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Chapter 1

Introduction and Preliminaries

A beautiful decomposition of the dual B(l2)∗ of the Banach algebra B(l2) of
bounded linear operators on l2, under the usual multiplication, was established by
Dixmier (see [5] and [6]). He proved that every bounded linear functional f in B(l2)∗

can uniquely be decomposed as the sum f = g + h of two bounded linear functionals
h and g on B(l2) such that g is a trace functional defined associated with a trace class
operator T by g(S) = trace(ST ) for all S ∈ B(l2), and h vanishes on the ideal K(l2)
of compact operators on l2. The most interesting part of the theorem of Dixmier
mentioned above is that the norm of the decomposition f = g +h of each f in B(l2)∗

is additive, i.e., ‖f‖ = ‖g‖+ ‖h‖. A part of Schatten’s theorem (see [12]) states that
K(l2)∗ ∼= C1, where C1 denotes the class of all trace class operators on l2. From the
theorem of Schatten, it can easily be deduced that the space of all trace functionals
on B(l2) is isometrically isomorphic to the dual K(l2)∗ of K(l2). Thus the theorem
of Dixmier mentioned above can be symbolized as B(l2)∗ = K(l2)∗ ⊕1 K(l2)s, where
K(l2)s denotes the space of all linear functionals on B(l2) vanishing on K(l2), which
are called singular functionals on K(l2), and the notation “⊕1” is referred to as the
l1 direct-sum.

Let 1 ≤ p, q, r < ∞. An infinite scalar matrix A = [ajk] is said to define

a linear operator from lp into lq if for every x = {xk}∞k=1 in lp the series
∞∑

k=1

ajkxk

converges for all j, and the sequence Ax :=

{ ∞∑
k=1

ajkxk

}∞

j=1

is a member of lq. If a

matrix A defines a linear operator from lp into lq, we then call the operator x �→ Ax
the linear operator defined by A. In this case, it can be shown by the uniform
boundedness principle that the linear operator defined by A is bounded. Let M(lp, lq)
be the set of all infinite matrices which define linear operators from lp into lq. For
each matrix A, we call A a bounded matrix and define ‖A‖ to be the norm of the
linear operator defined by A if A ∈ M(lp, lq) and call A an unbounded matrix and
define ‖A‖ to be ∞ otherwise. It is well-known that M(lp, lq) is a Banach space
under the norm ‖·‖. Indeed, it coincides with the set of matrix representations of
all bounded linear operators from lp into lq with respect to the standard Schauder
bases of lp and lq, which is isometrically isomorphic to the Banach space B(lp, lq) of
all bounded linear operators from lp into lq. A matrix A is called a compact matrix
if the linear operator defined by A is a compact operator.

1
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For each matrix A = [aji] and positive integer n, let An� = [bji] be the matrix
with bji = aji for all 1 ≤ j, i ≤ n and bji = 0 otherwise, and let An� = [cji] be
the matrix with cji = aji for all j, i ≥ n and cji = 0 otherwise. The following are
well-known facts about infinite matrices which are useful for the research.

Theorem 1.1.

(1) If [aji] and [bji] are scalar matrices such that |aji| ≤ bji for all j, i, then ‖[aji]‖ ≤
‖[|aji|]‖ ≤ ‖[bji]‖.

(2) A matrix A belongs to B(lp, lq) if and only if sup
n

‖An�‖ < ∞.

(3) For every matrix A, ‖An�‖ ↗ ‖A‖.
(4) For each A ∈ B(l2) and positive integer n, ‖An� + An�‖ = max{‖An�‖ , ‖An�‖}.
(5) A matrix A is compact as an operator on l2 if and only if ‖An� − A‖ → 0.

The Schur product or Hardamard product or entry-wise product of two scalar
matrices A = [ajk] and B = [bjk] having the same size is defined by the matrix
A • B := [ajkbjk]. In [13], Schur proved that Banach space B(l2) is a commutative
Banach algebra (without identity) under the operator norm and the Schur product
multiplication. After that, Bennett extended in [1] the result of Schur referred to
above. He showed for each 1 ≤ p, q < ∞ that the Banach space B(lp, lq) under the
Schur product operation is also a Banach algebra. These beautiful results of Bennett
motivated Chaisuriya and Ong [2] to study some classes of infinite matrices over
Banach algebras with identity. In [2], for a fixed Banach algebra B with identity
and 1 ≤ p, q, r < ∞, the authors defined the class Sr

p,q(B) of matrices A = [ajk] over

B such that the absolute Schur rth − power A[r] := [‖ajk‖r] defines a linear operator
from lp into lq. And then they proved that it is a Banach algebra under the the
absolute Schur r-norm defined by

‖|A|‖p,q,r =
∥∥A[r]

∥∥1/r

and the Schur product, which is straightforwardly generalized to the setting of ma-
trices over the Banach algebra B by using the multiplication in B. The authors also
provided a beautiful relationship, which follows from the results of Schur and Ben-
nett mentioned above, between the algebra B(lp, lq) of all bounded operators form lp

into lq and the algebra Sr
p,q(C). They found that B(lp, lq) is contained in Sr

p,q(C) as
a non-closed ideal for all r ≥ 2.

In [8], Livshits, Ong and Wang studied the duality of the absolute Schur
algebras Sr

2,2(C) by a way analogous to Dixmier’s theorem and Schatten’s theorem
mentioned in the first paragraph. The authors defined the class Kr of infinite matrices
A such that A[r] is compact as an operator on l2 for playing the role as the class
K(l2) of all compact operators on l2. They also constructed a class Mr of infinite
matrices for playing the role as the class C1 of all trace class operators, which is
known as the dual of K(l2). They obtained that (Kr)∗ ∼= Mr and that each bounded
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linear functional ϕ on Sr
2,2(C) can uniquely be decomposed as the sum ϕ = ρ + ψ,

where ρ is determined by a unique matrix in Mr under a certain way and ψ is
a singular functional on Kr. Furthermore, the decomposition ϕ = ρ + ψ satisfies
‖ϕ‖ = ‖ρ‖+ ‖ψ‖. Schatten’s theorem also states that the trace class operators form
a predual of B(l2). An analogue of this result on the setting of Livshits, Ong and
Wang: (Mr)∗ ∼= Sr

2,2(C), was also obtained.

From the beautiful result of Chaisuriya and Ong that the absolute Schur
algebra S2

2,2(C) contains B(l2) as a non-closed ideal, Rakbud and Ong defined three
sequence spaces of matrices from S2

2,2(C) in [11] as follows:

Ob =

{
{Ak}∞k=1 ⊆ S2

2,2(C) : the sequence

{
n∑

k=1

A
[2]
k

}∞

n=1

is bounded in B(l2)

}
,

Oc =

{
{Ak}∞k=1 ⊆ S2

2,2(C) : the sequence

{
n∑

k=1

A
[2]
k

}∞

n=1

converges in B(l2)

}
,

and

Oκ =

{{[
a

(k)
ji

]}∞

k=1
⊆ S2

2,2(C) : the matrix

[ ∞∑
k=1

∣∣∣a(k)
ji

∣∣∣2] ∈ K(l2)

}
.

The authors obtained the inclusion relation among these three spaces as follows:
Oκ � Oc � Ob. They defined naturally a norm on these three spaces by

‖|{Ak}∞k=1|‖ =

(
sup

n

∥∥∥∥∥
n∑

k=1

A
[2]
k

∥∥∥∥∥
)1/2

and showed that all three sequence spaces equipped with this norm are Banach spaces.
It was observed that because of the non-closedness of B(l2) in S2

2,2(C), the restrictions
of these sequence spaces to B(l2) are all not complete. The study on this paper was
mainly focused on the sequence spaces Oc and Oκ. The authors studied sequential
convergence in these two sequence spaces and duality and preduality of Oκ.

From the idea of Rakbud and Ong referred to above, we obtain a way analo-
gous to the classical sequence spaces lp to define sequence spaces of infinite matrices
as follows. Let M∞ be the vector space of all infinite complex matrices. For each
1 ≤ r < ∞, let

L r =

{{[
a

(k)
ji

]}∞

k=1
⊆ M∞ :

[ ∞∑
k=1

∣∣∣a(k)
ji

∣∣∣r] ∈ B(l2)

}
.

In this research, we study some elementary properties and provide some results
on duality of the sequence spaces L r. The main goal is to establish a decomposition
theorem for the dual space (L r)∗ of L r by a way analogous to the theorem of
Dixmier mentioned in the first paragraph.



Chapter 2

Theoretical Background

In this chapter, we provide some theoretical background which is necessary
for the research.

Throughout this thesis, we let C and R denote the sets of all complex numbers
and real numbers respectively.

2.1 Banach Spaces

Definition 2.1.1. [9] Let X be a vector space over a scalar field K (K = R or C).
A norm on X is a real-valued function ‖·‖ on X satisfying the following properties:

(i) ‖x‖ ≥ 0;

(ii) ‖x‖ = 0 if and only if x = 0;

(iii) ‖αx‖ = |α| ‖x‖;
(iv) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (Triangle inequality),

where x and y are arbitrary vectors in X and α is any scalar in K. A normed space
is a pair (X, ‖·‖) of a non-empty set X and a norm ‖·‖ on X. It may be sometimes
written just X as a normed space by omitting the norm on X.

Definition 2.1.2. [9] A sequence {xn}∞n=1 in a normed space X is said to converge
or to be convergent if there is a point x in X satisfying the following property: for
any ε > 0, there is a positive integer N such that

‖x − xn‖ < ε for all n ≥ N.

In this situation, we write lim
n→∞

xn = x, or simply xn → x and call x the limit of

{xn}∞n=1.

Definition 2.1.3. [9] A sequence {xn}∞n=1 in a normed space X is said to be bounded
if there is a positive real number c such that ‖xn‖ ≤ c for all positive integer n.

4
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Definition 2.1.4. [9] A sequence {xn}∞n=1 in a normed space X is said to be a Cauchy
sequence in X if for any ε > 0, there is a positive integer N such that

‖xm − xn‖ < ε

for all m,n ≥ N . A normed space X is said to be a Banach space if it is complete
under the metric d defined by d(x, y) = ‖x − y‖ , that is, every Cauchy sequence
converges to an element in X.

Definition 2.1.5. [9] Let X and Y be vector spaces over the same scalar field. A
function T : X → Y is said to be a linear operator or linear function or linear
transformation if

T (αx1 + βx2) = αTx1 + βTx2

for every x1, x2 ∈ X and any scalars α and β.

Definition 2.1.6. [9] Let X and Y be normed spaces over the same scalar field. A
linear operator T : X → Y is said to be bounded if T (B) is bounded for all bounded
subsets B of X.

Definition 2.1.7. Let T be a linear operator from a normed space X into a normed
space Y . Then the range of T is denoted by ran T . We call the set {x ∈ X : Tx = 0}
the kernel of T and denote by ker T .

Theorem 2.1.8. [9] Let T : X → Y be a linear operator from a normed space X
into a normed space Y . Then the following are equivalent.

(1) T is bounded.

(2) T is continuous.

(3) There is a constant M > 0 such that ‖Tx‖ ≤ M ‖x‖ for all x ∈ X.

Let B(X,Y ) be the set of all bounded linear operators from a normed space
X into a normed space Y . We denote B(X, X) by just B(X).

Definition 2.1.9. [9] Let X and Y be normed spaces. For each T in B(X, Y ), the
norm or operator norm ‖T‖ of T is the nonnegative real number sup{‖Tx‖ : x ∈
X, ‖x‖ ≤ 1}. The operator norm on B(X,Y ) is the map T �→ ‖T‖.

From Theorem 2.1.8, the following corollary is immediately obtained.

Corollary 2.1.10. [9] If T is a bounded linear operator from a normed space X into
a normed space Y , then ‖Tx‖ ≤ ‖T‖ ‖x‖ for all x in X. Furthermore, the number
‖T‖ is the smallest nonnegative real number M such that ‖Tx‖ ≤ M ‖x‖ for all
x ∈ X.
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Definition 2.1.11. [9] Let T be a linear operator from a normed space X onto a
normed space Y . The operator T is an isometric isomorphism if ‖T (x)‖ = ‖x‖
whenever x ∈ X.

Notice that the condition ‖T (x)‖ = ‖x‖ for all x ∈ X implies T is an one-to-
one function.

Theorem 2.1.12. [9] If X is a normed space and Y is a Banach space, then the set
B(X, Y ) equipped with the operator norm is a Banach space.

Theorem 2.1.13. [9] (The Uniform Boundedness Principle) Let F be a nonempty
family of bounded linear operators from a Banach space X into a normed space Y .
If sup {‖Tx‖ : T ∈ F} is finite for each x in X, then sup{‖T‖ : T ∈ F} is finite.

Definition 2.1.14. [9] A normed space X is said to be the direct sum of its two
subspaces Y and Z, written by X = Y ⊕Z, if each x ∈ X has a unique representation
of the form x = y + z, where y ∈ Y and z ∈ Z. If, in addition, the condition
‖x‖ = ‖y‖ + ‖z‖ is satisfied for all x ∈ X, we say specifically that X is the l1

direct-sum of Y and Z and write X = Y ⊕1 Z in this situation.

Theorem 2.1.15. [9] Let X be a normed space and Y and Z be subspaces of X.
Then X = Y ⊕ Z if and only if for X ∩ Y = {0} and for every x in X, there are
y ∈ Y and z ∈ Z such that x = y + z.

Definition 2.1.16. [9] A linear functional f is a linear operator from a normed
space X into the scalar filed K of X, where K is regarded as a normed space under
the usual norm on K.

If X is a normed space, then the set of all bounded linear functionals on X is
denoted by X∗. By Theorem 2.1.11, the normed space X∗ is immediately a Banach
space.

Theorem 2.1.17. [9] (Hahn-Banach extension theorem) Let X be a Banach space
and Y a closed subspace of X. If f0 is a bounded linear functional on Y , then there
is a unique bounded linear functional f on X such that f(x) = f0(x) for all x ∈ Y
and ‖f‖ = ‖f0‖.

Definition 2.1.18. [9] Let X be a normed space and Y a subspace of X. The
annihilator of Y , denoted by Y ⊥, is the set {f ∈ X∗ : f(x) = 0 for all x ∈ Y }.

Theorem 2.1.19. [9] If X is a normed space and Y is a subspace of X, then Y ⊥ is
a closed subspace of X∗.
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Definition 2.1.20. [9] Let X and Y be Banach spaces. A linear operator T : X → Y
is compact if T (B) is compact for all bounded subset B of X. The set of all compact
operators from X into Y will be denoted by K(X,Y ). For the case where X = Y ,
we write K(X) instead of K(X, Y ).

Proposition 2.1.21. [9] Let X and Y be Banach spaces. Then the following hold.

(1) K(X, Y ) ⊆ B(X, Y ).

(2) K(X, Y ) is a closed subspace of B(X,Y ).

(3) If X = Y , then K(X) is an ideal of B(X).

Definition 2.1.22. [9] A linear operator T from a Banach space X into a Banach
space Y is said to be of finite rank if T (X) is finite dimensional.

Theorem 2.1.23. [9] A finite rank operator from a Banach space X into a Banach
space Y is bounded if and only if it is compact.

2.2 lp Spaces

Definition 2.2.1. [9] For 1 ≤ p ≤ ∞ and a sequence {λk}∞k=1 of complex numbers,
the p-norm of {λk}∞k=1 is defined by

‖{λk}∞k=1‖p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( ∞∑

k=1

|λk|p
)1/p

if 1 ≤ p < ∞,

sup{|λk| : k = 1, 2, 3, ...} if p = ∞.

For each 1 ≤ p < ∞, let

lp =

{
{λk}∞k=1 ⊆ C :

∞∑
k=1

|λk|p < ∞
}

and
l∞ = {{λk}∞k=1 ⊆ C : sup{|λk| : k = 1, 2, 3, ...} < ∞} .

Theorem 2.2.2. [9] (Hölder’s inequality) For any 1 ≤ p ≤ ∞ with
1

p
+

1

q
= 1 and

sequences x and y of complex numbers, ‖xy‖1 ≤ ‖x‖p ‖y‖q .

In particular, Hölder’s inequality is also called Cauchy-Schwartz’s inequality
when p = q = 2. From Hölder’s inequality, the following Minkowski’s inequality is
obtained.
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Theorem 2.2.3. [9] (Minkowski’s inequality) For any 1 ≤ p ≤ ∞ and sequences x
and y of complex numbers, ‖x + y‖p ≤ ‖x‖p + ‖y‖p .

Theorem 2.2.4. [9] For any 1 ≤ p ≤ ∞, the set lp endowed with the p-norm ‖·‖p is
a Banach space.

For 1 ≤ p < ∞ with
1

p
+

1

q
= 1, we define, for each x = {xk}∞k=1 ∈ lq, the

function fx : lp → C by

fx({yk}∞k=1) =
∞∑

k=1

xkyk for all {yk}∞k=1 ∈ lp.

By Hölder’s inequality, we have that the function fx is well-defined.

Theorem 2.2.5. [9] Let 1 ≤ p < ∞ with
1

p
+

1

q
= 1. Then lq is isometrically

isomorphic to (lp)∗ by the isomorphism defined by x �→ fx.

The following result is closely related to the duality theorem stated above.

Theorem 2.2.6. [9] Let 1 ≤ p < ∞ with
1

p
+

1

q
= 1. Then a sequence {xk}∞k=1 of

complex numbers belongs to lq if and only if {xkyk}∞k=1 belongs to l1 for all {yk}∞k=1

in lp.

2.3 Hilbert Spaces

Definition 2.3.1. [4] Let H be a vector space over a scalar K (K is either R or C),
a semi-inner product on H is a function 〈·, ·〉 : H × H → K having the following
properties:

(i) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉;
(ii) 〈x, x〉 � 0;

(iii) 〈x, y〉 = 〈y, x〉.
If 〈·, ·〉 has the following additional property:

(iv) if 〈x, x〉 = 0, then x = 0,

we call 〈·, ·〉 an inner product on H.

From (i), we have 〈0, y〉 = 〈0x, y〉 = 0〈x, y〉 = 0, and similarly, 〈x, 0〉 =
0. In particular, 〈0, 0〉 = 0. Hence if 〈·, ·〉 is an inner-product, then 〈x, x〉 =
0 if and only if x = 0. If 〈·, ·〉 is an inner-product on H, then

‖x‖ = 〈x, x〉1/2
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defines a norm on H. We call a vector space H equipped with an inner product on H
an inner product space. Every inner product space is a normed space under the norm
defined by ‖x‖ = 〈x, x〉1/2. If H equipped with the norm ‖ · ‖ is a Banach space, we
call H a Hilbert space.

Let, in the sequel, H and L be Hilbert spaces.

Definition 2.3.2. [4] If f, g ∈ H, then f and g are orthogonal if 〈f, g〉 = 0, in
symbols, f ⊥ g. If A,B ⊆ H, we say that A and B are orthogonal and write
A ⊥ B provided f ⊥ g for every f in A and g in B. If A ⊆ H and f ∈ H
satisfying {f} ⊥ A, then we write f ⊥ A. If A ⊆ H, then the set A⊥ is defined by
A⊥ = {h ∈ H : h ⊥ g for all g ∈ A}.

Definition 2.3.3. [4] An orthonormal set in H is a subset E of H having the following
properties:

(i) for e ∈ E , ‖e‖ = 1;

(ii) if e1, e2 ∈ E and e1 �= e2, then e1⊥e2.

An orthonormal basis for H is a maximal orthonormal set.

Proposition 2.3.4. [4] If E is an orthonormal set in H, then there is an orthonormal
basis for H that contains E.

Theorem 2.3.5. [4] If E is an orthonormal set in H and h ∈ H, then {e ∈ E :
〈h, e〉 �= 0} is countable.

Theorem 2.3.6. [4] Let E be an orthonormal set in H. Then the following statements
are equivalent.

(1) E is an orthonormal basis.

(2) If h ∈ H and h ⊥ E, then h = 0.

(3)
∨ E = H, where

∨ E is the smallest closed subspace of H containing E.

(4) h =
∑{〈h, e〉e : e ∈ E} for all h ∈ H, where

∑{〈h, e〉e : e ∈ E} denotes the

limit of the net

{∑
e∈F

〈h, e〉e : F is a finite subset of E
}

.

Theorem 2.3.7. Any two orthonormal bases of H have the same cardinality.

Definition 2.3.8. [4] The dimension of H is the cardinality of an orthornomal basis
and is denoted by dimH.
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Definition 2.3.9. [4] A subset D of H is said to be dense in H if D = H. H is said
to be separable if it has a countable subset which is dense in H.

Theorem 2.3.10. [4] Let H be an infinite dimensional Hilbert space. Then H is
separable if and only if dimH=ℵ0, where ℵ0 is the cardinality of the set of all positive
integers.

Definition 2.3.11. [4] A function u : H× L → K is a sesquilinear form if for h, g
in H, k, f in L, and α, β in K,

(i) u(αh + βg, k) = αu(h, k) + βu(g, k);

(ii) u(h, αk + βf) = αu(h, k) + βu(h, f).

Definition 2.3.12. [4] A sesquilinear form u is bounded if there is a constant M
such that |u(h, k)| ≤ M ‖h‖ ‖k‖ for all h in H and k in L. The constant M is called
a bound for u.

Theorem 2.3.13. [4] If u : H×L → K is a bounded sesquilinear form with a bound
M , then there are unique operators A in B(H,L) and B in B(L,H) such that

u(h, k) = 〈Ah, k〉 = 〈h,Bk〉

for all h in H and k in L and both ‖A‖ and ‖B‖ are not greater than M .

Definition 2.3.14. [4] If A ∈ B(H,L), then the unique operator B in B(L,H)
satisfying 〈Ah, k〉 = 〈h,Bk〉 is called the adjoint of A and is denoted by A∗.

Proposition 2.3.15. [4] If A,B ∈ B(H), where B(H) = B(H,H) and α ∈ K, then
the following hold.

(1) (αA + B)∗ = ᾱA∗ + B∗.

(2) (AB)∗ = B∗A∗.

(3) A∗∗ = (A∗)∗ = A.

(4) If A is invertible in B(H), then (A∗)−1 = (A−1)∗.

Theorem 2.3.16. [4] Let H be an infinite dimensional separable Hilbert space with
an orthonormal basis {en}. If T ∈ B(H) with the matrix representation A = [aji]
with respect to the basis {en}, then the matrix representation of T ∗ with respect to
{en} is the matrix [aji]

t.
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Definition 2.3.17. [4] A bounded linear operator A on a Hilbert space H is said to
be self-adjoint if A = A∗.

Theorem 2.3.18. [4] If T ∈ B(H,L), the following statements are equivalent.

(1) T is compact.

(2) T ∗ is compact.

(3) There is a sequence {Tn}of operators of finite rank such that ‖T − Tn‖ → 0.

Definition 2.3.19. [4] If A ∈ B(H), a scalar α is an eigenvalue of A if ker(A−αI) �=
{0}.

Definition 2.3.20. [4] If T ∈ B(H), then T is positive if 〈Th, h〉 ≥ 0 for all h ∈ H.

In symbols, this is denoted by T ≥ 0. Note that every positive operator on a
complex Hilbert space is self-adjoint.

Theorem 2.3.21. [4] If T is a positive compact operator on a Hilbert space H, then
there is a unique positive compact operator A such that A2 = T .

Definition 2.3.22. [4] If T is a positive compact operator on a Hilbert space H, then
the unique positive compact operator A such that A2 = T according to Theorem
2.3.21 is called the positive square root of T and denoted by |T |.

Definition 2.3.23. [4] A partial isometry is a linear operator W such that ‖Wh‖ =
‖h‖ for all h ∈ (ker W )⊥. The space (ker W )⊥ is called the initial space of W and the
space ran W is called the final space of W .

Theorem 2.3.24. [4] (Polar Decomposition) If T ∈ B(H), then there is a partial
isometry W with (ker T )⊥ as its initial space and ran T as its final space such that
T = W |T |. Moreover, if T = UP where P ≥ 0 and U is a partial isometry with
ker U = ker P , then P = |T | and U = W .

Theorem 2.3.25. [4] (Spectral Theorem) If T is a compact self-adjoint operator on
H, then T has only a countable number of distinct eigenvalues. If {λ1, λ2, ...} are the
distinct nonzero eigenvalue of T with |λ1| ≥ |λ2| ≥ |λ3| ≥ ..., and Pn is the projection
of H onto ker(T − λn), then PnPm = PmPn = 0 if n �= m, each λn is an real, and

T =
∞∑

n=1

λnPn,

where the series converges to T in the metric defined by the norm of B(H).
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Corollary 2.3.26. [4] With the notation of Spectral Theorem. One has the following.

(1) ker T = span(
⋃∞

n=1 PnH) = (ran T )⊥;

(2) each Pn has finite rank;

(3) ‖T‖ = sup{|λn| : n ≥ 1} and λn → 0 as n → ∞.

Let T be a compact self-adjoint operator on H. By Spectral Theorem, T
has precisely finite or countable number of distinct eigenvalues. Let {λn}∞n=1 be the
sequence of eigenvalues of T with |λ1| ≥ |λ2| ≥ |λ3| ≥ .... For each n, let Nn be the
dimension of ker(T − λn), and let {μn}∞n=1 = {λ1, ..., λ1︸ ︷︷ ︸

N1

, λ2, ..., λ2︸ ︷︷ ︸
N2

, ...}. If T has only

k eigenvalues, then we let μn = 0 for all for n > N1 + N2 + ... + Nk.

Corollary 2.3.27. [4] If T is a compact self-adjoint operator on H, then there is an
orthonormal basis {en} for (ker T )⊥ such that

Th =
∞∑

n=1

μn〈h, en〉en

for all h ∈ H.

2.4 Schatten p-Classes

Let H be an infinite dimensional separable Hilbert space and K a compact
operator on H. Since 0 ≤ ‖Kh‖2 = 〈Kh,Kh〉 = 〈K∗Kh, h〉 for all h ∈ H, it
follows that K∗K is a positive compact operator. Whence, by Theorem 2.3.21,
there is a unique positive compact operator |K| such that |K|2 = K∗K. Since |K| is

positive, |K| is self-adjoint. Thus, by Corollary 2.3.27, we have |K|h =
∞∑

n=1

μn〈h, en〉en

for all h ∈ H, where {μn}∞n=1 is the sequence of eigenvalues of |K| and {en}∞n=1 is
an orthonormal basis for (ker |K|)⊥. Notice that ker K = ker |K| due to the fact
that ‖Kh‖2 = 〈Kh, Kh〉 = 〈h,K∗Kh〉 = 〈h, |K|2h〉 = 〈|K|h, |K|h〉 = ‖|K|h‖2 for
all h ∈ H. We call the sequence {μn}∞n=1 the sequence of singular values of the
compact operator K and denote μn by sn(K) for all n. By Corollary 2.3.26, we have

‖K‖ = s1(K) ≥ s2(K) ≥ ... ≥ 0 and lim
n→∞

sn(K) = 0.

For 1 ≤ p ≤ ∞, let

Cp = {K ∈ K(H) : {sk(K)}∞k=1 ∈ lp}.
The set Cp is called the Schatten p-class. We define, for 1 ≤ p < ∞, the norm ‖·‖p

on Cp by

‖K‖p =

( ∞∑
n=1

sn(K)p

)1/p

.

For p = ∞, we define ‖K‖∞ = sup
n

sn(K). It is obvious that for any compact

operator K on H, ‖K‖∞ = s1(K) = ‖K‖. Thus C∞ = K(H).
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Theorem 2.4.1. [5] If K ∈ C1, then for each othonormal basis {en} of H the sum
∞∑

n=1

〈Ken, en〉 is absolutely convergent and

∞∑
n=1

〈Ken, en〉 =
∞∑

n=1

sn(K)〈Uen, en〉,

where U is the unique partial isometry such that K = U |K|.

Definition 2.4.2. [5] For each K ∈ C1, the number

∞∑
n=1

〈Ken, en〉,

where {en} is an othonormal basis of H, is called the trace of K.

Remark 2.4.3. [5] If {en} is an ordered othonormal basis of H and K ∈ C1 with
the matrix representation A with respect to {en}, then the trace of K is exactly the
sum of all entries in the main diagonal of A.

Theorem 2.4.4. [5] For each 1 < p ≤ ∞ with
1

p
+

1

q
= 1, (Cp)∗ ∼= Cq.

Theorem 2.4.5. [5] (C1)∗ ∼= B(H).



Chapter 3

Duality of Sequence Spaces of Infinite

Matrices

3.1 Basic Results

Recall that, for any 1 ≤ r < ∞, the set L r of sequences of infinite matrices
is defined by

L r =

{{[
a

(k)
ji

]}∞

k=1
⊆ M∞ :

[ ∞∑
k=1

∣∣∣a(k)
ji

∣∣∣r] ∈ B(l2)

}
.

It is clear that if {Ak}∞k=1 ∈ L r, then Ak is necessarily a member of the absolute
Schur algebra Sr

2,2(C) for all k.

The following theorem was first stated in [3] by A. Charearnpol. It is a gen-
eralization of the characterization of the sequence spaces Ob provided by J. Rakbud
and S.-C. Ong in [11].

Theorem 3.1.1. Let
{[

a
(k)
ji

]}∞

k=1
be a sequence in B(l2) with a

(k)
ji ≥ 0 for all i, j, k.

(1) The sequence

{
n∑

k=1

[
a

(k)
ji

]}∞

n=1

is bounded in B(l2) if and only if

[ ∞∑
k=1

a
(k)
ji

]
∈

B(l2).

(2) If

[ ∞∑
k=1

a
(k)
ji

]
∈ B(l2), then

∥∥∥∥∥
[ ∞∑

k=1

a
(k)
ji

]∥∥∥∥∥ = sup
n

∥∥∥∥∥
n∑

k=1

[
a

(k)
ji

]∥∥∥∥∥.

From the above theorem, the following characterization of the set L r is im-
mediately obtained.

Corollary 3.1.2. Let {Ak}∞k=1 be a sequence in M∞ and 1 ≤ r < ∞. Then the
following are equivalent:

(1) {Ak}∞k=1 belongs to L r;

14



15

(2) Ak ∈ Sr
2,2(C) for all k and the sequence

{
n∑

k=1

A
[r]
k

}∞

n=1

is bounded in B(l2);

(3) the sequence

{∥∥∥∥∥
n∑

k=1

A
[r]
k

∥∥∥∥∥
}∞

n=1

is bounded.

For any sequence
{[

a
(k)
ji

]}∞

k=1
in M∞ and 1 ≤ r < ∞, we define

∥∥∥∣∣∣{[a(k)
ji

]}∞

k=1

∣∣∣∥∥∥
r

=

⎧⎪⎪⎨⎪⎪⎩
∥∥∥∥∥
[ ∞∑

k=1

∣∣∣a(k)
ji

∣∣∣r]∥∥∥∥∥
1/r

if
{[

a
(k)
ji

]}∞

k=1
∈ L r,

∞ otherwise.

The following Hölder-type inequality was first established in [2] by Chaisuriya
and Ong. It is useful for the research.

Theorem 3.1.3. (Hölder-type inequality) For any A,B ∈ M∞ and 1 < r < ∞ with
1

r
+

1

r∗
= 1, ∥∥(A • B)[1]

∥∥ ≤ ∥∥A[r]
∥∥1/r ∥∥B[r∗]

∥∥1/r∗

under the conventions that ∞· 0 = 0 ·∞ = 0, ∞·α = α ·∞ = ∞ for all positive real
number α and ∞ ·∞ = ∞.

The Hölder and Minkowski-type inequalities below are extensions of the ones
in [11].

Theorem 3.1.4. (Hölder-type inequality for sequences of matrices) For any se-
quences {Ak}∞k=1 and {Bk}∞k=1 in M∞,

‖|{Ak • Bk}∞k=1|‖1 ≤ ‖|{Ak}∞k=1|‖r ‖|{Bk}∞k=1|‖r∗ ,

where 1 < r < ∞ with
1

r
+

1

r∗
= 1, under the same convention as in Theorem 3.1.3.

Proof. Let
{

Ak =
[
a

(k)
ji

]}∞

k=1
and

{
Bk =

[
b
(k)
ji

]}∞

k=1
be sequences in M∞. If either

‖|{Ak}∞k=1|‖r or ‖|{Bk}∞k=1|‖r∗ is ∞, then we are done. Suppose that both ‖|{Ak}∞k=1|‖r

and ‖|{Bk}∞k=1|‖r∗ are finite. Then

[ ∞∑
k=1

∣∣∣a(k)
ji

∣∣∣r] and

[ ∞∑
k=1

∣∣∣b(k)
ji

∣∣∣r∗] belong to ∈ B(l2).

Thus, by Hölder’s inequality, we have for each i, j that

∞∑
k=1

∣∣∣a(k)
ji b

(k)
ji

∣∣∣ ≤ ( ∞∑
k=1

∣∣∣a(k)
ji

∣∣∣r)1/r ( ∞∑
k=1

∣∣∣b(k)
ji

∣∣∣r∗)1/r∗

< ∞.



16

Hence the matrix

[ ∞∑
k=1

∣∣∣a(k)
ji b

(k)
ji

∣∣∣] ∈ M∞. We want to show that

[ ∞∑
k=1

∣∣∣a(k)
ji b

(k)
ji

∣∣∣] ∈
B(l2) and ‖|{Ak • Bk}∞k=1|‖1 ≤ ‖|{Ak}∞k=1|‖r ‖|{Bk}∞k=1|‖r∗ . By the Hölder-type inequal-
ity, we have∥∥∥∥∥

[ ∞∑
k=1

∣∣∣a(k)
ji b

(k)
ji

∣∣∣]∥∥∥∥∥ ≤
∥∥∥∥∥∥
⎡⎣( ∞∑

k=1

∣∣∣a(k)
ji

∣∣∣r)1/r ( ∞∑
k=1

∣∣∣b(k)
ji

∣∣∣r∗)1/r∗
⎤⎦∥∥∥∥∥∥

=

∥∥∥∥∥∥
⎡⎣( ∞∑

k=1

∣∣∣a(k)
ji

∣∣∣r)1/r
⎤⎦ •

⎡⎣( ∞∑
k=1

∣∣∣b(k)
ji

∣∣∣r∗)1/r∗
⎤⎦∥∥∥∥∥∥

≤
∥∥∥∥∥
[ ∞∑

k=1

∣∣∣a(k)
ji

∣∣∣r]∥∥∥∥∥
1/r ∥∥∥∥∥

[ ∞∑
k=1

∣∣∣b(k)
ji

∣∣∣r∗]∥∥∥∥∥
1/r∗

= ‖|{Ak}∞k=1|‖r ‖|{Bk}∞k=1|‖r∗ < ∞.

This implies that

[ ∞∑
k=1

∣∣∣a(k)
ji b

(k)
ji

∣∣∣] ∈ B(l2), which is equivalent to that {Ak •Bk}∞k=1 ∈
L 1, and ‖|{Ak • Bk}∞k=1|‖1 ≤ ‖|{Ak}∞k=1|‖r ‖|{Bk}∞k=1|‖r∗ .

Theorem 3.1.5. (Minkowski-type inequality for sequences of matrices) For any se-
quences {Ak}∞k=1 and {Bk}∞k=1 in M∞ and 1 ≤ r < ∞,

‖|{Ak + Bk}∞k=1|‖r ≤ ‖|{Ak}∞k=1|‖r + ‖|{Bk}∞k=1|‖r

under the conventions that ∞ + α = α + ∞ = ∞ for all non-negative real number α
and ∞ + ∞ = ∞.

Proof. For the case where either ‖|{Ak}∞k=1|‖r = ∞ or ‖|{Bk}∞k=1|‖r = ∞, there is
nothing to prove. Suppose that both ‖|{Ak}∞k=1|‖r and ‖|{Bk}∞k=1|‖r are finite. We
assume first that 1 < r < ∞. Then by the Hölder-type inequality for sequences of
matrices, we have for each positive integer n that∥∥∥∥∥

n∑
k=1

(Ak + Bk)
[r]

∥∥∥∥∥ =

∥∥∥∥∥
n∑

k=1

(Ak + Bk)
[1] • (Ak + Bk)

[r−1]

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

k=1

(
A

[1]
k + B

[1]
k

)
• (Ak + Bk)

[r−1]

∥∥∥∥∥
=

∥∥∥∥∥
n∑

k=1

A
[1]
k • (Ak + Bk)

[r−1] +
n∑

k=1

B
[1]
k • (Ak + Bk)

[r−1]

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

k=1

A
[1]
k • (Ak + Bk)

[r−1]

∥∥∥∥∥ +

∥∥∥∥∥
n∑

k=1

B
[1]
k • (Ak + Bk)

[r−1]

∥∥∥∥∥
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≤
∥∥∥∥∥

n∑
k=1

A
[r]
k

∥∥∥∥∥
1/r ∥∥∥∥∥

n∑
k=1

(
(Ak + Bk)

[r−1]
)[r∗]

∥∥∥∥∥
1/r∗

+

∥∥∥∥∥
n∑

k=1

B
[r]
k

∥∥∥∥∥
1/r ∥∥∥∥∥

n∑
k=1

(
(Ak + Bk)

[r−1]
)[r∗]

∥∥∥∥∥
1/r∗

=

⎛⎝∥∥∥∥∥
n∑

k=1

A
[r]
k

∥∥∥∥∥
1/r

+

∥∥∥∥∥
n∑

k=1

B
[r]
k

∥∥∥∥∥
1/r

⎞⎠∥∥∥∥∥
n∑

k=1

(Ak + Bk)
[r]

∥∥∥∥∥
1/r∗

,

where
1

r
+

1

r∗
= 1, which implies that

∥∥∥∥∥
n∑

k=1

(Ak + Bk)
[r]

∥∥∥∥∥
1/r

≤
∥∥∥∥∥

n∑
k=1

A
[r]
k

∥∥∥∥∥
1/r

+

∥∥∥∥∥
n∑

k=1

B
[r]
k

∥∥∥∥∥
1/r

≤ ‖|{Ak}∞k=1|‖r + ‖|{Bk}∞k=1|‖r .

For the case where r = 1, we easily have for each positive integer n that∥∥∥∥∥
n∑

k=1

(Ak + Bk)
[1]

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
k=1

A
[1]
k +

n∑
k=1

B
[1]
k

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

k=1

A
[1]
k

∥∥∥∥∥ +

∥∥∥∥∥
n∑

k=1

B
[1]
k

∥∥∥∥∥
≤ ‖|{Ak}∞k=1|‖1 + ‖|{Bk}∞k=1|‖1

as well. Thus, by Corollary 3.1.2, the sequence {Ak + Bk}∞k=1 belongs to L r and

‖|{Ak + Bk}∞k=1|‖r ≤ ‖|{Ak}∞k=1|‖r + ‖|{Bk}∞k=1|‖r

for all 1 ≤ r < ∞. The proof is complete.

The following lemma was first stated and proved in [10]. It is a beautiful
consequence of the Hölder-type inequality.

Lemma 3.1.6. For any 1 ≤ r < ∞ and matrices A and B in Sr
2,2(C),∥∥A[r] − B[r]

∥∥ ≤ (‖|A|‖2,2,r + ‖|B|‖2,2,r) ‖|A − B|‖2,2,r .

The proposition below was first stated and proved in [10] as well. We can see
that it follows easily from the lemma above.

Proposition 3.1.7. For any 1 ≤ r < ∞, the map A �→ A[r] from Sr
2,2(C) into B(l2)

is continuous.

Theorem 3.1.8. For each 1 ≤ r < ∞, the set L r equipped with the norm ‖|·|‖r is a
Banach space.
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Proof. From Minkowski’s inequality for sequences of matrices, we have that the set
L r endowed with the norm ‖|·|‖r is a normed space. To see that it is a Banach space,

let
{
An =

{
A

(n)
k

}∞

k=1

}∞

n=1
be a Cauchy sequence in L r. As we have for each k that∥∥∥∣∣∣A(n)

k − A
(m)
k

∣∣∣∥∥∥
2,2,r

≤ ‖|An − Am|‖r for all n,m,

it follows that the sequence
{

A
(n)
k

}∞

n=1
is a Cauchy sequence in Sr

2,2(C) for all k. So,

for each k, we obtain by the completeness of Sr
2,2(C) that there exists an Ak in Sr

2,2(C)

such that A
(n)
k → Ak. Let A = {Ak}∞k=1. We claim that A ∈ L r and An → A. To

prove these, let ε > 0 be given. Then there is a positive integer N such that for each
positive integer K,∥∥∥∥∥

K∑
k=1

(
A

(n)
k − A

(m)
k

)[r]

∥∥∥∥∥
1/r

≤ ‖|An − Am|‖r <
ε

2
for all n,m ≥ N. (∗)

Since A
(m)
k → Ak in Sr

2,2(C) for all k, it follows for each fixed n that A
(n)
k − A

(m)
k →

A
(n)
k −Ak in Sr

2,2(C) for all k. Thus, by Proposition 3.1.7, we obtain for each fixed n

that
(
A

(n)
k − A

(m)
k

)[r]

→
(
A

(n)
k − Ak

)[r]

in B(l2) for all k. From this we have for each

fixed n and K that
K∑

k=1

(
A

(n)
k − A

(m)
k

)[r]

→
K∑

k=1

(
A

(n)
k − Ak

)[r]

in B(l2). Whence, by

taking the limits as m → ∞ on both sides of (∗), we obtain by the continuity of the
operator norm on B(l2) that for each n ≥ N ,∥∥∥∥∥

K∑
k=1

(
A

(n)
k − Ak

)[r]

∥∥∥∥∥
1/r

≤ ε

2
for all K ≥ 1.

Therefore, by Theorem 3.1.1,

‖|An − A|‖r = sup
K

∥∥∥∥∥
K∑

k=1

(
A

(n)
k − Ak

)[r]

∥∥∥∥∥
1/r

< ε for all n ≥ N. (∗∗)

The inequality (∗∗) yields that AN −A belongs to L r, which implies that A = AN −
(AN − A) is an element of L r. Consequently, by (∗∗) again, we get An → A.

3.2 Duality

In this section, we study the duality of the sequence spaces L r. The aim
is to decompose the dual space (L r)∗ of L r as an l1 direct-sum of its two closed
subspaces. Before getting the results, we need some notational conventions.

For any z ∈ C, we define the function sgn(·) on C by

sgn(z) =

⎧⎪⎨⎪⎩
z

|z| if z �= 0,

1 if z = 0.
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For any sequences A = {Ak}∞k=1 and B = {Bk}∞k=1 in M∞ and any positive integer
n, we let A • B = {Ak • Bk}∞k=1, An� = {(Ak)n�}∞k=1, An� = {(Ak)n�}∞k=1, and
An] = {A1, A2, ..., An, 0, 0, ...}. It is clear that

(
AK]

)
n�

= (An�)K] for all positive

integers n and K. Notice that for each 1 ≤ r < ∞, if A =
{

Ak =
[
a

(k)
ji

]}∞

k=1
∈ L r,

then each of the following holds true:

(i) ‖|An� |‖r =

∥∥∥∥∥
[ ∞∑

k=1

∣∣∣a(k)
ji

∣∣∣r]
n�

∥∥∥∥∥
1/r

,

(ii)
∥∥∣∣AK]

∣∣∥∥
r

=

∥∥∥∥∥
K∑

k=1

A
[r]
k

∥∥∥∥∥
1/r

=

∥∥∥∥∥
[

K∑
k=1

∣∣∣a(k)
ji

∣∣∣r]∥∥∥∥∥
1/r

and

(iii) ‖|An� − A|‖r = ‖|{(Ak)n� − Ak}∞k=1|‖r =

∥∥∥∥∥
[ ∞∑

k=1

∣∣∣a(k)
ji

∣∣∣r]
n�

−
[ ∞∑

k=1

∣∣∣a(k)
ji

∣∣∣r]∥∥∥∥∥
1/r

,

for all n and K. The first and second equations imply that ‖|A|‖r = sup
n

‖|An� |‖r

and ‖|A|‖r = sup
K

∥∥∣∣AK]

∣∣∥∥
r

respectively. And the last one implies that the ma-

trix

[ ∞∑
k=1

∣∣∣a(k)
ji

∣∣∣r] is compact if and only if ‖|An� − A|‖r → 0. For each A = [aji]

in M∞ and positive integer k, let
∑

A =
∞∑

j=1

∞∑
i=1

aji if the series converges, let

sgnA=[sgn(aji)], and let s(A; k) be the sequence whose k-th term is the matrix A
and all other terms are 0. Finally, for any λ ∈ C and pair (j, i) of positive integers, let
E(λ; (j, i)) be the matrix whose (j, i)-th entry is the number λ and all other entries
are 0.

On the classical sequence spaces lp, there is a result closely related to their

duality as follows: for 1 ≤ p < ∞ with
1

p
+

1

q
= 1, a sequence x belongs to lq if and

only if x “Schur multiplies”every y in lp into l1. An analogue of this result is also
obtained for our sequence spaces L r of infinite matrices.

Theorem 3.2.1. Let 1 < r < ∞ with
1

r
+

1

r∗
= 1.

(1) {Ak}∞k=1 ∈ L r∗ if and only if {Ak • Bk}∞k=1 ∈ L 1 for all {Bk}∞k=1 ∈ L r.

(2) If {Ak}∞k=1 ∈ L r∗, then

‖|{Ak}∞k=1|‖r∗ = sup{‖|{Ak • Bk}∞k=1|‖1 : {Bk}∞k=1 ∈ L r, ‖|{Bk}∞k=1|‖r ≤ 1}.

Proof. (1). Let A =
{

Ak =
[
a

(k)
ji

]}∞

k=1
be a sequence in M∞. Suppose that {Ak •

Bk}∞k=1 ∈ L 1 for all {Bk}∞k=1 ∈ L r. We want to show that {Ak}∞k=1 ∈ L r∗ . By
the assumption, a map Ψ : L r → L 1 can be defined as follows: Ψ({Bk}∞k=1) =
{Ak •Bk}∞k=1 for all {Bk}∞k=1 ∈ L r. For any positive integer n, let Ψn : L r → L 1 be
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defined by Ψn({Bk}∞k=1) = An] • B for all B = {Bk}∞k=1 ∈ L r. Then by the Hölder-
type inequality for sequences of matrices, we have for every B = {Bk}∞k=1 ∈ L r

that
‖|Ψn({Bk}∞k=1)|‖1 =

∥∥∣∣An] • B
∣∣∥∥

1
≤ ∥∥∣∣An]

∣∣∥∥
r∗ ‖|B|‖r .

So the operator Ψn is bounded for all n. For each
{

Bk =
[
b
(k)
ji

]}∞

k=1
∈ L r, we have

‖|Ψn({Bk}∞k=1)|‖1 =

∥∥∥∥∥
[

n∑
k=1

∣∣∣a(k)
ji b

(k)
ji

∣∣∣]∥∥∥∥∥ ≤
∥∥∥∥∥
[ ∞∑

k=1

∣∣∣a(k)
ji b

(k)
ji

∣∣∣]∥∥∥∥∥
= ‖|{Ak • Bk}∞k=1|‖1 for all n.

Hence, by the uniform boundedness principle, the set {‖Ψn‖ : n = 1, 2, 3, ...} is
bounded. For every B = {Bk}∞k=1 ∈ L r with ‖|B|‖r ≤ 1, we have by Theorem 3.1.1
that

‖|Ψ(B)|‖1 = sup
n

∥∥∥∥∥
n∑

k=1

(Ak • Bk)
[1]

∥∥∥∥∥ = sup
n

∥∥∣∣An] • B
∣∣∥∥

1

= sup
n

‖|Ψn(B)|‖1 ≤ sup
n

‖Ψn‖ .

Thus, by the boundedness of the set {‖Ψn‖ : n = 1, 2, 3, ...}, the operator Ψ is

bounded. Next, let D =
{

A
[r∗−1]
k

}∞

k=1
. Then (Dn�)K] ∈ L r for all n,K. Thus∥∥∥∥∥

(
K∑

k=1

A
[r∗]
k

)
n�

∥∥∥∥∥ =

∥∥∥∥∥
K∑

k=1

(
A

[r∗]
k

)
n�

∥∥∥∥∥ =

∥∥∥∥∥
K∑

k=1

A
[1]
k •

(
A

[r∗−1]
k

)
n�

∥∥∥∥∥
=

∥∥∥∣∣∣A • (Dn�)K]

∣∣∣∥∥∥
1

=
∥∥∥∣∣∣Ψ(

(Dn�)K]

)∣∣∣∥∥∥
1

≤ ‖Ψ‖
∥∥∥∣∣∣(Dn�)K]

∣∣∣∥∥∥
r

= ‖Ψ‖
∥∥∥∥∥
(

K∑
k=1

(
A

[r∗−1]
k

)[r]
)

n�

∥∥∥∥∥
1/r

= ‖Ψ‖
∥∥∥∥∥
(

K∑
k=1

A
[r∗]
k

)
n�

∥∥∥∥∥
1/r

for all n, K. (	)

It follows that ∥∥∥∥∥
(

K∑
k=1

A
[r∗]
k

)
n�

∥∥∥∥∥ ≤ ‖Ψ‖r∗ for all n,K.

Whence, by Theorem 1.1(2), we obtain for each K that
K∑

k=1

A
[r∗]
k ∈ B(l2) and by

Theorem 1.1(3), ∥∥∥∥∥
K∑

k=1

A
[r∗]
k

∥∥∥∥∥ = sup
n

∥∥∥∥∥
(

K∑
k=1

A
[r∗]
k

)
n�

∥∥∥∥∥ ≤ ‖Ψ‖r∗ .

Therefore, by Corollary 3.1.2, the sequence A belongs to L r∗ . Conversely, suppose
that A ∈ L r∗ . Then for any {Bk}∞k=1 ∈ L r, we have by the Hölder-type inequality
for sequences of matrices that {Ak • Bk}∞k=1 ∈ L 1.
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(2). Suppose that {Ak}∞k=1 ∈ L r∗ . Then by (1), the linear operator Ψ :
L r → L 1 defined by {Bk}∞k=1 �→ {Ak • Bk}∞k=1 is well-defined, and by the Hölder-
type inequality for sequences of matrices, it is obvious that ‖Ψ‖ ≤ ‖|{Ak}∞k=1|‖r∗ .
By the same argument as given in the proof of (1) (see the argument to obtain the
inequality (	)), we have ∥∥∥∥∥

n∑
k=1

A
[r∗]
k

∥∥∥∥∥
1/r∗

≤ ‖Ψ‖ for all n.

It follows from Theorem 3.1.1 that ‖|{Ak}∞k=1|‖r∗ ≤ ‖Ψ‖. Consequently, we obtain

‖|{Ak}∞k=1|‖r∗ = ‖Ψ‖ = sup{‖|{Ak • Bk}∞k=1|‖1 : {Bk}∞k=1 ∈ L r, ‖|{Bk}∞k=1|‖r ≤ 1}
as required. The proof is complete.

For each 1 ≤ r < ∞, let

L r
κ =

{{[
a

(k)
ji

]}∞

k=1
⊆ M∞ :

[ ∞∑
k=1

∣∣∣a(k)
ji

∣∣∣r] ∈ K(l2)

}
.

The following results on the sets L r
κ are evident.

(i) L r
κ � L r.

(ii) A sequence A in M∞ belongs to L r
κ if and only if ‖|A − An� |‖r → 0.

(iii) If a sequence A belongs to L r
κ , then A − An� belongs to L r

κ for all n.

The following theorem is a more general version of the characterization of the
sequence space Oκ provided by Rakbud et al. in [11].

Theorem 3.2.2. Let
{

Ak =
[
a

(k)
ji

]}∞

k=1
be a sequence in M∞ with a

(k)
jk ≥ 0 for all

i, j, k. Then

[ ∞∑
k=1

a
(k)
ji

]
∈ K(l2) if and only if Ak ∈ K(l2) for all k and the sequence{

n∑
k=1

Ak

}∞

k=1

converges in B(l2).

Proof. Suppose that the matrix A =

[ ∞∑
k=1

a
(k)
ji

]
is compact. Then for each k, we have

by Theorem 1.1(1) that Ak ∈ B(l2) and

‖Ak − (Ak)n�‖ ≤ ‖A − An�‖ → 0.

Thus Ak is compact for all k. To see that the sequence

{
n∑

k=1

Ak

}∞

k=1

converges in

B(l2), let ε > 0 be given. Then by the compactness of the matrix A, there exists
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a positive integer N such that ‖AN� − A‖ <
ε

3
. As the series

∞∑
k=1

a
(k)
ji converges for

all 1 ≤ j, i ≤ N , there is a positive integer K0 such that for each 1 ≤ j, i ≤ N ,
∞∑

k=K

a
(k)
ji <

ε

3N3/2
for all K ≥ K0. Hence for each K ≥ K0,

∥∥∥∥∥
K∑

k=1

Ak − A

∥∥∥∥∥ ≤
∥∥∥∥∥AN� −

(
K∑

k=1

Ak

)
N�

∥∥∥∥∥ +

∥∥∥∥∥
(

K∑
k=1

Ak

)
N�

−
K∑

k=1

Ak

∥∥∥∥∥
+ ‖AN� − A‖

≤
⎧⎨⎩

N∑
j=1

(
N∑

i=1

∞∑
k=K

a
(k)
ji

)2
⎫⎬⎭

1/2

+ 2 ‖AN� − A‖

<
ε

3
+

2ε

3
= ε.

This yields
∞∑

k=1

Ak = A in B(l2). Conversely, suppose that Ak is compact for all k and

that the sequence

{
n∑

k=1

Ak

}∞

n=1

converges in B(l2). It is clear that
∞∑

k=1

Ak =

[ ∞∑
k=1

a
(k)
ji

]
.

Since K(l2) is closed in B(l2), it follows that
∞∑

k=1

Ak is compact. Thus we obtain that[ ∞∑
k=1

a
(k)
ji

]
is compact as required.

The following characterization of the set L r
κ is an immediate consequence of

Theorem 3.2.2 above.

Corollary 3.2.3. Let {Ak}∞k=1 be a sequence in M∞ and 1 ≤ r < ∞. Then

{Ak}∞k=1 ∈ L r
κ if and only if A

[r]
k is compact for all k and the sequence

{
n∑

k=1

A
[r]
k

}∞

k=1

converges in B(l2).

Theorem 3.2.4. For each 1 ≤ r < ∞, the set L r
κ is a Banach subspace of L r.

Proof. For any matrix A ∈ M∞ and positive integer n, we let here for convenience
A�n = A − An−1� . We will show first that L r

κ is a normed subspace of L r. Let
{Ak}∞k=1, {Bk}∞k=1 ∈ L r

κ . Then

‖|{(Ak + Bk)�n}∞k=1|‖r = ‖|{(Ak)�n}∞k=1 + {(Bk)�n}∞k=1|‖r

≤ ‖|{(Ak)�n}∞k=1|‖r
+ ‖|{(Bk)�n}∞k=1|‖r

→ 0.

Thus L r
κ is closed under addition. It clear that λ{Ak}∞k=1 ∈ L r

κ for any complex
number λ. Hence L r

κ is a normed subspace of L r. To show that L r
κ is a Ba-

nach space, it suffices to show that L r
κ is a closed subspace of L r. Suppose that
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{
An =

{
A

(n)
k

}∞

k=1

}∞

n=1
is a sequence in L r

κ converging to an element A = {Ak}∞k=1

in L r, and let ε > 0 be given. Then there is a positive integer N such that

‖|AN − A|‖r <
ε

2
.

Due to the membership of AN in L r
κ , we have that there exists a positive integer J0

such that ∥∥∥∥∣∣∣∣{(
A

(N)
k

)
�J

}∞

k=1

∣∣∣∣∥∥∥∥
r

<
ε

2
for all J ≥ J0.

It follows that

‖|{(Ak)�J
}∞k=1|‖r

≤
∥∥∥∥∣∣∣∣{(

A
(N)
k

)
�J

}∞

k=1

− {(Ak)�J
}∞k=1

∣∣∣∣∥∥∥∥
r

+

∥∥∥∥∣∣∣∣{(
A

(N)
k

)
�J

}∞

k=1

∣∣∣∣∥∥∥∥
r

=

∥∥∥∥∣∣∣∣{(
A

(N)
k − Ak

)
�J

}∞

k=1

∣∣∣∣∥∥∥∥
r

+

∥∥∥∥∣∣∣∣{(
A

(N)
k

)
�J

}∞

k=1

∣∣∣∣∥∥∥∥
r

≤ ‖|AN − A|‖r +

∥∥∥∥∣∣∣∣{(
A

(N)
k

)
�J

}∞

k=1

∣∣∣∣∥∥∥∥
r

<
ε

2
+

ε

2
= ε for all J ≥ J0.

Consequently, {Ak}∞k=1 belongs to L r
κ .

The following is the main theorem in this thesis. It tells us that the annihilator
(L r

κ )⊥ of L r
κ is complemented in (L r)∗. Furthermore, the norm of the decomposition

of any bounded linear functional on L r is additive.

Theorem 3.2.5. Let 1 ≤ r < ∞. Then the following hold.

(1) The annihilator (L r
κ )⊥ of L r

κ is a non-trivial closed subspace of the dual (L r)∗

of L r.

(2) There is a subspace P of (L r)∗ such that P is isometrically isomorphic to
(L r

κ )∗ and (L r)∗ = P ⊕ (L r
κ )⊥ .

(3) For any f ∈ (L r)∗, the decomposition f = g+h, where g ∈ P and h ∈ (L r
κ )⊥,

satisfies ‖f‖ = ‖g‖ + ‖h‖.
Proof. (1). By the Hahn-Banach extension theorem, we have in general that if A is
a non-trivial closed subspace of a Banach space X, then the annihilator A⊥ of A is
a non-trivial closed subspace of the dual X∗ of X. Thus, by this fact, the assertion
(1) holds.

(2). Let ϕ ∈ (L r)∗. For each k, let ϕk : Sr
2,2(C) → C be defined by

ϕk(A) = ϕ(s(A; k)) for all A ∈ Sr
2,2(C). It is easy to see that ϕk is linear and

‖ϕk‖ ≤ ‖ϕ‖ for all k. Hence, for each k, the map ϕk belongs to (Sr
2,2(C))∗. Next,

let B
(ϕ)
k = [ϕk(E(1; (j, i)))] for all k, and let B(ϕ) =

{
B

(ϕ)
k

}∞

k=1
. We want to

show first that
∞∑

k=1

∑(
Ak • B

(ϕ)
k

)[1]

< ∞ for all {Ak}∞k=1 ∈ L r. To see this,
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let A =
{

Ak =
[
a

(k)
ji

]}∞

k=1
∈ L r. Notice that A • B(ϕ) belongs to L r due to

the fact that
∞∑

k=1

∣∣∣a(k)
ji ϕk(E(1; (j, i)))

∣∣∣r ≤ ‖ϕ‖r
∞∑

k=1

∣∣∣a(k)
ji

∣∣∣r for all j, i. For each k, let

Ãk =
[(

sgn
(
ϕk

(
E

(
a

(k)
ji ; (j, i)

))))
a

(k)
ji

]
, and let Ã =

{
Ãk

}∞

k=1
. Then Ã ∈ L r with

the same norm as A. Let ν, μ and K be positive integers, and let n = max{ν, μ}.
Then

K∑
k=1

ν∑
j=1

μ∑
i=1

∣∣∣a(k)
ji ϕk(E(1; (j, i)))

∣∣∣ <

K∑
k=1

n∑
j=1

n∑
i=1

∣∣∣ϕk

(
E

(
a

(k)
ji ; (j, i)

))∣∣∣
=

K∑
k=1

n∑
j=1

n∑
i=1

(
sgn

(
ϕk

(
E

(
a

(k)
ji ; (j, i)

))))
ϕk

(
E

(
a

(k)
ji ; (j, i)

))

=
K∑

k=1

n∑
j=1

n∑
i=1

ϕk

(
E

((
sgn

(
ϕk

(
E

(
a

(k)
ji ; (j, i)

))))
a

(k)
ji ; (j, i)

))

=
K∑

k=1

ϕk

(
n∑

j=1

n∑
i=1

E
((

sgn
(
ϕk

(
E

(
a

(k)
ji ; (j, i)

))))
a

(k)
ji ; (j, i)

))

=
K∑

k=1

ϕk

((
Ãk

)
n�

)
=

K∑
k=1

ϕ

(
s

((
Ãk

)
n�

; k

))

= ϕ

(
K∑

k=1

s

((
Ãk

)
n�

; k

))
= ϕ

((
Ãn�

)
K]

)
≤ ‖ϕ‖

∥∥∥∥∣∣∣∣(Ãn�

)
K]

∣∣∣∣∥∥∥∥
r

≤ ‖ϕ‖
∥∥∥∣∣∣Ã∣∣∣∥∥∥

r
= ‖ϕ‖ ‖|A|‖r .

It follows that ∞∑
k=1

∞∑
j=1

∞∑
i=1

∣∣∣a(k)
ji ϕk(E(1; (j, i)))

∣∣∣ ≤ ‖ϕ‖ ‖|A|‖r .

From this result, we can define a bounded linear functional ψϕ on L r by {Ak}∞k=1 �→∞∑
k=1

∑
Ak • B

(ϕ)
k with ‖ψϕ‖ ≤ ‖ϕ‖. Notice that for any A = {Ak}∞k=1 ∈ L r and

positive integer K, we have by the absolute convergence of the series
∑

Ak • B
(ϕ)
k

(k = 1, 2, ..., K) that

ψϕ

(
AK]

)
=

K∑
k=1

∑
Ak • B

(ϕ)
k =

K∑
k=1

lim
n→∞

∑(
Ak • B

(ϕ)
k

)
n�

= lim
n→∞

K∑
k=1

∑(
Ak • B

(ϕ)
k

)
n�

= lim
n→∞

K∑
k=1

ϕk((Ak)n�)

= lim
n→∞

K∑
k=1

ϕ(s((Ak)n� ; k)) = lim
n→∞

ϕ

(
K∑

k=1

s((Ak)n� ; k)

)
= lim

n→∞
ϕ
(
(An�)K]

)
= lim

n→∞
ϕ
(
(AK])n�

)
. (§)
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Next, let ρϕ = ϕ−ψϕ. We will show that ρϕ ∈ (L r
κ )⊥. To see this, let A ∈ L r

κ . Then

AK] ∈ L r
κ , and thus

∥∥∥∣∣∣(AK]

)
n�

− AK]

∣∣∣∥∥∥
r
→ 0 for all K. Whence, by (§) and the

continuity of ϕ, we get ψϕ

(
AK]

)
= lim

n→∞
ϕ
((

AK]

)
n�

)
= ϕ

(
AK]

)
for all K. Since by

Corollary 3.2.3, we have
∥∥∣∣AK] − A

∣∣∥∥
r
→ 0, it follows from the continuity of ψϕ and

ϕ that ψϕ(A) = ψϕ

(
lim

K→∞
AK]

)
= lim

K→∞
ψϕ

(
AK]

)
= lim

K→∞
ϕ
(
AK]

)
= ϕ

(
lim

K→∞
AK]

)
=

ϕ (A). Hence ψϕ = ϕ on L r
κ , which implies that ρϕ ∈ (L r

κ )⊥. Put P = {ψϕ : ϕ ∈
(L r)∗}. We claim that (L r)∗ = P ⊕ (L r

κ )⊥ and P is isometrically isomorphic to
(L r

κ )∗. From the definition of P, we have already had that (L r)∗ = P + (L r
κ )⊥.

The decomposition (L r)∗ = P ⊕ (L r
κ )⊥ will be obtained once it can be shown that

P ∩ (L r
κ )⊥ = {0}. To see this, let ψϕ ∈ P ∩ (L r

κ )⊥ for some ϕ ∈ (L r)∗. Then
for every A = {Ak}∞k=1 ∈ L r, we have by the absolute convergence of the series
∞∑

k=1

∑
Ak • B

(ϕ)
k and the fact that the sequence An� ∈ L r

κ for all n that ψϕ(A) =

lim
n→∞

ψϕ (An�) = 0 . Therefore, ψϕ = 0, which yields P ∩ (L r
κ )⊥ = {0}. Accordingly,

we have (L r)∗ = P⊕ (L r
κ )⊥ as asserted. The rest is to prove hat P is isometrically

isomorphic to (L r
κ )∗. To get this, we need to show first that

∥∥ψϕ|L r
κ

∥∥ = ‖ψϕ‖. It
is obvious that

∥∥ψϕ|L r
κ

∥∥ ≤ ‖ψϕ‖. To have that
∥∥ψϕ|L r

κ

∥∥ ≥ ‖ψϕ‖, let ε > 0 be
given. Then there is a sequence A = {Ak}∞k=1 ∈ L r such that ‖|A|‖r ≤ 1 and

‖ψϕ‖ < |ψϕ(A)|+ ε. Thus, by the absolute convergence of the series
∞∑

k=1

∑
Ak •B

(ϕ)
k ,

there is a positive integer n such that ‖ψϕ‖ < |ψϕ (An�)| + ε <
∥∥ψψ|L r

κ

∥∥ + ε for all
ε > 0. This implies that ‖ψϕ‖ ≤ ∥∥ψψ|L r

κ

∥∥, and hence we obtain
∥∥ψϕ|L r

κ

∥∥ = ‖ψϕ‖
as desired. From this result, the map ψϕ �→ ψϕ|L r

κ
is now an isometric isomorphism

from P into (L r
κ )∗. To see that it is onto, let ϕ0 ∈ (L r

κ )∗. We then have by the
Hahn Banach extension theorem that ϕ0 can extend uniquely to a bounded linear
functional ϕ on L r with ‖ϕ‖ = ‖ϕ0‖. Since ψϕ agrees with ϕ on L r

κ , it follows
ψϕ|L r

κ
= ϕ0. Consequently, the map ψϕ �→ ψϕ|L r

κ
is an isometric isomorphism from

P onto (L r
κ )∗.

(3). Let ϕ = ψϕ + ρϕ ∈ (L r)∗. It is apparent that ‖ϕ‖ ≤ ‖ψϕ‖ + ‖ρϕ‖. We
want to show that the reverse inequality holds. To prove this, let ε > 0 be given.
Then there is a sequence A = {Ak}∞k=1 ∈ L r with ‖|A|‖r ≤ 1 such that |ψϕ(A)| >

‖ψϕ‖− ε

3
. From this, we have by the absolute convergence of the series

∞∑
k=1

∑
Ak•B(ϕ)

k

that there exists a positive integer N such that |ψϕ (AN�)| > ‖ψϕ‖ − ε

3
. Let C =

(sgnψϕ (AN�))AN� . Then ‖|C|‖r = ‖|AN� |‖r ≤ ‖|A|‖r ≤ 1 and ψϕ(C) = |ψϕ (AN�)| >

‖ψϕ‖ − ε

3
. Next, let D = {Dk}∞k=1 ∈ L r be such that ‖|D|‖r ≤ 1, ρϕ(D) > 0 and

ρϕ(D) > ‖ρϕ‖− ε

3
. Then by the absolute convergence of the series

∞∑
k=1

∑
Dk•B(ϕ)

k , we

have ψϕ(Dn�) → 0. Whence there is a positive integer J > N such that |ψϕ(DJ�)| <
ε

3
. Since D − DJ� ∈ L r

κ , it follows that ρϕ(DJ�) = ρϕ(D). Let E = C + DJ� . Then
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E ∈ L r and by Theorem 1.1(4), we have ‖|E|‖r = max{‖|C|‖r , ‖|DJ� |‖r} ≤ 1. Thus

‖ϕ‖ ≥ |ϕ(E)| = |ψϕ(E) + ρϕ(E)|
= |ψϕ(C) + ψϕ(DJ�) + ρϕ(C) + ρϕ(DJ�)|
= |ψϕ(C) + ψϕ(DJ�) + ρϕ(D)|
≥ ψϕ(C) + ρϕ(D) − |ψϕ(DJ�)|
> ‖ψϕ‖ − ε

3
+ ‖ρϕ‖ − ε

3
− ε

3

= ‖ψϕ‖ + ‖ρϕ‖ − ε.

Since ε > 0 was given arbitrarily, it follows that ‖ψϕ‖ + ‖ρϕ‖ ≤ ‖ϕ‖. Hence the
equation ‖ϕ‖ = ‖ψϕ‖ + ‖ρϕ‖ is obtained.

Remark 3.2.6. Since (L r
κ )∗ is isometrically isomorphic to P, we may treat (L r

κ )∗

as a subspace of (L r)∗. Thus Theorem 3.2.5 can be symbolized analogously to Dixmier’s
theorem as follows:

(L r)∗ = (L r
κ )∗ ⊕1 (L r

κ )s .
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Conclusion

Let M∞ be the set of all infinite complex matrices. For each 1 ≤ r < ∞,
we define a class of sequences of infinite complex matrices L r as follows:

L r =

{{[
a

(k)
ji

]}∞

k=1
⊆ M∞ :

[ ∞∑
k=1

∣∣∣a(k)
ji

∣∣∣r] ∈ B(l2)

}
,

and for any sequence
{[

a
(k)
ji

]}∞

k=1
in M∞, we define

∥∥∥∣∣∣{[a(k)
ji

]}∞

k=1

∣∣∣∥∥∥
r

=

⎧⎪⎪⎨⎪⎪⎩
∥∥∥∥∥
[ ∞∑

k=1

∣∣∣a(k)
ji

∣∣∣r]∥∥∥∥∥
1/r

if
{[

a
(k)
ji

]}∞

k=1
∈ L r,

∞ otherwise.

In this thesis, we study some elementary properties and provide some results on the
duality of L r. The main goal is to decompose the dual space (L r)∗ of L r as an l1

direct-sum of its two closed subspaces by a way analogous to a beautiful theorem of
Dixmier on decomposing the dual B(l2)∗ of B(l2). The following are the results.

We first obtain some characterizations of the sets L r.

Theorem 4.1. Let {Ak}∞k=1 be a sequence in M∞ and 1 ≤ r < ∞. Then the
following are equivalent:

(1) {Ak}∞k=1 belongs to L r;

(2) Ak ∈ Sr
2,2(C) for all k and the sequence

{
n∑

k=1

A
[r]
k

}∞

n=1

is bounded in B(l2);

(3) the sequence

{∥∥∥∥∥
n∑

k=1

A
[r]
k

∥∥∥∥∥
}∞

n=1

is bounded.

To obtain that ‖|·|‖r is precisely a norm on L r, the following Hölder-type
inequality is constructed.

27
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Theorem 4.2. (Hölder-type inequality for sequences of matrices) For any sequences
{Ak}∞k=1 and {Bk}∞k=1 in M∞,

‖|{Ak • Bk}∞k=1|‖1 ≤ ‖|{Ak}∞k=1|‖r ‖|{Bk}∞k=1|‖r∗ ,

where 1 < r < ∞ with
1

r
+

1

r∗
= 1, under the conventions that ∞ · 0 = 0 · ∞ = 0,

∞ · α = α · ∞ = ∞ for all positive real number α and ∞ ·∞ = ∞.

From the Hölder-type inequality, the corresponding Minkowski’s inequality is
obtained.

Theorem 4.3. (Minkowski-type inequality for sequences of matrices) For any se-
quences {Ak}∞k=1 and {Bk}∞k=1 in M∞ and 1 ≤ r < ∞,

‖|{Ak + Bk}∞k=1|‖r ≤ ‖|{Ak}∞k=1|‖r + ‖|{Bk}∞k=1|‖r ,

under the conventions that ∞ + α = α + ∞ = ∞ for all non-negative real number α
and ∞ + ∞ = ∞.

From the Minkowski’s inequality, we have that the set L r equipped with the
norm ‖|·|‖r is a normed space. A Rieze-fischer-type theorem for completeness of the
sequence spaces L r is obtained below.

Theorem 4.4. For each 1 ≤ r < ∞, the set L r equipped with the norm ‖|·|‖r is a
Banach space.

For the classical sequence spaces lp (1 ≤ p < ∞), there is a result closely

related to their duality stating that for every 1 ≤ p < ∞ with
1

p
+

1

q
= 1, a sequence

{xk}∞k=1 belongs to lq if and only if {xkyk}∞k=1 ∈ l1 for all {yk} ∈ lp. We obtain a
similar duality-type result for the sequence spaces L r as follows.

Theorem 4.5. Let 1 < r < ∞ with
1

r
+

1

r∗
= 1.

(1) A sequence {Ak}∞k=1 ∈ L r∗ if and only if {Ak •Bk}∞k=1 ∈ L 1 for all {Bk}∞k=1 ∈
L r.

(2) If {Ak}∞k=1 ∈ L r∗, then

‖|{Ak}∞k=1|‖r∗ = sup{‖|{Ak • Bk}∞k=1|‖1 : {Bk}∞k=1 ∈ L r, ‖|{Bk}∞k=1|‖r ≤ 1}.

Next, we define the class

L r
κ =

{{[
a

(k)
ji

]}∞

k=1
⊆ M∞ :

[ ∞∑
k=1

∣∣∣a(k)
ji

∣∣∣r] ∈ K(l2)

}
,

We obtain a characterization of L r
κ as follows.
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Theorem 4.6. Let {Ak}∞k=1 be a sequence in M∞ and 1 ≤ r < ∞. Then {Ak}∞k=1 ∈
L r

κ if and only if A
[r]
k is compact for all k and the sequence

{
n∑

k=1

A
[r]
k

}∞

k=1

converges

in B(l2).

Theorem 4.7. For each 1 ≤ r < ∞, the set L r
κ is a Banach subspace of L r.

We finally obtain a decomposition theorem for the dual (L r)∗ of L r as follows.

Theorem 4.8. Let 1 ≤ r < ∞. Then the following hold.

(1) The annihilator (L r
κ )⊥ of L r

κ is a non-trivial closed subspace of the dual (L r)∗

of L r.

(2) There is a subspace P of (L r)∗ such that P is isometrically isomorphic to
(L r

κ )∗ and (L r)∗ = P ⊕ (L r
κ )⊥ .

(3) For any f ∈ (L r)∗, the decomposition f = g+h, where g ∈ P and h ∈ (L r
κ )⊥,

satisfies ‖f‖ = ‖g‖ + ‖h‖.

Notice that Theorem 4.8 can be symbolized analogously to Dixmier’s theorem
as follows:

(L r)∗ = (L r
κ )∗ ⊕1 (L r

κ )s .
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