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ABSTRACT

Presently artificial pneumatic muscles are used in various applications due to their
simple construction, lightweight and high force to weight ratio. However, controls of various
mechanical systems actuated by pneumatc muscles are facing various problems. The parameters
of the muscles are nonlinear and time-varving due to temperature change and the deterioration
of the pneumatic muscle materials when the muscles are used for an extended period of ume.
Therefore, adaptive control is suitable to solve control problems tor the pneumatic muscles
since 1t can be designed to be independent of all system parameters and be able to adapt to
certain changes of the svstem parameters.

In this paper, we study the problem of adapuve output tracking for a one-link robot
arm actuated by two opposing pneumatic muscle groups. The rwo muscle groups are arranged
to simulate the physiological model of the bicep-tricep system.

An adaptive controller is designed under the conditon that all physical parameters,
such as the pneumatic muscle coefficients, length of the arm, mass, moment of inertia and
etc., are unknown. Under this condition, we can prove that closed-loop trajectory of the joint
angle can follow any (' signal and the angle error will be within a prescribed error in 2 finite
time. Simulations are presented to demonstrate the robustness of our adaptive controller

under serve changes of the system parameters.

Keywords: output tracking, pneumatic muscles, adaptive control.

1. INTRODUCTION
The artficial pneumatic muscles are used  twisted axially 1.e. not aligned and bended.

in various applications such as robotics.  These features make pneumatic muscles a

bio-robortics, biomechanics, artificial limb
replacements and many industry tasks. The
advantages of the pneumatic muscles are the
case of use compared to standard pneumatic
cvlinders and their simple constructuon. The
pneumatc muscles are also soft, hightweight
and have a high power/force to weight ratio,

In addition, the pneumatic muscles can be

major interest for the researchers and
hobbuvists.

The mathematical models of pneumatic
muscle have been developed in two different
wavs, dvnamics and static models. Chou and
IHannatord. |1. 2], and Tondu and Lopez
[3] developed static models by using virtual

work to find the relaton of force, pressure



and lengths of muscle. On the other hand,
the dynamics model, developed by Revnolds
etal. [4, 5] models the muscles by connecting
a spring, a damping and a contractile clement
in parallel. However, this paper only focus on
the dynamics model since it has been widely
used m various control applications [6-10] and
also offers a simpler structure of the muscle
comparing to the static model.

The control of pneumatic muscles 1s
difficult due to the physical parameters being
nonlinear and tume-varying. Many researchers
have proposed control schemes for solving
control problems of uncertain mechanical
systems actuated by pneumatic muscles. For
example, Lilly [6] proposed a sliding-mode
adaptive controller for a planar robot arm
acruated by pneumatic muscles. This adapuve
controller requires the exact forms of the
nonlnear functions and the system mechanical
properties, e.g. the link masses, lengths and
ineruas. In [7]. Lilly and Quesada extended
the result in [6] to a two-link arm. Lilly and
Yang (8] developed a robust controller based
on sliding-mode for a planar robot arm with
a load at the end point. The robust controllers
in [6-8] require the information on the
bounds of system parameters. In additon, in
the case of shding mode controller, chattering
can occur due to the controller being a
discontinuous function. Taking another
approach, Lilly and Chang, [9, 10], developed
Fuzzy predicuve controller for a two-link arm
actuated pneumatc muscles. A fuzzy model
was developed based on linearized model
around operating point on state space,
therefore all of svstem parameters must be
known precisely.

FFor pneumatic muscles, muscle property
changes due to temperature changes and the
deterioration of the pneumatic muscle
materials when the muscles are in use tor an
extended period of time are common.

Therefore. the existing controllers are not
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suitable in practice. To solve the problem, we
should develop a continuous controller that
is independent of all system parameters and
can adapt the system parameter changes. In
this paper. we will focus on designing an
adapuve controller for a one-link robot arm
actuated by pneumatic muscles. The proposed
control scheme 1s based on a monotone
adaptive control studied in [11, 12]. The
controller is obtained under the condition that
all of physical parameters of the robot arm
and the muscles are unknown. Under this
condition, it can be proved that the robot arm
can follow any C' signal and the angle error
will be within a prescribed error in a finite
time.

The remaining of the paper is organized
as follows. Section 2 contans concepts of
pneumatic muscle model and the dynamics
of one-link arm actuated by pneumatic
muscles. Design methodology of the
monotone adaptive controller 1s presented in
Section 3. Simulation results demonstrating
our controller performance are in Section 4.

Finally, conclusions are drawn in Section 5.

2. DYNAMICS OF A ONE-LINK ROBOT ARM
ACTUATED BY PNEUMATIC MUSCLES

2.1 Dynamics Model of Pneumatic
Muscles

In [4, 5] a pneumanc muscle is modeled
by three elements, a spring a damping and a
contractile, connecting in parallel, see Figure
1. The total force exerted by the muscle on

the mass 1s
R=F(P)-B(P)y - K(P)y (H

where F 1s the force exerted by the
contractile element, B is the damping
cocfficient and KN 18 the spring cocefficient.

Using data from experiments, the coefficients



Chiang Mai ]. Sci. 2008; 35(3)

LT T L LA LT LT

©
JAES

A,

M

i Ay

Figure 1. A three-element model of the

pneumatic muscle.

were formulated as polynomial functions of
the input pressure of the muscle.

To find the coefficient functions of the
three-elements, the muscle was hung verucally
with a mass artached at the lower end. Then,
the muscle was intlated and held at various
constant P. Let y = 0 be the position of the
mass when the muscle 1s completely deflated
see Figure 2. The position y and the values of
the three coefficients were determined by
perturbing the load at each constant P. Under
the assumption that the spring and damping
coefficient functions determined by
perturbation of the load at constant P are the
same functions as obtained in the dynamic
condition, the coefficient functions were

tormulated by the least square method.

LTI LA 4////1/////

Force R 4
Fully exerted by 4 Inflated
deflated the muscle
|
M

Figure 2. The pneumatic muscle is actuating

a mass.
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According to [4], their muscle coefficient
functions of the three elements are given as:
K(P)=K,+K,P

=32.58+1.209P 2
B(P)=B,, + B, P

=5.748+0.2719P (Inflaton) (3a)
B(P)=B,; =B, P
=3.41-0.0316P (Deflation) (3b)

F(P)=FP-F,P’
=3.77P -0.0138P* ™)
The coefficients in (2)-(4) are applicable for

pressure in the range of 0<P <130 psi.

2.2 Dynamics of a One-link Rigid Arm
Consider a rigid link shown in Figure 3.
Let 4 denote the angle of the joint, /denotes
the length of the link, / denotes the distance
from origin point to the center of mass.

Figure 3. The one-link rigid arm.
The kinetic energy of the system is

Tz—l—mv‘.z + l[a)2
2 2

RTINS e £
_2mICq +21q (5)
where [ the moment of inertia of the
link and the potential energy is
V' =mgl. sin g (6)
The Lagrange functon is

L=T-V

1 1 !
=—mi’§* +—1g* — mgl sin (73
5 -q 5 q gL q (7
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According to lLagrange’s equation,

the one rigid link is
ml*G+1G+mgl.cosg=t 8

where Tis the torque for driving the arm joint.

2.3 Dynamics of the Pneumatic Muscle
Actuator in 2 Robot Arm

Consider a pneumatic muscle pair putting
into antagonism similar to actuators in the
bhysiological model of the bicep-tricep
svstem 1n Figure 4. The muscle pairs are
connected by means of a chain driving a
sprocket. The group of bicep muscles 1s not
necessary to have the same muscle coetficients
as the group of tricep muscles. The force
difference between the agonist and the
antagonist generates a positive or negative

IOL‘C]UG.

K

g W] R

Figure 4. The pneumatic muscle pairs tied
together around a sprocket.

Assume that the 7 pneumatic muscle pairs
ted together around a sprocket of radius ras
in Figure 4. with the connecting line rigidly
attached to the sprocket to prevent slipping.
The torque produced to the sprocket by the
muscle pairs 1s

t=17,—-7. =(R, —R.)r )

where R, and R are the total force exerted by

T . The dynamics equation of
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an individual group of bicep and tricep
muscles respectively. When the forceR, >Ry,
then the torque exerted on the joint 1s
counterclockwise and vice versa. From (1),
we have

R, = n(ﬂ -K,x, —B:fc:) (10a)

R, =n(F, -K,x, - B,X,) (10Db)
where v, is the length of bicep muscles and
x, 1s the length of tricep muscles. Substitute
(10) into (9), then the total torque delivered to
the sprocket 1s given by
r=n(F, -K,x, -B,x, -F, +K,x, + Byx;)r

(1)

where F,, K, and B, depend on the input
pressure of bicep muscles and F, K and B
depend on the input pressure of tricep muscles.

A joint angle of g=-90° corresponds to
the tricep muscles being fully extended and
the bicep fully contracted, and ¢g=9¢
corresponds to the tricep muscles being fully
contracted and the bicep fully extended.
Therefore, the muscle lengths x and ~, can
be expressed in terms of ¢ as

V4
x =\ 54 (124)

V4
X, = q+Er

Let the internal pressure of the bicep

(12b)

muscles P, and the tricep muscles P be

P, =Py —Ap (132)
P =F, +Ap (13b)
where P and P, are arbitrary positive nominal
constant pressures and 2Ap is the control input.
With the definition (13). the antagonist pairs
become a single-input svstem with input ap.
From (11)-(13) and the coefficient
functions (2)-(4), the torque can be written as
r=a,Ap -~ (b (DG +a-q+a, Jp
+b.()g+a-q+a; (14)
where

a, =n(ly, - F,)r (13a)
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—n(Ble +B\J.-r')r:uq<0
b.(n= 0 ,9=0

i (15b)
r(BH: +B':f".l')r> 5q>0 '
ac =n(K,, - K,)r? (15¢)
@y =S (AF Py 4 4F, Py 41K
-2F, -2F,)r (15d)
By, ~B A, +B,+B R .4<0
b= 0 ,§=0
~Bu,+B.B +B.—B, B .4>0
(15¢)
a. =K B, +K, B, +Ko, +K, I (150
a: = _'g.(_rKX.‘PObx+ 2R, Py, —1K g7
s Zszof - 2Fz:‘Poﬁ b ZF::Poi
+rKom +rK, Pymt)r (15g)

In (15), 4 and 7 subscripts indicate the
coefficients of bicep and tricep muscles
respectively. The subscripts, 7 and d, on the
coetficient B denote whether the muscles are
being inflated and deflated respectively.

Combining the dynamics of the one rigid
link arm from (8) and the dvnamic of the
pneumatic muscle, (14)-(15), we can arrive at
the following model for the one-link planar
robot arm actuated by pneumatic muscles in
Figure 4.

G=a.4p' ~f(.4.b.()) b + h(g,4.b, (1))

(16)
where
= -8
w11 (L7)
) btlg+a-g+a.
/g, 4,6t ):—‘M—; (17b)

ml +1
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. belt)g+a-g+a.  mecos
Ha b, (o) 2l aea sy mgcosq
ml. +1 ml; +1
(17¢)
3. Adaptive Control for a One-Link
Robot Arm Actuated by Pneumatic

Muscles

3.1 Problem Statement
et x; =q and x, =g Then, the system

of one-link robot arm actuated by the
pneumatic muscles from (16) is described by

X =X,

X, =a,Ap” - f(x,,x.,b:())Ap
+h(x,,x,,b: (1))

3B (18)

7
where (xl:xz)e(—gag)xm 1s the state.

ApeR and ye R are the system input and
by R>R and

output respectvely:
b: :R > R are functions which represent an
uncertain time-varving parameters. From (1 5),
it 15 obvious that there exists an wiknown
constant # > (), such that

s (1| <O and |by (1)< 6 (19)

We are interested in the problem of
global output tracking of the uncertain
nonlinear system (18) under the following
assumpuons.

Assumption 1: There exists an /zzknons

constant }f > () such thata C reference signal

(1) sausfies

ly,(_t)|SM and ljf,(t)lSA/f Vi>0
(20
Assumption 2: a, is small. Hence, the
term  @,Ap® can be neglected.
Assumption 3: There exists an unknown

real number /- saustving

0</, </(g.4.5.()) (21)
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The problem of aduptive output tracking is
formulated as follows. Let y,(t)eC’ be a
FFor

anye >0 . find, if possible, an adaptive output

C'reference signal satisfving Al.
tracking controller of the form

K:”(x1>x2ayr(1))~ Ke®R
u=px,x,, K,y (1) (22

such that

a) the state (xl,xl) of closed-loop
svstem (18) and (22) 1s well-defined on
[0,+00) and globally bounded;

b) for every [x,(0),x,(0)] e R?, there is
a finite ume 7">0 such that the output
ot the closed-loop system (18) and
(22) sausties

O-y. (0| <e w=>T>0 (23)
3.2 Adaptive Controller Design

The monotone adaptive control scheme
in [11] and [12] are modified for the system
(18). First, we defmne a change of coordinates
by e=x, —y, and € = x5 = Xy. Then the
svstem (18) can be written as

e=e—-y,

€ =a,Ap’ — f(x,x., b (DA

+ h(x,,x,,b:(1))
y=x 4

Consider a Lyapunov function

r _ 1 2 1 2

’(e,f)—ie +2—fT§ (25)
where & =€ + (14 K)e and the monotone
non-decreasing function, Co1s

governed by
g :

£ &
Sa’::('y_y”“aj»‘y ‘yr| 25

£
0 Ay |<E
{yy<2

with Ay = 1, v £>0 (26)
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The saturation function S(llﬁ(S)ESR 1s
defined by

(s):{sgj(S)ﬁ

Then the ume derivative of equation (25

)
VvV A

<p
VseR
y’)
along the system (24) satisfies

=c{c7*jf,)+fig’(’é +(1+K )+ Ke)

| () 1,
=L AD 4 — &)
/T

5((1 +K_)é+ke)

=elg-v.)-¢

1

;T‘v

(27
S

Using Al, (19) and the completon of
square. 1t can be shown that
e(e —y.)< (eé + ‘et]\/[)

oeene )

=(—e +e§+4]
5_5_4_;_ 9.‘._(*__)

2 2 K

1 1 ,|b.(t)g+a.g+a. - mgcos
Fo- ot
gl +|a, . + [as|+ Img }
i (ml +I)
4t fa el + o, b +

flmE +1)

2 g2

(28)

)

< §:(Ke_: +Ke- +K)
©,0M.f,,a.,a.,mg)

e (29)

K
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where

M?

®1(M)= 20 and

L 6 +a. +(Ja_p Bf +a,| +img1): G

af (ml* +1)

are I.lﬂkll()\VI‘l constants.

Similarly, it can be shown that

1 . <L e + Pe
Zf((]+K)e+Ke)—fm }ff(ZK' |+ Bel)

< e )
S%zf({(’é’ +K +K¢é)

61,5
K

where @:(~)=—1~.— 4+ M+ >0 isan
e i 4
unknown constant.
Substrute (28), (29) and (30) into (27).

(30

Hence,
Vs—fzi+%i—®’—1(?/[—)—§£f§)/3p
+&(Ke* + k& +1<)+9(;)
+£(K%E + K7+ Ke?)+ 91-‘{(')
—§3(2K353+2Ke:+21<3)+§ G1)

where the unknown constant

0=0,)+0.()+6.() s independent of the K.

With the choice of the controller
Ap=E{l+2K 6" + 2Ke’ + 2K°)  (32)

Then. we have
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g .f(,f)(HzKaé2 +2Ke* +2K°)

m

®

+£2(2K%8* +2Ké +21<’)+E (33)

From A3, together with the fact that
- &£1+2K°e? +2Ke® +2K* )< 0 ,then (33
(

can be reduced as

2 2
V'g_e_._é:_ o
9" WO K
G
S—bv+f 34

where b =min {l,fm }> 0

In the remaining part of the proof. we
show that all states (e,E,K) of the closed-
loop system (24), {32) and (26) are bounded
and well-defined on [O, +::o). Moreover, given

any & >0, there exists a finite ume T  such

that the tracking error 1y -y, |<& V2T, .
Using eq. (34). we obtain
V<-bV+0 (35)

which implies that (¢,£,K) are well-defined on
[0,4-00) and (. is bounded. The compact set

Q:{e,gw(e,g)s a,Va>

;} 1s invariant,

since |7 1s positive definite and proper and
7 1s negative semi-definite Ve,& € Q. To
show that K(#) 1s bounded. we use a
contradiction argument. Suppose that the
monotone non-decreasing function K7 is
unbounded. Then there must exist a finite time
T such that

2,
. be

& = — -
. 16 Vt2T

K(z)zf,

and (34) becomes
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V<-bV+e' Vi2T"

Consequently,

t Se‘f(f‘-r') T' __f_ +.g_ .

40 M |+ e
56

This implies that there exists another finite
time ']"I such that

which contradicts the assumption that K(#) is
unbounded since

K(t)=0 Vi27T,.

Since K(#) 1s bounded, we can conclude
that all of the states (e,E, K) of equations (24),
(32) and (26) are also bounded and well-
defined. Hence, from A1, the closed-loop
svstem trajectories generated by equatons (24),
{32) and (26) are well-defined and bounded
on [O,+oo).

In addition, the integral of K () evaluated

from zero to infinity exists and it finite, that is
lim LK(T)JT =K ()~ K(0)< +o0
i—00 )

Since K(1) is uniformly contnuous, it
follows from Burbaiat’ v lemma that
lim K(1)=0
t—>oc
This, together with equation (26), implies
the existence of a finite time T satisfying

y—y. <& 12T.>0
4. SIMULATION RESULTS

We nvestigate the closed-loop svstem
behaviors of our adaptive control. The one-
link planar robot arm studied here 1s similar
to those in I'igure 4. The closed-loop system

1s simulated with the physical parameters of

the arm as follows. w7 = 1 slug, /= 20 1., /
=10 1., 7= 2 in. and the number of muscle
pairs # = 6. All of the simulation were

performed with the mital conditions, [, (0).

Chiang Mai |. Sci. 2008: 35(3)

A0 =01, =01 rad,, ﬁ = 10 and the
nominal pressures, P, =40 pst.and P, = 60
psi.

In the simulations, we restricted the
internal pressure in cach muscle within the
range, 0 <P <130 psi since 1n a real system,
the internal pressure can not go below zero
and the parameters of the muscles using in
here are only valid in this range. In addition,
we use the full nonlinear model which mcludes
the term @,Ap? in all simulations.

We studied three cases of the muscle
parameter sets as shown in table 1. The
nominal parameters are the ones studied in
[4]- The other two sets of coefficients represent
50% imcrease and 50°%6 decrease of muscle
coethicients. Case.-1 represents the system under
a normal conditon and has a matching pair
of muscle groups. Cave B and Cuve Crepresent
the cases when the svstem has a mismatch pair
of muscle groups or undergoes severe

changes of muscle properties.

Table 1. Case studies for investigate tracking

performance.
Case Bicep Tricep
A Nominal Nominal
B +50%0 -50%
C -50%, +50%

We chose two ditferent types of reference
trajectories. The first one was a sum of
sinusoidal signals,

¥, =0.5sin(0.17 - £) + 0.85in(0.057 - 1)
+ O.Ssin(O.Zﬂ‘t) rad.

(37)

The other was a pseudo-square wave signal,




-12 si{0.17-£) <12
1.55i{0087-1) [si0.1z-1) <12
12 si(0.1z-1) >12

Y= ‘ad.

(39)

We performed the simulations for
40,000 sec and at t = 30,000 s.. we switch the
reference signal from the sum of sinusoidal
signals to the pseudo-square wave signal. The
stmulation results in three cases are shown in
Figure 5-10.

The tracking performance and tracking
error in Case 1, B and Care shown in Figure
5. 7 and 9 respectvely. All of the cases
demonstrated that the tracking error would
eventually be within the prescribed error
& =0.] rad. after a finite tume.

xor ¥
2 oA ™ 1=
E P S lh\
5o if" i } £ z'f"! ‘.“.t‘
i g
L e T \J\\! ........... S =) .Xu..’ L
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Tz (51 me s R

Figure 5. Joint angle trajectory and the error
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in Case C.
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5. CONCLUSIONS

In this paper. we develop an adapuve
controller for a one-link robot arm actuated
by pneumatic muscles under the conditions
that all physical parameters of the svstem are
unknown. Moreover, the bound of uncertain
ume-varving parameter are not known a
priort.

The proposed control law can regulate
the jomnt angle to tollow any C' trajectory. The
closed-loop states are globally bounded and
the angle error will be within anyv nonzero
prescribed error in a finite ime. We demons-
trate the performance and characteristic by
simulations. The simulations show that our
adaptive control scheme can achieve angle
tracking even under severe changes of system

pammeters.
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Abstract

Pneumatic muscles or McKibben muscles are lightweight and very high power-to-weight ratio
actuators. Their construction are simple inheritly soft and compliant. Hence. they are suitable to
use in the environment when there are interactions between men and machines. However, controls
of various mechanical systems actuated by pneumatic muscles are facing various problems. The
parameters of the muscles are nonlinear and time varying due to temperature changing and the
deterioration of the pnemmatic muscle materials when the muscles are used for an extended period
of time. To solve the control problems of pneumatic muscle system. the controller has to be able to
adapt to any chance in system parameters and if possible. is independent of the system parameters.

In this paper. we study the problem of adaptive position tracking for any C! signal of a multi-
link robot driven by two opposing pneumatic muscle groups. The proposed adaptive control law is
independent of the system parameters (such as load at the end of the robot. the pneumatic musele
cocfficients, the lengths. the moments of inertia and etc.) and the bound of reference signal and its
derivative are unknown. All joint angle errors will be within the preseribed error in finite time.

Keyword: Pneumatic Muscle: Adaptive Clontrol; Multi-Link Robot

1 Introduction

The artificial pneumatic muscles are used in various applications such as robotics. bio-robotics. biome-
chanics, artificial limb replacements and many industry tasks. The advantages of the pneumatic mus-
cles are the case of use compared to standard pneumatic cylinders and their simple construction. The
pneumatic muscles are also soft, lightweight and have a high power/force-to-weight ratio. In addi-
tion, the pneumatic muscles can be twisted axially i.e. not aligned and bended. These features make
pneumatic muscles a major interest for the researchers and hobbyists.

The mathematical models of pneumatic muscle have been developed in two main different ways,
dynamics and static models. Chou and Hannaford [1] and [2]. and Tondu and Lopez [3] developed
static models by using virtual work to find the relation of force, pressure and lengths of muscle
whereas the dynamics models have been developed by Revnolds et al. [4] and [5]. They modeled the
muscles consisting of three clements. a spring. a damping and a contractile in a parallel arrangement.
Furthermore. Cai and Yamaura [11] considered some factors into tradition static models ([1].[2] and
[3]) and many researches [14].[15] and [16] integrated air flow of a valve into the static model. However,
this paper focuses on the dynamics model due to it have a simpler structure of the muscle comparing
to the static model.

The control of pneumatic muscle is difficnlt due to the phveical parameters being nonlinear and
time-varying.  Therefore. many researchers have proposed control schemes for solving problems of



the uncertain mechanical systems actuated by pneumatic muscles. For example, Lilly [6] proposed
a model reference adaptive controller as based on sliding-mode for a planar robot arm actuated by
pneumatic muscles. Tonietti and Bicchi [13] developed a model reference adaptive controller for a
1-DOF robot arm actuated by pneumatic muscles. The adaptive controllers ([6] and [13]) require the
exact forms of the nonlinear terms and the system mechanical properties, e.g. the links’ mass, lengths
and inertias. In [7], Lilly and Quesada developed a robust controller as based on sliding-mode for
a two-link arm actuated by pneumatic muscles. Lilly and Yang [8] developed a robust controller as
based on sliding-mode for a pneumatic muscle actuator. Cai and Yamaura [11] and Cai and Dai [12]
developed a robust controller as based on sliding-mode for a pneumatic muscle actuator. Zhang at
el. [14] developed an adaptive robust control of a one-link joint actuated by pneumatic muscles. Zhu
at el. [15] and Tao at el. [16] developed an adaptive robust controller for posture trajectory tracking
of a parallel manipulator driven by three pneumatic muscles. Most robust control techiques ([7] .[8],
(11]. [12], [14], [15] and [16]) are necessary to know the bounds of some parameters or terms in system.
Furthermore, the controller design ([6], [7] and [8]) is based on sliding-mode, chattering can occur
due to the controller being a discontinuous function. Lilly and Chang, [9] and [10]. developed Fuzzy
predictive controller for a two-link arm actuated pneumatic muscles. A fuzzy model was developed
based on linearized model around operating point on state space, therefore all of system parameters
must be known precisely.

For pneumatic muscles, muscle property changes due to temperature changes and the deterioration
of the pneumatic muscle materials when the muscles are in use for an extended period of time are
common. Hence we should develop a controller that is independent of all system parameters and can
adapt the system parameter changes. In this paper, we will focus on designing an adaptive control
scheme for the multi-link robots actuated by pneumatic muscles. The proposed control scheme is based
on a monotone adaptive control studied in [17] and [18]. The remaining of the paper is organized as
follows. Section 2 contains concepts of pneumatic muscle model, the some properties of rigid robot
and setup the dynamics of multi-link robot actuated by pneumatic muscles. Design methodology of
the monotone adaptive control scheme is presented in Section 3. Simulation example results in the
two-link planar arm case demonstrated the performance of our control law are in Section 4. Finally,
conclusions are drawn in Section 5.

2 Dynamics of Multi-Link Arm Actuated by Pneumatic Muscles

2.1 Dynamics of pneumatic muscle actuator

Typically, a pneumatic muscle is modeled by three elements. a spring a damping and a contractile.
connecting in parallel, see Fig. 1. From [4] and [5], the total force exerted by the muscle on the mass
is :

R =F(P)-B(P)y - K(P)y (2.1)

where F' is the force exerted by the contractile element, B is the damping coefficient and K is the spring
coefficient. Using data from experiments. the coefficients were formulated as polynomial functions of
the input pressure of the muscle.

=L

+A

I

T

Figure 1: A three-element model of the pneumatic muscle.

(8]



To find the coefficient functions of the three-elements, the muscle was hung vertically with a mass
attached at the lower end. Then, the muscle was inflated and held at various constant P. Let y =0
be the position of the mass when the muscle is completely deflated see Fig. 2. The position y and the
values of the three coefficients were determined by perturbing the load at each constant P. Under the
assumption that the spring and damping coefficient functions determined by perturbation of the load
at constant P are the same functions as obtained in the dynamic condition, the coefficient functions
were formulated by the least square method.

WY (U /4
Force R
Fully exerted by Inflated
deflated the muscle

M o T n
e B Tz )

Figure 2: The pneumatic muscle is actuating a mass.

According to [4], the coefficient functions of the three elements are given as:

K(P) = Ko+ KP

32.58 + 1.209P (2.2)
B(P) = By+B,P
5.748 4 0.2719P (Inflation) (2.3)
B(P) = By-B,P
= 3.41-0.0316P (Deflation) (2.4)
F(P) = FP-FP?
= 3.77P - 0.0138P? (2.5)

The coefficients in (2.2)-(2.5) are applicable for pressures in the range 0 < P < 130 psi.

Consider a pneumatic muscle pair putting into antagonism similar to an actuator based on the
physiological model of the bicep-tricep system in Fig. 3. The muscle pairs are connected by means
of a chain driving a sprocket. The group of right muscles is not necessary to have the same muscle
coefficients as the group of left muscles. The force difference between the agonist and the antagonist
generates a positive or negative torque.

Figure 3: The pneumatic muscle pairs tied together around a sprocket.

Assume that the n pneumatic muscle pairs tied together around a sprocket of radins r as in Fig.
3. with the connecting line rigidly attached to the sprocket to prevent slipping. The torque produced
to the sprocket by the muscle pairs is

T=Tpr—T,=(Rr— Rp)r (2.6)



where Rp and R; are the total force exerted by an individual group of right and left muscles respec-
tively. When the force Rg > Ry, then the torque exerted on the joint is clockwise and vice versa.
From (2.1), we have

RR = ‘II(FR = B[{i",q == ]\VR.I‘R)

,\,\
S
oo

=

RL = n(FL = BLi‘L — ]\'LIL)

where z g is the length of right muscles and x is the length of left muscles. Substitute (2.7) and (2.8)
into (2.6), then the total torque delivered to the sprocket is given by

T =n(Fr — Brir — Kpxg — FL + Brip + Krzxp)r (2.9)

where F'r, Kr and Bi depend on the input pressure of right muscles and F,. K and B; depend on
the input pressure of left muscles.

A joint angle of ¢ = 7 rad. corresponds to the left muscles being fully extended and the right fully
contracted, and ¢ = — rad. corresponds to the left muscles being fully contracted and the right fully
extended. Therefore, the muscle lengths zg and x; can be expressed in terms of ¢ as

rp = (m+q)r (2.10)
xp = (m—q)r (2.11)

Let the internal pressure of the right muscles Pg and left muscles P; be

PR = POR = A]) (212)
P = P+ Ap (2.13)
where Iyg and Iy are arbitrary positive nominal constant pressures and Ap is a control input. With

the definition (2.12)-(2.13). the antagonist pairs become a single-input system with input Ap.
From (2.9)-(2.13) and the coefficient functions (2.2)-(2.5). the torque can be written as

7 = a4Ap” — (b(1)§ + acd + apq)Ap + be(t)i + ard + agg (2.14)
where
ay = n(Fyp — Fyp)r (2.15)
—n(Bizi + Bira)r? ,4<0
balt) = 0 il (2.16)
n(Bira+ Biri)r? ,4>0
ac = n(Kig— Kip)r? (2.17)
ap = n(2FrPop — Fir +2F P — Fip + rKigm + rKypm)r (2.18)
—n(Bori + BiLiPor + Bord — BiraFPor)r® .4 <0
be(t) = 0 ,G=0 (2.19)
—1(Bord — BirdPor + Bori + BiriPor)r®  .¢ >0
ar = —n(Ki Py + KirPor + KoL + Kog)r? (2.20)
ac = —n(FapPip — FirPor — For P} + FiLPor
+rK1gPopm + rKopm — rK 1 Py — rKopm)r (2.21)

The coefficients in (2.15)-(2.21). R and L subscripts indicate the coefficients of right and left
muscles respectively. The subscripts. i and d. on the cocfficient B denote whether the muscles are
being inflated and deflated respectively.



2.2  Dynamics of rigid robot and some properties

In the absence of friction and disturbances. the dynamics of a multi-link rigid robot is given by the
Euler-Lagrange equation

D(g)i+Clq.q)a+ flg) =T (2.22)
where ¢ € IR" is the generalized coordinate vector of n links, D(g) is the inertia matrix which is
positive definite and symmetric, C(q, ¢) accounts for the coriolis/centrifugal term, g(q) is the gravity
vector, and 7 is the generalized torque acting on the joints.

5

Lk noon,. 1

Liok p-t- w1,

Figure 4: Multi link robot configuration

For revolute joints. the only occurrences of the joint variables ¢; are as sin(g;) and cos(g;), where
t = 1,...n.The rigid robot dynamics in (2.22) posses a number of some properties that facilitate
analysis and controller design. These are

Property 2.1 The inertia matrix D(q) is symmetric, positive definite, and bounded so that
tml < D(q) < parl. Vq(t). (2.23)

Then. the inverse of inertia matrix is bounded. since

T (2.24)
KA1 M1

Moreover. the bounded of inertia matrix may also be expressed as

Likewise, the bounded of the inverse inertia matrix is

Lol (2.26)

HAr Har

Property 2.2 The coriolis/centrifugal term C'(q, ¢)g is bounded Cy; > 0 so that
1Clg.d)g < Car G117 - (2.27)
Property 2.3 The gravity vector are bounded Fj; > 0 so that

| f(g) < Far. (2.28)



2.3 Dynamics of multi-link robots actuated by pneumatic muscles

In this section, the general dynamics equations of multi-link robots actuated by pneumatic muscles
are summarized. From Section 2.2, the dynamics of the pnenmatic muscle actuators that drive the
n-link are given by the n decoupled equations as
2 o 2 “
T = aAAp; — hi(q,¢.bpi(t)Ap; + bgi(t)gi + arigi + agi. i =1....,n. (2.29)

where h;(+) = bp;i(t)§;i +aciq1 +ap; is a function. a a;. acy, ap;. ap; and ag; are constants, bp; : R — R
and bg; : R — R, i = 1,...,n, are uncertain time-varying functions which can be written in form

bpi(t) = npi + ppisgn(g)

bei(t) = ngei + peisgn(di)
where 7p; and 7ng; are constants. up; and pg; are constants which are the Coulomb sliding [riction.

Then bp;(t) and bg;(t) are bounded by an unknown constants fp; > 0 and fg; > 0 respectively, such
that

[bp:i (1) < 0p; and |bg;(t)] < 0p; (2.30)

To define ¢ = [qy, .., qn]T, hence it is common to write (2.29) in the matrix from as
7= Aap — H(q,4.05i)Ap + Be(t)§ + Arq + ag (2.31)

where

Asx = diag{aai,....aan} (2.32)
= [Ap,...Ap" (2.33)
Ap = [Ap1 .o Bpn]” (2.34)
H(q,q.bgi(t)) = diag{hi(:),....hn(")} (2.35)
Be(t) = diag{bgi(t),....bEn(t)} (2.36)
Arp = diag{ari(t),....apa(t)} (2.37)
s lari ....apn]T (2.38)

Finally, the general form of the rigid robot dynamics in (2.22) are combined with (2.31)-(2.38). we
can arrive at the following model for the a multi-link robot actuated by the pneumatic muscles as

G=D""(q) {Aap - H(q,4,b:(1)Ap + Be(t)§ + Arq + 4 — C(q.4)d — f(q)} (2.39)

where g € IR" is a state vector, Ap € IR" is the system input vector.
All bg;(t) are the elements of the diagonal matrix Bg(t), then Bg(t) bounded by an unknown
constant © g = max{fg;} > 0, such that

| Be(t) [I< ©g (2.40)

Moreover, Ap is a constant diagonal matrix bounded by an unknown constant O p = max{|ag;|} >

0 and ag is a constant vector bounded by an unknown constant O = /3", aQG,- > 0, such that

| AF [<©fF and | aG [I< ©¢ (2.41)

3 Adaptive Position Tracking Control

3.1 Problem statement

The problem of adaptive position tracking is formulated as follows. Given a constant = > 0 and a
bounded reference signal ¢, = [¢1,..... ¢nr]7 € C! whose derivative is also bounded. find. if possible.
an adaptive controller of the form

K = n(q.q-(t)), K eR
Ap = u(g.K,q-(t)), ApeR" (3.42)
such that
6



a) the states of the closed-loop system (2.39) and (3.42) arce well-defined on [0, +0c) and globally
bounded;
b) there is a finite time 7. > 0 such that the closed-loop system (2.39) and (3.42) trajectories satisfy
Ig(t) —a(t) lI<e, VE>T.>0. (3.43)
Throughout this system we make the following assumptions.
Assumption 3.1 The exists an unknown constant A/ > 0 such that the reference signal g,.(t) satisfies
g ) I+ 11 ge(2) [I< M (3.44)

Assumption 3.2 For all ay; is small. Hence, all of the terms of uA,-Ap? can be neglect when ¢ =
1,....n.

Assumption 3.3 There exists an unknown constants A; and A, where i = 1, ..., n. Satisfying

0 <A< A <hi(g,q.bgi(t)), A< min{\} (3.45)

3.2 Adaptive control scheme

The monotone adaptive control scheme in [17] and [18] are modified for the system (2.39). First. we
define a change of coordinates by e = [ey,....e,]7 and € = [f1....,én]T. Then, the system (2.39) can
be written as

€ = e—g
¢ = D7 (@){Aap - H(g.4,bpi(t)Ap+ Be(t)g+ Apg+ac — Clq.-¢)d — f(q)}  (3.46)
With this in mind, consider a Lyapunov function

,_ Lo Ma T _

where ppr is the upper bound of the inertia matrix D(g). To define & = & + (1 + K )e; and the
monotone non-decreasing function, K (t) > 1, is governed by

sata(lg—a 1 =5) lla—ar 1> 5
S ’ : 3.48
{ 0 Ja-a <3 (3:48)
and the saturation function sats(s) € R is defined by
s sl<8 .
/- = -4
Sat_j(s) { ‘Sg‘”’(s)g ,I-Sl > B (3 9)

Then, the time derivative of equation (3.47) along the trajectories of the system (3.46) satisfies

V = efe+ BT

= e LD H()Ap + BLET DT @ B(t)i + Arq + dc - Clo-9)i - (9)}

1l .
+’%5T{(1 + K)é + Ke) (3.50)
Using Assumption 3.1 and the completion of square. it is difficult to show that
ey = €€ — eig,
< ee€ + [6‘1|]\[
< e+ Keéd + i
= ELE) \ € AK .
+ - L
= €1 T €141 1K
e’ €2 WE
SO .
- 2 i 2 * AN
7



Applying the same process to terms i = 2, ..., n, we have

. e\ Oy(nM
L g 5‘ ( _‘)I_ > - ,,Lﬁ}’\, ) (3.51)
i=1 5

1\3’

where ©;(n, M) = %ﬁ > 0 is an unknown constant.
Using Assumption 3.1, (2.40), (2.41) and the completion of square. it can be shown that
| Be(t)g+Arq+ac| < Opl ¢l +Orll gl +O¢
< Ogplle|| +Or | e || +O©pM + O¢ (3:52)

Using Property 2.2 and 2.3 of rigid robot dynamics, such that
I =Clg:9)g— f@ | < Cnrll gl +Fu
= Cu el +Fu (3.53)

Let () = Q{BEe(t)§+ Apq + ac — C(q,4)d — f(q)}. According to (3.52), (3.53) and using
Property 2.1, it can be shown that

EMeTy() < NM € 1D~ (a) Il Be(t)d + Apg + g |

A
+ﬁ§—’ 1€ D7 (@) I ~Cla-4)d — (@) |
< 42 e) @l el 0 fle | +0rM + Oo)
/(lzu €1l (CM lel? +FM>
< IEI? (K Nell? +K N2l 4K fle | +K) + 22
=5 &ole.e, K)+ 9;((.') S
i=1

> 0 is an unknown constant.

where Os(-) =

To derive an upper bound on the terms involving K in (3.50). where using the fact that , we obtain

M@{(l%—h’)éﬁ—]&'ei} < ““|§,|{1+K )(|&| + M) + Bleil}

(s )2 02 +02+C3,+(OF M+06+Fx)?
Atbm 4

< ““ EM el @K || + 2K M + Bles))

Hﬂ) (4 +4M? + 82)
A 4K

VAN

% (K3é,? + K+ Ke}) + (

Applying the same process to the terms i = 2, ....n. we have

M1 . . = ] -3 7 ©3(-)
é {(1+A)e+Ae} < ;gi (A &+ K +Ae7-)+ =
n . @ .-
= > &pilei.&, K) + ;’() (3.55)
i1 2%

2 (. 2, 32 .
where ©3(-) = n (4L) {iﬂf—i} > ( is an unknown constant.
9

A
Combining (3.51). (3.54) and (3.55) together. yields

SV o -4 WO B! 2 6 ()
4 - 4 1V) _ HM T -1 & 2 i 5
V < - ( D + 2 > + I 3¢ D™ ¢q)H()Ap + ;{, ple.e. K)+ F
- 2 gl
+ & pileie, K) + ;\( )

- L 6,') ‘;2 1) par o v < e I
Vo< ,<_ +S)+ ](. ——;—lffD l(q)H(;)Ap+; 210(-) + pi( }+K (3.56)



where © = 01(+) + ©2(+) + O3(+) is an unknown positive constant independent of K.

From Assumption 3.3, we have Yh;(-) > 0, i.e., the matrix H(-) = diag{h1("), ..., h,(-)} is symmetric
positive definite. The inverse of inertia matrix D ~!(q) is symmetric positive definite. Then the matrix
D=Y(q)H (-) is also symmetric positive definite. Satisfying

D QH()E> 0 (3.57)
Select a controller of each coordinate is
Ap; = & (3.58)
where ¥; = 1+ p(-) + pi(+) > 0, then the control input vector Ap can be written as
Ap =& (3.59)

where the matrix ¢' = diag{¢;,.... ¢} is symmetric positive definite.
Also, observe that

DY QHWE>0 or TD N g)H(-)Ap >0 (3.60)

together with Property 2.1, it can be shown that

~ELTD U QH()AY < ~5€TH()Ap

.
= —Iz:g;-’ ""A(')uv, (3.61)

From Assumption 3.3. we have

v
>

vV
P

(3.62)

Combining (3.61) and (3.62) together, yields

Vg St B
< *52(61'*‘51)4‘}
1=
C]
= mps el 3.6
L =DV i (3.63)

where b = min {l, ;7,;_1} S10.

In the remaining part of the proof, we show that all states (e, &, I) of the closed-loop system
(3.46), (3.58) and (3.48) are bounded and well-defined on [0, +00). Moreover, given any ¢ > 0 there
exists a finite time 7; such that the position tracking error || ¢ — ¢, ||< &, Vt > T¢.

Using eq. (3.63), we obtain

V<-bV+0 (3.64)

which implies that (e.& K) arc well-defined on [0. +20) and (¢, &) is bounded. The compact set

Q= {e.§
semi-definite Ve. £ € Q. To show that A'(t) is bounded. we use a contradiction argument. In particular.
suppose that the monotone non-decreasing function A’ (t) is uubounded. Then there must exist a finite
time 77 such that

Ve, &) <a.Va> %} is invariant. since V' is positive definite and proper and V is negative

, ) be? - _
[\(f) >_ e ;—* = Vit 2 T (36))
73 16
and (3.63) becomes ‘
V<-bV4e, Vt>T (3.66)

9



' Consequently.

(f—T™ E* e* :
V(). sa = T i T (3.67)
)
This implies that there exists another finite time 7} such that
la—a P 1 _ o, 1 g SR ;
- = — /(t = — > O
5 2:415\(1)3 ) g vVt > T} (3.68)
=

which contradicts the assumption that A'(t) is unbounded since K (1) = 0, V¢ > Tj.

Since A'(t) is bounded. we can conclude that all of the states (e,é, &) of equations (3.46), (3.58)
and (3.48) are also bounded and well-defined on [0, +-00). Hence, from Assumption 3.1, the closed-loop
system trajectories generated by equations (3.46), (3.58) and (3.48) are well-defined and bounded on
[0. 400).

In addition, the integral of K'(t) evaluated from zero to infinity exists and it finite, that is

i /t Kdr = K(o0) — K(0) (3.69)
0

t—+00

Then, it follows from Barbalat ’s lemma that

lim K(t) =0 (3.70)

t—+4o0

This, together with equation (3.48), implies the existence of a finite time 7% satisfying

I g(t) — gr(t) IS e, t>T.>0. (3.71)

4 Simulation Example Results

In order to verify the performance of proposed the adaptive control scheme. as an illustration. we will
apply the above presented the control scheme to a two-link robot arm actuated by the pneumatic
muscles as shown in Fig. 5. The revolute joint 1 is rotatable through an angle —7 < ¢; < 7 rad. and
the revolute joint 2 is rotatable through an angle —7 < ¢ < 7 rad.

Figure 5: The two-link robot arm actuated by pneumatic muscles.

The dynamic of the two-link robot arm actuated by pneumatic muscles can be described as

10



C21 €22 g2 fo
where
agy = ny(Fory + Fopy)r
.42 na(Foro + Fopa)ra
hy(-) bp1(t)q1 + ac1q1 + apy
hao() = bpa(t)g2 + acaga + ap:
~n1(Bipii + Biria)r? .41 <0
bpi(t) = 0 iy =i
2} 3
ni(Birid + Bipii)ri g1 >0
—n2(Bir2i + Bir2d)rs G2 <0
bBZ(f) ;- 0 st =0
na(Biroa + Big2i)rs .42 <0
ac1 = mi(Kig — Kip)r?
ace na(Kiga — K119)73
api m(2Far1 Port — Firy + 2Fa0 Pory — Fiz + mEKimm + riKim)r
ap2 = n2(2FaraPope — Fipe + 2F510 P12 — Fipo + raKygom + 12Ky 10m) 7
—n1(Boryi + BiziiPort + Borid — BigiaPor1)r3 .41 <0
bei(t) = 0 g1 =0
—n1(Bor1ia — BiriaPor1 + Borii + BiriiPor1 )13 g1 > 0
—na(Bor2i + Bi12iPor2 + Bor2d — Bir2aPor2)m3 .42 <0
bEZ(t) = 0 142 = ()
—n2(Bor2a — Bir2aPor2 + Borei + Bir2i Pora)rs .42 > 0
ar1 = —m(Kip1Por1 + KigiPort + Kor1 + Kogri)7rs
ars —n2(K112Por2 + K1raPora + Kora + Kogo)r3
agir = —m(For1Pir — FiriPor1 — For1Pé, + FiiiPora
+r1 K p1 Porim + riKorim — 1 K101 Poram — ri Ko m)r
agz = —na(FaraPire — FiraPora — ForaP3 o+ FiaPora

+roK1ra Porom + roKopom — 1o K12 Porom — roKopam)ry

din = ma(2hleacosga + 2+ B) + myly + M(2hlacosqo + B+ 1)+ [ + I + Ing
dia mao(12, + 1l cos ga) + M (13 + Lilp cos go) + Is + Iag

2 dy2

dye = ‘mgley + MU 45 + Ty

€11 —(molyles + Mlyls)go sin go

crp = —(molyle + Myla) (G + ¢2) sin go

o1 = (el + M) §) sin g

99 0

11 —mygler singp — mog(ly singy + leosin(qy -1 p2)) — Mg(lysingy + lasin(qy + g2))
fa = —(maglex + Mgls)sin(q + ¢2)
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my, ma. Ui, 1o, Iy, 1eo, 71, 79, I1 and I denote the masses and lengths and radius and the inertias of
the each link. M and Ij; denote the load and the inertia at the end.

We investigate the closed-loop system behaviors of our adaptive control. The two-link planar robot
arm studied here is similar to those in Fig. 5. The closed-loop system is simulated with the physical
parameters of the arm as follows, I; = 20 in., l,; = 10 in., I3 = 20 in.. leo =10 in., my = mo = 1 shug,
r1 =3 . and 12 = 2 in. and the numbers of muscle pairs n; = 6 and ny = 3. All of the simulation
were performed with the initial conditions, ¢,(0) = g2(0) = 1 rad., §;(0) = ¢2(0) = 0.01 rad./s, e = 0.1
rad., 3 = 10 and the nominal pressures, Pypy = Popa = 40 psi. and Py = Pypo = 60 psi.

In the simulations, we restricted the internal pressure in each muscle within the range, 0 < P < 130
psi. since in a real system, the internal pressure can not go below zero and the parameters of the
muscles using in here are only valid in this range. In addition, we use the full nonlincar model which
inchides the terms (144,-A])';~Z when i =1,....n.

We studied five cases of the muscle parameter sets as shown in Table 1. The nominal parameters
are the ones studied in [4]. The other two sets of coefficients represent 50% increase and 50% decrease
of muscle coefficients. Case A represents the system under normal condition and has a matching pair
of muscle groups. Case B to Case E represent the cases when the system has a mismatch pair of
muscle groups or undergoes severe changes of muscle properties.

Table 1: Case studies for investigate tracking performance.

Case | Bicepl (bl) | Tricepl (t1) | Bicep2 (b2) | Tricep2 (t2)
A Mean Mean Mean Mean
B +50% -50% +50% -50%
C -50% +50% -50% +50%
D +50% -50% -50% +50%
E -50% +50% +50% -50%

We investigate controller performance by trajectory tracking for the end effector in ay space, 1.e.,

a circle path is given by:
zq = 16+ 8sin(0.47t) (4.73)
16 + 8 cos(0.47t) (4.74)

Yd

where z4 and yg the desired end-effector spatial trajectories along » and y axes. For the inverse

kinematics of the planar arm in Fig. 5. it can be to compute that these spatial path requirements are
equivalent to required joint trajectories of

2 9 12 _ 32
xg+y;— 15 =1
Q2r = arccos (ld y;lllo L 2) (4.75)
q1» = arctan (ﬂ> — arctan {&—} (4.76)
Yd {1 + locos o

Table 2: Load variation at time 0 - 2000 scc.

Time (s) Load (slug.)
0 <t <400 1
400 <t < 800 0
800 <t < 1200 1
1200 < t < 1600 0
1600 <t < 2000 1

We performed the simulations for 2000 sec. under e load variation at the end as follow on Table
2. The simulation results of five cases are shown in Fig. 6-10. The tracking performance in five cases
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are shown in Fig. 6. The adaptive gains and tracking errors are shown in Fig. 7 that all cases indicate
that the gain defined by (3.48) is monotone nondecreasing and bounded on [0, +oc0). and all cases
demonstrated that the tracking error would eventually be within the prescribed error = = 0.1 rad.
after a finite time.

The pressure inputs Ap; and Apy are shown in Fig. 8. the internal left muscle pressures of each
left muscle Pry and Py are shown in Fig. 9 and the internal right muscle pressures of each right
muscle Pry and Pro are shown in Fig. 10. All cases indicate that internal pressures (Ppy. Pro. Pr
and Pgy) are still within the range 0 < P < 130 psi.

Case B 12020

r—— e T = 40 ———r———r—

Figure 6: End-effector spatial trajectories

5 Conclusion

We propose an adaptive tracking control scheme for multi-link robots actuated by pneumatic muscles.
All of physical parameters of the robot and pneumatic muscles are unknown. Under these conditions.
we can proof that the joint angles of the robots can follow any C! trajectories. The closed-loop states
are globally bounded and the total angle error will be within any nonzero prescribed error in a finite
time. We do not assmme that the bounds of uncertain time-varying parameters are known a priori.
From the simulations. it is shown that our adaptive control scheme can achieve angle tracking even
under severe changes of system parameters.
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Figure 9: Internal pressures of bicep muscles
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