents the electrostatic analysis of dlrect-current and- steady-state
_transmembrane potential of non-spherical biological cells. The purpose of this analysis

T is to clanfy the influences of different cell geometries and conductivity of the

extracellular medium on transmembrane potentlal The cells are modeled as spherical
‘or spheroidal and as having different ratios between the radii in different axial
directions. The boundary element method, a numerical method, is. applied to' the
" calculation of the transmembrane potential. The calculations show that a decrease in
the conductivity affects both. magnitude and distribution of transmembrane potential.
The cell membrane can be approximated as a perfect dielectric, provided that the
conductivity of the. extracellular medium is s'ufﬁciently high. For the same cell
._geometries, transmembrane potential is smaller for pairs of cells than for isolated cells,

and this potential is more reduced at the contact poles.than at the opposite poles Either
different axial lengths or different radn between the cells results in this disparity in-

“transmembrane potential of the cell pair. However, the maximum potential of both
cells approaches the same value and is located at the contact poles if the conductivity in
the extracellular medium is very low. : :

Index Terms — Electrostatlc analysns, biological cells, blomembranes, electric fields,

'sphermds, conductmty, boundary element methods..

1 INTRODUCTION

" ELECTROSTATIC ﬁeld. effects are utilized in- various
applications involving biological cells [1]. When a suspension of
cells is exposed to an-electric field, charges of opposite polarities

-accumulate on both. sides of the cell membrane, a layer of lipid

_molecules, - by “electric current.  The accumulation - of charges
produces a transmembrane potential, whose magnitude depends on
cell.size, electric field strength, cell orientation with respect to the
field direction, and electrical parameters of the media involved.
Transmembrane potential is an important parameter in- cell lysis,
electroporation and electrofiision of biological cells [2]. When
transmembrane potential reaches a‘ critical value, membrane

breakdown occurs. This breakdown may be reversible, ie., the

membrane can re-attain ‘its ‘insulating property after the applied
-electric field is removed, or permanent (resulting in cell death).
~ The analytical solution of transmembrane potential is available
for an isolated -spheroidal cell in a uniform field 3-7]. For an
"isolated spherical cell with a perfect dielectric membrane in a
~uniform electric field Ey, the analytical solution of the steady-
state transmembrane potential V is :

VY :%E,,Rsmﬁ - (1)

Manuscript received on 19 October 2012, inﬁnal  form 1 0Juhe 20l3.

_ wher'e R is the radius of the cell and @ is the zenith angle

indicating position on the membrane. The time constant of the
potential buildup depends on cell size, membrane capacitance,

. and conductivity of the intracellular and extracellular fluids.

Actual.biological cells, such as those adhered toa surface,
may have non-spherical shapes. Cell shape may also change
under electric ‘field - stress or pressure. However,
transmembrane potential of non-spherical cells has not been
fully studied. For cells with complex geometries, numerical -
methods must be used to determine their transmembrane

potential. In addmon, the calculation is more complicated

when“cells exist near or in contact with each other, although

-the method of ré-expansion can be applled to- configurations

of spherical cells [8].

This work: presents a numerical analysis of a dnrect—current
(DC) steady-state transmembranc_potenhal of biological cells
in an external electric field. The main objective of the analysis

is to investigate the effects of (i) cell geometries, (ii)
" conductivity of extracellular medium and (iii) contact between
* cells on transmembrane potential. For cell geometries, cells
.are modeled as either oblate or ‘prolate spheroids and

compared -with the spheres: Although cells are usually
suspended in highly conductive medium, the conductivity is
sometimes reduced to limit- Joule heating in - various

procedures. Low conductivity media are also used in

1070-9878/13/525.00 © 2013 IEEE -
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electrofusxon protocols  to obtain - cell
dlelectrophores1s The boundary element method is utilized for
. calculations, in which the celt membrane is modeled either asa

perfect dielectric medium or conductive medium to clarify the
effect of membrane conductivity on the calculatlon results.

. 2 CONFIGURATIONS OF ANALYSIS -

Figure 1 shows the conﬁgnrations: of cells used fer

 analysis. Only the axisymmetric configurations are considered

" in this' work. Figure 1a shows an ‘isolated cell under an
external electric field Eq. Cell gebmetnes are defined by axial
length a, which is parallel to the external electric field, and
radius R, which is normal to the field, as shown ini the figure.
For a spherical cell, @ = R. In Figure b, two cells are in
contact and aligned in the direction of the external electric
field. Subscripts ‘/” and ‘¢’ are used to denote the parameters
of the lower and upper cells, respectlvely This configuration
is of practical importance for-the process of electrofusion, in

which cells are brought into contact with each other before

electric pulses initiate membrane breakdown. [2, 9. The cells

in the pair may be of the same or different geometries. The
conductivity of the cytoplasm in the interior of the cell is

- denoted by g and that of the extem‘al medium is f.

3 CALCULATION METHOD

' The boundary element method (BEM), which is an integral-.

based numerical method, is used to- calculate steady-state
transmembrane potennal #% and EF are the potential on the

membrane and electric field normal to the cell membrane T,
respectively, on the exterior of the cell. Since the membrane is
very thin compared with the cell size, it is treated geometrically
" as ‘a zero-thickness surface. We. can write potentlal ¢ in the

extenor in terms of the mtegrals of ¢ and EF as [10]
O R WL e s b, ry)

R V)

where r is the position. of the‘pd_tential to be evaluated,'t's is

the position on the membrane surface, and Iy is the reference. -
_point of zero-potential. y(r, ry) is the fundamental solution.

Note that positive normal # is taken in the dlrectlon from the

interior of the cell to the exterior. The constant c%'in equation -

- (2) depends on the solid angle at r: ¢ = 1 if r is not on the
boundary, and E=1/2if r is on a smooth boundary interface.

For axisymmetric conﬁguratlons, in which the coordinates of

r are def'med by (p, z), the. ﬁmdamental solunon is expressed

as v
| K(,/2n/(m+n)).

V/( )=
Kisthe compiete elliptie integral of the first kind, and

m=p*+p+(z-z)" O

n=2pp, O

contact by

e e
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- Conductivity R
Hg

External
electric field Eq

Ky

. E‘O

(b)

,Flgure 1. Configurations of cells used for analysxs (a) isolated cell and (b)
cell pair.

For the BEM, we diseretize the cell membrane T’ inte
¢lements, and express #F

#7 = ¢(r)) and E,.E,—E (r;) as

and E’ with nodal values

Fer=she o ©
EE(r,)= Y N,(t,)EE, o

where N; is the interpolating function assomated w1th the ith

node for i = 1, 2, ..., ny. Applying equation (2) at the node -
posmon r=r;,. from equations (3)(7) we obtain zy linear

equattons which may be written in matrlx formas. .

51¢E]=[G51Ef]+ [#z0] o : (8)

'[¢£ ] and [E £ ] are ny x 1 matrices of the nodal values, [ £)
and [G ] are ny X ny matrices determined from the'boundary

~ integral, and [¢Eo] corresponds to the last term on the right -

hand side of equation ). .

For the interior of each cell, the relatlonshxp between the
potentlal ¢ and normal component E! of the electric ﬁeld
on  the membrane is '

¢ () =— fw(e.r,E! dS Ja”’(’ ’¢ )

r
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where ¢/(r) + ¢ (r) = 1. In a similar manner to the formulatlon
of equation (7), we can obtain linear equations

m )kl (10)
The boundary condition‘to be satisfied in the steady state is
wilE! )= e [EE] an

For the biologiczil “cells, .another boundé.ry condition of

current density is needed to relate the potential and the normal -

component of the electric field
%?‘([961 ]?‘ [¢E]) /‘1 [E ] /‘E[EE]
i

where 4, .is. the  membrane conductivity and 1, is the
membrane thickness. The transmembrane potcntlal Viu 1s
defined here as

V,=¢'-¢° (13)
If the membrane is treéated as a perfect dielectric (1, = 0),
- we can simplify the calculation. Equations (11) and (12),
become trivial as the current normal to the membrane vanishes
" in the steady state because the membrane has no conductivity.
That is, we can apply the condition of zero normal field to all

(12)

E?; and solve the linear equation system (8) for unknown ¢
-without needing to consider equations (10)-(12). For each
" cell, the potential ¢/ on the membrane in the interior has a
single value because the electric field is zero everywhere
- inside the cell if the membrane is a perfect dielectric. Based on
- the fact that the transmembrane potential V,, originates from
charges that accumulate on both sides of the membrané and an
assumption that the total charge inside each cell is equal to
zero, it can be deduced that.

j(¢ ~¢')as=0

The mtegral is taken-over the membrane of each cell. In other-

words, ¢' is the__averagc value of ¢% over the entire cell

membrane surface. It is worth noting here that with the use of
the appropriate fundamcntal solution y(r, r;), the calculation
principles described here can be applied to any conﬁguratlons
not lumted to the axisymmetric case alone

4 RESULTS AND DISCUSSION

4.1 CELL PROPERTIES AND MODEL
_In the calculation, the conductivity 4 of the intracellular
fluid is equal to- 0.2 S/m, a typical value for the cytoplasm.

. The conductivity g of the extracellular medium is varied -

from 0.1 mS/m to 1 S/m. The membrane conductivity g, used
for calculations is 0.5 uS/m and the membrane thickness £, is
5 nm {11]. Note' that the membrane specific capacitance,
which is about 1 pF/cm?, is not involved in the steady state

calculations. The variation of cell geometries analyzed in this -

work is illustrated in Figure 2. For oblate spheroidal cells,
axial length a= 10 pm, and cell radius is varied to obtain ‘a/R

.= 1/4 and 1/2 The sphencal cell hasa=R=

10 um for the oblate spheroidal cells, and the radius R =

(14)
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10 pm. For the
prolate spheroidal cells, R = 10 pm, and axis length is .
increased to obtain a/R = 2 and 4. Therefore, the smallest

dimension of the. cells, which can be either axial length a.or .
radius R is equal to 10 pm in all of the calculatlons . :

Prolate spheroidal
cells

.\.

' Oblate spheroidal  Spherical
cells cells :
Figure 2 Variation of cell geometries used for -analysis. The axial length a =

IO pm for the prolate
spheroidal cells.

~ For the boundary element calculation, the cell membrane is

discretized into 128 or more elements depending on the cell -
geometries. Second-order curved elements are used to attain
hxgh accuracy results.

4.2 ISOLATED CELLS -
Figure 3 shows the transmembrane potential ¥,,, normalized

by aFy, of an isolated spherical cell as a function of zenith

angle 6 (see Figure 1) for various values of exterior
conductivity sz From the figure, we can see that for uz > 0.1
S/m, the transmembrane potential reaches its limiting value .
for a spherical cell, which is equal to 1.5aE at the poles in the
case of a perfect dielectric membrane {3]. With g = 0.01 S/m,
the potential is still close to the limit. Further decreases in

exterior conductivity result in lower magnitudes of
transmembrane potential; for example, the maximum V,ofa
spherical cell is reduced by 33% when g = 0.001 S/m. '

NS St 1 . F S

60 30 0., 30 60 90
0 (degree) ‘

Figure 3. Transmembrane potcnUa] of an 1so]ated sphencal cell for vanous ;45 '
values.

The analytical solution of the transmembranc potential is .
available for isolated: spherical and spheroidal cells. under a
uniform electric field [4, 7). Figure 4 compares the maximum
transmembrane potential (at the top and bottom poles. of
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sphencal cells) calculated by the BEM with the analytical
solution given in [4]. It is clear from the figure that the
numerical results agree very well with the -analytical solutlon
for all He values considered here.

S 4
c
NS
s ]
Analym.al
oL " Numcncal "y
0.0001 * 0.001 0.01 0.1 (N
: - g (S/m)

Figure 4. Comparison of the maximum transmembrane potential at the poles

of an isolated spherical cell with the analytical solution.

The distribution of transmembrane potentials on-isolated non-
spherical . cells is calculated for various exterior conductivity

values. The calculation results are shown in Figures 52 and 5b -

for oblate spheroidal cells and Figures Sc and 5d for prolate
spheroidal cells. From the figures, we can see that the variation

" of the transmembrane potential on the spheroidal cells is similar

“to ‘that . of spherical cells. That is, the magpitude of ‘the
transmembrane potential is substantlally reduced when the_
external conductivity is lower than 107 S/m. However, one may
notice that the reduction’ of transmembrane _potential “by
lowering the exterior conductivity is more prominent for the
_ oblate spheroidal cells than for the prolate spheroidal cells. As
“shown in Figures 5a and Sb, the region of high transmembrane
potential is wider on the oblate spheroidal cells' than on the
spherical cells shown in Figure 3. This tendency is reversed for

the prolate spheroidal cells; whose tmnsmembrane potentlal is -

shown in Figures Sc and 5d.

Figure 6 compares the calculated maximum transmembrane _v
potential of spheroidal cells (at the poles) with the analytical

solution [4] for various values 'gf a/R.. The cell profiles are
referred to Figure 2. From the figure, a good agreement can be

observed between the numerical results (symbols) and. the -

analytlcal values (lines). However, whereas we cannot see any
difference between the numerical and analytical values for the
spherical cell in Figure 4, the calculation results slightly deviate
" from the analytical solution for the spheroidal cells as shown in
- Figure 6. The calculated maximum ¥, is higher than-the

analytical value for the oblate spheroidal cells and lower than

the analytical value for the prolate spheroidal cells. The.
j.dlspanty increases as the axis-to-radius ratio differs more from
one. In addition to numerical errors, another potential cause of
. the disparity between the calculation results and the analytical
solution ‘is the assumption of a confocal . mémbrane in the
‘analytical method, which is based on spheroidal coordinates. As
the thickness of the confocal membrane varies with the posmon

it is implied that the conductivity of the cell membrane -is
. nonuniform for a Constant specific conduc_tance /l,,,/t,,, value.

B T echaumnat Numerzcal Analysis of DC Field-Induced Transmembrane Patenrtal of Spheroldal Cells
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Flgure 5. Dlstnbunon of the normalized transmembrane potennal of isolated
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Figure 6. Companson of the maximum transmembrane, potentials obtained
from the numerical calculation (symbols) with (he analytical solution (lines)
for the xsolated sphermdal cells
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Figure 7. Comparison of the normalized transmembrane potentlal between
cells with different axis“to-radius ratios. (a) g = 1 S/m, (b) g =10 S/m. -

Figure' 7 compares: the ‘horrhalized ‘transmembrane
potential of cells with different-a/R ratios when they are in

a high conductivity (4z = 1 S/m) and low conductivity (1z

T= 107 S/m) media. When -the conductivity of the
extracellular medium " is sufﬁcnently high, the normalized
_ transmembrane  potential consistently - increases with
. decreasing axis-to-radius ratio as shown in Figure 7a. On
“the other hand, when the conductivity is low (Figure 7b),
the normalized transmembrane potential is. highest for the
spherical cell and decreases * with - either. increasing or
decreasmg ax1s -to-radius ratlo Note that this behavror

Vol. 20 No. 5; 0ctober 2013
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depends on the condition-of cell geometries 1llustrated in-
Figure 2. If the- axial length a is held constant and the-
radius R is varied for all cell profiles, the transmembrane
potentlal in Figure 7b will increase monotonously with an

increasing a/R ratio, which can be explained by using the

concept of influential radlus [4]

4.3 CELL PAIli WITH PERFECT DIELECTRIC
- MEMBRANE
This section discusses the transmembrane potential of a cell

pair in the configuration of Figure 1b when the cell membrane

is modeled as a perfect dielectric. We begin with the case of
an identical cell pair, i.e., a;=a, = a and R;= R, = R. Note that
for a perfect dielectric membrane, the exterior conduct1v1ty HE
affects the time constant of the membrane charging, but does.
not have any influence on the steady-state potential. Figure 8
shows the transmenibrane potential on the lower cell for
different cell geometries, where a/R is varied from 1/4 to 4. It
can be seen from the figure that the transmembrane potential
of the cells ‘is clearly smaller when compared with that in
Figure 7a of the isolated cells. There is more reduction in the
normalized potential at the contact pole (6 = 90°) than at the
opposite pole (8 = =90°). These results agree with those
reported for spherical cell pairs' {6]. The - variation in

. normalized transmembrane potential at both poles due to cell -

geometry is summanzed in Figure 9. The analytical solution

[7] in the corresponding case for isolated cells is also plotted |

as the dotted line in Figure 9 to clarify the reduction of .
transmembrane potential. It is clear from Figures 8 and 9 that
the potential reduction is enhanced with decreasing a/R ratio,
i.e., more prominent for the oblate spheroidal cells than for the
prolate spheroidal ones. -

' "ln‘ (01‘0)'

90 0 30 0 30 60 90
' l)(devrec)

Flgure 8. Transmembrane potential on the Tower cell of the identical cell pair
for different values of a/R.

Figure 10 presents the effect of cell sizes on transmembrane
potential when both cells are spherical (a;, =R, and a;= R;) but

‘have different sizes. Here we assume that the upper cell is the

larger one. Although the results are practlcally similar to those

_in reference [6], they are worth given here for comparison
with the case of non-spherical cells. In Figure 10, the potential

of both upper and lower cells is normalized by a,F, and
plotted on the same graph The contact point is at = 90° of .
the lower cell and ~90° of the upper cell. It can be clearly seen
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" from the graph that the larger (upper) cell has a higher
transmembrané potential. The potenhal of the smaller (lower)
cell decreases with increasing the size of the upper cell. We
_may refer that the reduction in V,, results from a “shielding
effect”. For electrofusion, the optimal transmiembrane
‘potential (about 1 V) at.the contact point of both cells is
critical for attaining high yield- from the process [2, 12].
Figure 10 clearly demonstrates the difficulty in achieving
effective electrofusion between differently-sized cells.’

Lot it

Contact pole
Opposite pole
. !sqlated cell {
1/4 12 1 1/ 5 4
) a/R

_ Figure 9. Variation of transmembrane potentxal at the cell poles due to
changes inalR. )
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’ Flgure 10. Transmembrane potentxal of pair of spherical cells thh dlﬂ"erent

’ cell sizes.

The shi‘elding effect is also investigated for a pair of cells
having different shapes (axis-to-radius ratios). In this case, the
lower cell is spherical, whereas' the ratio a,/R, of the upper
- cell is varied from oblate spheroidal to prolate spheroidal. To

observe the shielding effect of the upper cell on the lower cell,
the lower cell is des:gnated to be the smaller of the pair. That
is, we take a, = a; = Ry and increase the radius R, when the
.upper cell is an oblate sphermd When the upper cell is. a
prolate spheroid, we take R, = R, = a; and increase the axial
length a,. Figures 11a and 11b present the distribution of the
) nonnallzed transmembrane potential on the cell pair when the
upper "cell is oblate spheroidal and ‘prolate spheroidal;
" respectively. Note that the normalizing factor for the potential

on the graphs is based on the axial length of the lower cell,

. which .is the same’ value for both graphs. It is clear from
Figure 11a that the shleldmg effect depends mamly on the
radius_of the cell, as the transmembrane potential of the
smaller (lower) cell is significantly reduced when the upper

B. Techaumnat Numertcal Analysts of DC-Field- Induced Transmembrane Potential of Sphero:dal CeIls' -

cell is oblate spheroxdal On the other’ hand, in Figure 11b, an
increase in the axial length of the upper cell results in a slight
increase in the transmemibrane potential near the contact point

of the lower cell; the change is hardly noticeable on any other ~ "

portion of the lower cell. It is also worth noting that the
magnitudes of the potential near the contact point (at € =
—90°) of- thie upper ¢ells in Figure 11a are higher than the -
corresponding values for a pair of identical oblate spheroidal . .
cells (at #=90° in Figure 8). This indicates the mitigation of

_ the shielding effect on the upper cell when the size of the

other cell in the pair is smaller. In Figure 12, the absolute
values of the normalized transmembrane potentials at the

poles of the lower spherical cell are plotted as a function of

alR of the upper spheroidal cell. The figure shows that with
decreasing a/R, the magnitudes of the transmembrane
potentials are reduced at both poles. :

" Lower cell |

& ' ‘Uppe'r cell.’ 3
3 -
5
T LE
g
\ A‘ f]
-2
-3
-4 W £ . - ; -
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Figure 11. Transmembrane potential on the lower sphenca] ce]l (a=R=10
nm) and upper spheroidal cell when the upper cell is (a) an oblate spheroidal )
cell With a,= 10 um and (b) a prolate spherqidal cell with R, =10 um. )

- Figure 11 clearly shows that the dlspanty between the
transmembrane potential at the contact points of the upper and

_lower cells is magnified by increasing either radius or axial |
“length of a cell in the pair. The oblate spheroidal cells have

higher transmembrane potentials and cause a reduction in the

. potential of the other cell in-the pait. The prolate spheroidal

cells have higher transmembrane potentials than the oblate
ones, although they do not s1gmﬁcantly affect the potentlal of
the lower cell.
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"Figure 12. Absolute values of the normalized transmembrane potential at the -

poles of the lower spherical cell as a function of a/R of the upper cell.

4.4 CELL PAIR WITH CONDUCTIVE MEMBRANES

Section: 4.2 - described the - influence of exterior

Val. 20, No. 5; October 2013

conducthty on transmembrane potential. In this section, the

influence is further investigated for the configuration of a
cell pair shown in Figure 1b. Flgure '13° shows the
- distribution of the transmembrane potential on the lower cell

of a spherical cell. pair having the same size for different sz
values. It can be seen from the figure that lower exterior

" conductivity results in a decreased potential. The potential
decreases more- at the bottom pole than at. the top pole,
which is the contact point between the cells. With
sufficiently low conductivity, the .magnitude of the
transmembrane potential becomes larger at the contact pole
than at the opposite pole, as shown in Figure 13. The area
~with high transmembrane potential also becomes smaller at
reduced exterior conductivity values. Under such conditions,

it becomes possible to restrict membrane breakdown to the

vicinity of the contact point. -
13 T T T
1 E 107 S/m
L 107 Sim -
“ 107 S
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o B ey
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“Figure 13, Variation of transmembrane potential distribution on the lower cell
of an identical spherical cell pair at different exterior conductivity () values.
“The variation of transmembrane potential due to sz for the
"non-spherical cell pair is shown. in" Figure 14 for identical

spheroidal cells. From the figure, we can observe higher .

degree of transmembrane potential reduction at the- bottom
pole than at the top pole, much like that seen in Flgure 13 for
' sphencal cells.

(

(c) a/R 2and (d) alR=4.
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 Figure 14. Transruembrane potential distribution on the- lower cell of the

identical spheroldal cell pair for various g values. (a) alR = 1/4,(b) alR=1/2,

In cdmparing Figure's 13 and 14, for the oblate spheroidal

. cells, the area of high transmembrane potential in Figures
- 14a and 14b is still considerably large unless the exterior

conductivity is- very low. In particular, it is almost
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' lmpos51ble to llmlt the area of hlgh transmembrane potential
when' a/R is small, as shown .in" Figure 14a: For prolate

spheroidal cells, the influence of the exterior conductivity on .

the transmembrang potential at ‘the contact point (top pole) is
‘comparatively very small, as shown in Figures 14¢ and 14d.
However, the area of high transmembrane potential near the
contact point becomes smaller with decreasing pz. At the

other pole, a decrease in g reduces the transmembrane -

potential, but the potentlal dlstnbutxon is more or less the
samie.

The inagnltudes of transmembrane potential at cell poles .
are plotted as a function’ of external conductmty in Figures

" 15a for the ‘oblate spheroidal cell pairs and 15b for the
prolate spheroidal cell pairs. The. lines and the symbols
represent the potential at the contact pole and opposite pole,

respectively.’ From the figures, it is clear that the potential '

magnitudg is smaller at the contact pole than at the opposite
~ pole. However, the difference between the potential at the

poles can be reduced by decreasing g With very low g,

the potentlal can be hlgher at the contact pole.

- 107 1072
: pg(Sm)
(b)
Flgure 15 Absolute values of the normalized transmembrane potenual at the
contact pole (lines) and opposite pole (symbols) for a- pair of identical
’ »spheroxdal cellsasa ﬁmctxon of ug. (a) Oblate spheroidal cells and (b) prolate
spheroidal cells.

- Table 1 compares the saturation values (wh_en e =1 S/m)
of the normalized potential at the contact point for cells with
conductive’ membranes (Figure 15) and -cells with' perfect-
- dielectric membranes (Figure 9). The table shows that the
 difference between the potential values is very small for the
oblate spheroidal cells and increases with larger values of a/R.
As the dlfference 1s only 5. 83% for a/lR = 4, the perfect-

B Techaumnat Numencal AnaIysrs of DC- Field-Induced Transmembrane Potenttal of Spheroulal Cells

dielectric membrane model may be used.to approximate the
transmembrane potential for the axis-to-radius ratios
considered here. - . ¢ ‘ B

Table 1. Comiparison of the normalized transmeémbrane potehtla] V(aE0)™,.
at the contact pole between the cases . with dlelectnc membranes and
conductxve membranes.

V,(aE0)" at the contact point

alR Dielectric Conductive  Difference
membrane membrane- (%)
- 1/4 1740 1733 . 040
12 1299 1.292 0.54
i . 1.105. 1098 0.64

2 2.065 ©2.034 152
4. - 4036 3.850 5.83
l.Lowelr cell I I Uppe|r cell l
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Figure 16. Transmembrane. potential on the lower spherical cell (/= R, =10 -

pm) and upper spheroidal cell that is (a) an oblate spheroid with a, = 10 pm .
and a/R, = 1/2, or (b) a prolate spheroid with R, = 10 ym and a/R,=2.

When the cells in the pair are of dlfferent geometnes, the

- behavior ‘of the transmembrane potential bécomes more‘

complicated. - The distribution of the potential "is
demonstrated .in Figure 16 for a lower spherlcal cell and an

- upper spheroidal cell. Similar to- the previous. cases with a

perfect dielectric membrane, a, = a; for the oblate spheroidal
cell and R, = R, for the prolate spheroidal cell such that the -
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lower cell is the smaller one. As can be seen from the figure,
for low exterior conductivity, the transmembrane potential is

reduced-on both cells except.near the contact point (the top -

ppole) of the lower spherical cell. Instead, in this area the

-potential ‘may be reduced or enhanced with decreasing

exterior conductivity. On the spheroidal (upper) cell, the
potential is reduced more significantly at the top pole than at
the bottom pole.
The absolute values of the- potentlal at the contact point
'between the ‘upper spheroidal and lower spherical cells- are
“ plotted as a function of exterior conductivity in Figure 17a
for the case of an oblate spheroid.and 17b for the case of a
" prolate spheroid. In the figures, the open and solid (circular
and rectangular) symbols represent the potential on the
upper and lower cells, respectively. It is’ clear from the

figure that with decreasing the exterior conductivity, the
transmembrane potential at the contact point of both cells .

approaches the same value. For low exterior conductivity,
the transmembrane potential at the contact point differs only
slightly for a/R, =
difference is . clear for a/R,
‘Therefore, with an extracellular medlum of sufficiently low
conductivity, lhe steady-state transmembrane potential at the

.contact point.is govemed mainly by the axial length of the

cells.
a,/R, =114 —— \
3 / .................
§ 2F
s - S - -
A‘E
- 9 )
.
0 .4 1 3 1 2 1 : .
10 10" 107 !t
‘ - 1 (8/m) ‘
L @
4 ——
. a,/R,=4 —_‘ . )
3
3
S 2047 L B
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Figure 17. Abso]ute values of the normalized transmembrane potential at the
" contact poles as a function of g ‘for the lower spherical cell (a;= R, =
paired with (a) an oblate spheroid wnth a, =

10 pm or (b) a prolate spheroid
with R, = 10 pm. ' '

1/4 and ‘172 (Figure 17a), whereas the . .
= 2 and 4 (Figure 17b).

10 pm) -
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5 CONCLUSION

Tn thls work, a numerical method was used to analyze the'
transmembrane potential of isolated cells and cell pairs. The -
results may be summarized as follows:

Isolated céll: -

The Acalculatiqn results agree well with the 'analytical solution.

- Decreases in the conductivity of the extracellular medium may
‘reduce the magnitude of V. The .influence of -exterior
" conductivity is observable when gz < 0.1 S/m and is more

prominent for oblate spherondal cells than for prolate
spheroidal cells. Normalized V,, increases with decreasing the
axis-to-radius ratio a/R of the cell for high ur medium
conditions. In low y; medium, normalized 7, is maximal on
the spherical’ cell for the cell geometries considered in this
work.

5. 1 CELL PAlR

For sphencal and oblate spheroxdal cells, V., of an identical
pair of cells in contact with each other is smaller than for
isolated cells. When the sizes of the cells are different, ¥, is
clearly reduced on the cell with a smaller radius. This size
difference, which can be. due to differences in axial length or

- radius of cells, usually results in a disparity of membrane

potential at the. contact. point between the cells, and implies
difficulty in achieving efficient electrofusion. Decreases in the
conductivity - of the extracellular medium reduce the .
magnitude of ¥, but the reduction is small near the contact
point in comparison with other regions. In particular, - the -
reduction. of V,, is very small for prolate spheroidal cells.
When the extracellular conductivity is sufficiently low, the
membrane potential is maximal at the contact point-and
approachés the same magnitude for both cells in the pair. .
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ABSTRACT

N - This paper presents the electrostatic analysis of a conducting prolate sphero:d under an

external electric field ‘in axisymmetric configurations. The configurations consist of a
conducting spheroid which is in contact with orseparated from a grounded plane. We apply
the method of images using multipoles to the electric field calculation. The calculation uses the
multipole re-expansion formulae and the equivalent image charges of a prolate conducting
spheroid. The induced charge and force are 'det_ermined from the multipole images. For a

. spheroid on the grounded plane, the calculation results show that the maximal field increases
-nonlinearly with the major-to-minor axis ratio of the spheroid. The charge and the force are

compared between the spheroids of the same major axis or the same surface area. We

: propose empmcal formulae for approximating the maximal field, charge and force with the -

errors smaller than 2% for the axis ratio between 1 and 32. We examine the propriety of the
approximation of the electric field, charge and force based on a hemispheroidal model