Chapter 3

Methodology

1. Materials

1.1 Plant materials

The parts of plants, which were reported to be used against fever, cold and anti-allergy by folk doctors in Thailand, were purchased from several regions of Thailand, China, India, Indonesia and Australia. The place of collection, plant parts and voucher specimens are shown in Table 3.1. The voucher specimens were deposited at the herbarium of Southern Center of Thai Medicinal Plants at Faculty of Pharmaceutical Science, Prince of Songkla University, Songkhla, Thailand.

Table 3.1

Species (Family)	Places for specimen collection	Voucher specimen number	Thai name	Part used
Amomum testaceum Ridl.	Chanthaburi	SKP206011101	Krawan	fr
(Zingiberaceae)				
Anethum graveolens L.	India	SKP199010701	Thian ta	fr
(Umbelliferae)			takkataen	
Angelica dahurica Benth.	China	SKP199010401	Kot so	r
(Umbelliferae)				
Angelica sinensis (Oliv.) Diels	China	SKP199010901	Kot chiang	r
(Umbelliferae)				
Artemisia annua L.	China	SKP051010101	Kot chula	а
(Compositae)			lampha	

Plants and part of plants component in Prasaprohyai preparation

Spacing (Family)	Places for	Voucher specimen	Thai name	Part used
Species (Family)	specimen	-		
	collection	number		
Atractylodes lancea (Thunb.)	China	SKP051011201	Kot kamao	rh
DC.				
(Compositae)				
Cuminum cyminum L.	India	SKP199030301	Thian	fr
(Umbelliferae)			khao	
Dracaena loureiri Gagnep.	Ratchaburi,	SKP065041201	Chan	st
(Dracaenaceae)	Kanchanaburi		daeng	
Foeniculum vulgare Mill. var.	India	SKP199062201	Thian	fr
dulce (Mill.) Thell.			khao	
(Umbelliferae)			plueak	
Kaempferia galanga L.	Ratchaburi,	SKP206110701	Proh hom	rh
(Zingiberaceae)	Kanchanaburi			
Lepidium sativum L.	India	SKP057121901	Thian	se
(Cruciferae)			daeng	
Ligusticum sinense Oliv. cv.	China	SKP199121901	Kot hua	rh
Chuanxiong			bua	
(Umbelliferae)				
Mammea siamensis Kosterm.	Ratchaburi,	SKP083131901	Saraphi	fl
(Guttiferae)	Kanchanaburi			
Mesua ferrea L.	Ratchaburi,	SKP083130601	Bunnak	fl
(Guttiferae)	Kanchanaburi			
Mimusops elengi L.	Ratchaburi,	SKP171130501	Phikul	fl
(Sapotaceae)	Kanchanaburi			
Myristica fragrans Houtt.	Australia	SKP121130601	Chan thet	st
(Myristicaceae)				

Table 3.1 (Continued)

Species (Family)	Places for specimen collection	Voucher specimen number	Thai name	Part used
Myristica fragrans Houtt.	Suratthani	SKP121130601	Mace	ar
(Myristicaceae)				
Myristica fragrans Houtt.	Suratthani	SKP121130601	Nutmeg	se
(Myristicaceae)				
Nelumbo nucifera Gaertn.	Ratchaburi,	SKP125141401	Kasorn	р
(Nelumbonaceae)	Kanchanaburi		bua luang	
Nigella sativa L.	India	SKP160141901	Thian dam	se
(Ranunculaceae)				
Syzygium aromaticum (L.)	Indonesia	SKP123190101	Kan phlu	fl
Merr. et Perry				
(Myrtaceae)				

Table 3.1 (Continued)

Part used: a=all part, ar=aril, fl=flower, fr=fruit, p=pollen, rh=rhizome, r=root, se=seed, st=stem

1.2 Animal cell lines

1.2.1 Anti-inflammatory activity

RAW 264.7 murine macrophage leukemia cell line was established and kindly provided by Assoc. Prof. Dr. Supinya Tewtrakul, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Thailand. RAW 264.7 cells were cultured in RPMI 1640 medium supplemented with 10% heated fetal bovine serum, 2 mM glutamine, 100 U/ml penicillin and 100 μ g/ml streptomycin. The cells were maintained at 37°C in 5% CO₂ atmosphere with 95% humidity and changed cultured medium three times a week. RBL-2H3 rat basophilic leukemia cell line was established and kindly provided by Assoc. Prof. Dr. Supinya Tewtrakul, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Thailand. RBL-2H3 cells were cultured in MEM (Minimum essential medium eagle) medium supplemented with 10% heated fetal bovine serum, 2 mM glutamine, 100 U/ml penicillin and 100 μ g/ml streptomycin. The cells were maintained at 37°C in 5% CO₂ atmosphere with 95% humidity and changed cultured medium three times a week.

1.3 Chemicals, reagents, instruments, plastics and glasswares

The chemicals, materials and instruments employed in the present studies are summarized in Table 3.2 and 3.3.

Table 3.2

List of chemicals and reagents used in the studies

Name	Source
Absolute ethanol	Merck, Germany
Albumin bovine fraction V powder	Sigma, USA
Anti-dinitrophenylated bovine albumin (DNP-BSA)	Sigma, USA
Anti-DNP IgE (Monoclonal Anti-DNP)	Sigma, USA
Butylated hydroxytoluene (BHT)	Fluka, Germany
Calcium chloride dehydrate	Merck, Germany
Citric acid monohydrate	Merck, Germany
D-(+)-glucose	Sigma, USA
Dimethyl sulfoxide (DMSO)	Fluka, Germany
1,1-Diphenyl-2-picrylhydrazyl (DPPH)	Fluka, Germany
Distilled water (Milli-Q, ≥ 18 Mega Ohm)	Milford, USA
Ethanol 95% (commercial grade)	Sasol, South Africa

Name	Source	
Hydrochloric acid	Merck, Germany	
Ketotifen fumarate	Sigma, USA	
Lipopolysaccharide from E. coli O55:B5 (LPS)	Sigma, USA	
Magnesium chloride 6H ₂ O	Merck, Germany	
Minimum Essential Medium (MEM)	Gibco, USA	
N-(1-Naphthyl)ethylenediamine dihydrochloride	Sigma, USA	
4-Nitrophenyl N-acetyl-β-D-glucosaminide (PNAG)	Sigma, USA	
Penicillin-Streptomycin (P/S)	Gibco, USA	
Phosphate buffer saline (PBS)	Amresco, USA	
Phosphoric acid solution	Sigma, USA	
PIPES	Amresco, USA	
Potassium chloride	Merck, Germany	
RPMI medium 1640	Gibco, USA	
Sodium bicarbonate	BHD, England	
Sodium carbonate	Merck, Germany	
Sodium chloride	Univar, Australia	
Sodium hydroxide (analytical grade)	Univar, Australia	
Sulfanylamide	Sigma, USA	
Thiazolyl blue tetrazolium bromide (MTT)	Sigma, USA	
Trisodium citrate dihydrate	Merck, Germany	
Trypan blue	Gibco, USA	
Trypsin-EDTA	Gibco, USA	

Table 3.2 (Continued)

Table 3.3

List of equipments, plastics and glasswares used in the studies

Name	Source	
24-well plate flat, bottom	Costar Corning, USA	
96-well plate flat, bottom with lid	Costar Corning, USA	
96-well plate flat, bottom without lid	Corning, USA	
Autoclave	Hirayama, Japan	
Cell culture flask, canted neck 25, 75 cm ³	Corning, USA	
Centrifuge tube15, 50 ml	Corning, USA	
Centrifuge machine	Boeco, Germany	
CO ₂ humidified incubator	Forma, USA	
Cryogenic tube 2 ml	Corning, USA	
Disposable pipette 2, 5, 10, 25 ml	Corning, USA	
Eppendrof	Costar Corning, USA	
Glass bottles	Schott Duran, Germany	
Glasswares	Schott Duran, Germany	
	Pyrex, USA	
Hematocytometer	Boeco, Germany	
Hot air oven	Memmert, Germany	
Hot plate	Thermolyne, USA	
Inverted microscope	Nikon, Japan	
Laminar air flow	Faster, Italy	
Lyophilizer	Telster, Spain	
Micropipettes Eppendorf, Gern		
Microplate reader	Bio Tek, USA	
Multi-channels pipette	Costar Corning, USA	
pH meter	WTW inolab, Germany	
Pipette boy	Brand, USA	
Quantikine mouse TNF- α ELISA test kit	R&D Systems, USA	

 Table 3.3 (Continued)

Name	Source	
Refrigerator (-20°C)	Sanyo, Japan	
Rotary evaporater	Buchi, Japan	
Sonicator	Elma, Germany	
Vortex	Scientific industries, USA	
Water bath	Lauda, Germany	

2. Methods

2.1 Preparation of plant extracts

The parts of these plants (Table 3.1) were washed, sliced thinly, dried in an oven at 50°C and powdered. These extracts were obtained by two methods, namely maceration and decoction methods. The Prasaprohyai preparation was also extracted in the same procedure (Figure 3.1).

Maceration: Dried plant material (300 g) was macerated by 95% ethanol for 3 days, 2 times per day, filtered and dried using an evaporator. All extracts of each plant were combined and calculated percentage of yield.

The residue from maceration were continued to be boiled in water or decoction: Dried plant material from residue of maceration (100 g) was boiled in distilled water at boiling point for 30 min, filtered and dried using a lyophilizer or freeze dryer. The percentages of yield for all extracts of each plant were calculated.

Decoction: Dried plant materials (100 g) were boiled in distilled water at boiling point for 30 min, filtered and dried by freeze dryer. The percentages of yield for all extracts of each plant were calculated.

Prasaprohyai preparation consists of twenty parts of proh hom and one part of each plant remainder.

The crude extracts were then kept in freezer (-20°C) until required.

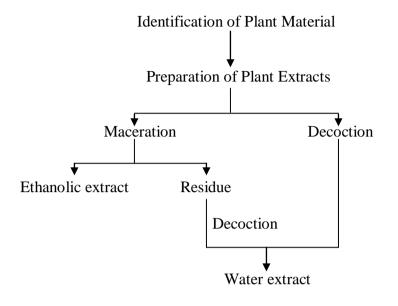


Figure 3.1

Extraction of plant materials

2.2 Assay for antioxidant activity

2.2.1 DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging

assay

The antioxidant activity of these plant extractions was evaluated by DPPH radical scavenging assay. The assay was modified from those described by Yamasaki (1994). Samples for testing were dissolved in absolute ethanol or distilled water to obtain the highest concentration of 200 μ g/ml. Each sample was further diluted for at least 4 concentrations (two-fold dilutions). Each concentration was tested in triplicate. A portion of the sample solution (100 μ l) was mixed with an equal volume of 6×10^{-5} M DPPH (in absolute ethanol) and allowed to stand at room temperature for 30 min. The absorbance was then measured at 520 nm. BHT (butylated hydroxytoluene), a well known synthetic antioxidant, was tested in the same system as a positive standard. The scavenging activity of the samples corresponded to the reduction in the intensity of DPPH. Inhibition (%) was calculated using the following equation and EC₅₀ values (effective concentration of sample required to scavenge DPPH radical by 50%) was calculated from the Prism program.

% Inhibition =
$$OD_{control} - OD_{sample} \times 100$$

 $OD_{control}$

2.3 In vitro assay for anti-inflammatory activity

2.3.1 Assay for NO inhibitory effect (Tewtrakul & Itharat, 2007; Tewtrakul & Subhadhirasakul, 2008)

For the assay, cells were washed with phosphate buffer saline (PBS) free of magnesium and calcium. The PBS was decanted and cells were harvested with 0.25% trypsin-EDTA and fresh medium was added. The cell pellet, was obtained by centrifugation (1000 rpm, 6 min), and was resuspended in 10 ml of medium to make a single cell suspension. The viable cells were counted by trypan blue exclusion in hematocytometer and diluted with medium to give a final concentration of 1×10^6 cells/ml for RAW 264.7. One hundred microlitres per well of these cells suspension were seeded in each 96-well microplates with 1×10^5 cells/well and allowed to adhere for 1 h at 37°C in 5% CO₂. After that, the medium was replaced with fresh medium containing 5 µg/ml of LPS (Lipopolysaccharide) together with test samples at various concentration levels and then incubated for 48 h. Each extract was initially dissolved in DMSO for ethanolic extracts, or dissolved in sterile distilled water, for water extracts. The extracts were diluted in medium to produce required concentrations. A hundred microlitres of each concentration was added to each well of plates to obtain final concentrations of 1-100 µg/ml. The final dilution used for treating the cells contained not more than 1% of the initial solvent; this concentration was used in the solvent control wells. NO production was determined by measuring the accumulation of nitrite in the culture supernatant using the Griess reagent. Cytotoxicity was determined using the 3-(4,5-dimethyl-2- thiazolyl)-2,5diphenyl-2H-tetrazolium bromide (MTT) colorimetric method. Briefly, after 48 h incubation with test samples, MTT solution (10 μ l, 5 mg/ml in PBS) was added to the wells. After 2 h incubation, the medium was removed, and isopropanol containing 0.04 M HCl was then added to dissolve the formazan production in the cells. The optical density of the formazan solution was measured with a microplate reader at 570 nm. The test compounds were considered to be cytotoxic when the optical density of

149

the sample-treated group was less than 70-80% of that in the control (vehicle-treated) group. Indomethacin was used as positive controls. Inhibition (%) was calculated using the following equation and IC_{50} values were calculated from the Prism program.

% Inhibition =
$$\frac{A-B}{A-C} \times 100$$

 $A-C: NO_2^- \mbox{ concentration } (\mu M) \ [A: LPS \ (+), \ sample \ (-); \ B: LPS \ (+), \ sample \ (+); \ C: LPS \ (-), \ sample \ (-)]$

2.3.2 Inhibitory effects on LPS-induced TNF-α release from RAW 264.7 cells (Tewtrakul & Itharat, 2007; Tewtrakul & Subhadhirasakul, 2008)

Inhibitory effects on the release of TNF- α from RAW 264.7 cells were evaluated using Quantikine mouse TNF- α ELISA test kit. Briefly, the cells were seeded in 96-well plates with 1×10^5 cells/well and allowed to adhere for 1 h at 37°C in a humidified atmosphere containing 5% CO₂. After that, the medium was replaced with fresh medium containing 5 µg/ml of LPS together with test samples at various concentration levels and incubated for 48 h. The supernatant (50 µl) was then transferred into 96-well ELISA plate and TNF- α concentrations were determined. The inhibition of TNF- α production was calculated by the following equation and IC₅₀ values were calculated from the Prism program.

% Inhibition =
$$\frac{A-B}{A-C} \times 100$$

 $A-C: TNF-\alpha \text{ concentration (pg/ml) [A: LPS (+), sample (-); B: LPS (+), sample (+); C: LPS (-), sample (-)]}$

2.4 In vitro assay for anti-allergic activity

2.4.1 Inhibitory effects on the release of β-hexosaminidase from RBL-2H3 cells (Tewtrakul & Subhadhirasakul, 2007)

Inhibitory effects on the release of β -hexosaminidase from RBL-2H3 cells were evaluated by the following method (Tewtrakul & Subhadhirasakul, 2007). Briefly, cells were washed with phosphate buffer saline (PBS). The PBS was decanted and cells were harvested with 0.05% trypsin-EDTA and fresh medium was added. The cell pellet, obtained by centrifugation (1000 rpm, 6 min), were resuspended in 10 ml of medium to make a single cell suspension. The viable cells were counted by trypan blue exclusion in hematocytometer and diluted with medium to give a final concentration of 5×10^5 cells/ml for RBL-2H3. Volumes 400 µl/well of these cell suspensions were seeded in each 24-well microplates with 2×10^5 cells/well and allowed to adhere for 1 h at 37°C in 5% CO₂. After that RBL-2H3 cells cultured in 24-well microplates in culture media MEM were sensitized with anti-DNP IgE (anti-dinitrophenyl-immunoglobulin E) (0.45 µg/ml), then incubated 24 h at 37°C in 5% CO₂. The cells were washed with 400 µl of Siraganian buffer (buffer A) (119 mM NaCl, 5 mM KCl, 5.6 mM glucose, 0.4 mM MgCl₂, 1 mM CaCl₂, 25 mM piperazine-N,N'-bis(2-ethanesulfonic acid) (PIPES), 0.1% bovine serum albumin (BSA) and 40 mM NaOH, pH 7.2) and then incubated in 160 µl of Siraganian buffer (buffer A) for an additional 10 min at 37°C. After that, 20 µl of test sample solution was added to each well and incubated for 10 min, followed by addition of 20 µl of antigen (DNP-BSA, final concentration is 10 µg/ml) at 37°C for 20 min to stimulate the cells to degranulate. The supernatant was transferred into 96well microplates and incubated with 40 µl of substrate (PNAG) (1 mM p-nitrophenyl-*N*-acetyl-β-D-glucosaminide) in 0.1 M citrate buffer (pH 4.5) at 37°C for 1.5 h. The reaction was stopped by adding 200 µl of stop solution (0.1 M Na₂CO₃/NaHCO₃, pH 10.0). The absorbance was measured with a microplate reader at 405 nm. Each extract was initially dissolved in DMSO for ethanolic extracts, or dissolved in sterile distilled water, for water extracts. The test sample solution was diluted in Siraganian buffer (final solution 0.1 mg/ml) to produce required concentrations. The inhibition (%) of the release of β -hexosaminidase by the test samples was calculated by the following equation, and IC₅₀ values were calculated from the Prism program.

% Inhibition =
$$\begin{pmatrix} 1 - (T - B - N) \\ \hline (C - N) \end{pmatrix} \times 100$$

Control (C): DNP-BSA (+), test sample (-) Test (T): DNP-BSA (+), test sample (+) Blank (B): DNP-BSA (+), test sample (+) Normal (N): DNP-BSA (-), test sample (-)

2.5 Statistical analysis

For statistical analysis, the values were expressed as mean \pm SEM of three determinations. The EC₅₀ and IC₅₀ values were calculated using the Prism program. The statistical significance was calculated by one-way analysis of variance (ANOVA), followed by Dunnett's test.