

51402208 : สาขาวิชาวิทยาการและวิศวกรรมพอลิเมอร์

คำสำคัญ : เทอร์โมพลาสติกสตาร์ช, รีแอคทีฟเบลนด์, พอลิแลคติก แอสิท

จิรวัฒน์ เลียดประطم : รีแอคทีฟเบลนด์ระหว่างพอลิแลคติก แอสิทและเทอร์โมพลาสติกสตาร์ช อาจารย์ที่ปรึกษาวิทยานิพนธ์ : อ.ดร.สุกิจ สุทธิเรืองวงศ์ และ ผศ.ดร.พุทธิพงษ์ ตรีกพนาถกุล. 121 หน้า.

การพัฒนาและการปรับปรุงเพื่อให้พลาสติกชีวภาพนั้นสามารถใช้งานได้หลากหลายมากขึ้น วิธีหนึ่งที่น่าสนใจและนิยมใช้คือการผสมพลาสติกชีวภาพด้วยแต่ส่องชนิดขึ้นไป ดังนั้น พลาสติกชีวภาพที่น่าสนใจก็มีอย่างมากคือพอลิแลคติกแอสิท(PLA) และ เทอร์โมพลาสติกสตาร์ช (TPS) ซึ่งการผสมพลาสติกทั้งสองชนิดนั้นจะช่วยให้ลดต้นทุนในการผลิต และที่สำคัญยังเป็นวัสดุที่เป็นมิตรกับธรรมชาติ แต่ก็มีข้อจำกัดเรื่องความเข้ากันได้ระหว่างสองเฟสได้กับพลาสติก จึงมีงานวิจัยที่พยายามที่ปรับปรุงความเข้ากันได้ของ PLA และ TPS หรือพอลิเอสเตอร์ชนิดอื่นๆกับ TPS ด้วยวิธีต่างๆซึ่งสามารถทำได้หลายกระบวนการแต่กระบวนการที่เป็นที่นิยมคือรีแอคทีฟเบลนด์หรือการปรับปรุงความทางเคมีโดยผ่านปฏิกิริยาการกราฟโนเมกุลที่สามารถเกิดปฏิกิริยาที่ว่องไวบนสายโซ่พอลิเมกุล PLA หรือ TPS ในงานวิจัยนี้จึงทำการศึกษาผลของปริมาณมาเลอิกแอกนิโซน(MA) และ เปอร์ออกไซด์ รวมถึงขั้นตอนการเติมรีแอคทีฟເອເຈນ์ ต่อสมบัติต่างๆ พบว่าการเติมรีแอคทีฟເອເຈນ์คือ MA และ เปอร์ออกไซด์ เพียงเล็กน้อยก็เพียงพอที่จะปรับปรุงแรงยึดเหนี่ยวระหว่างเฟสของพอลิแลคติกแอสิทและเทอร์โมพลาสติกสตาร์ช ซึ่งระบบที่เหมาะสมที่สุดคือระบบที่มีการใช้ทั้ง MA และ เปอร์ออกไซด์ เนื่องจากทำให้ออนุภาคของแป้งเล็กลงและการกระจายตัวของแป้งดีขึ้นรวมถึงสมบัติทางเชิงกลก็มีแนวโน้มที่ดีขึ้น และเมื่อมีการปรับปรุงอัตราส่วนระหว่าง PLA และ TPS พบว่าระบบที่มีการใช้ MA และ เปอร์ออกไซด์ การกระจายตัวและขนาดของอนุภาคแป้ง ทางเชิงกล และสมบัติการไหล ก็มีแนวโน้มที่ดีขึ้นเมื่อเปรียบเทียบกับ Physical mixing นอกจากนี้ยังพบว่าการวิเคราะห์ด้วย FTIR พบว่าระบบ MA เกิดการกราฟบนสายโซ่ของแป้งซึ่งน่าจะส่งผลต่อการยึดติดกันระหว่างเฟสได้ดีขึ้นด้วย และยังพบว่า % crystallinity จะ

สูงที่สุดเมื่อมีปริมาณ TPS 50 %wt

ภาควิชาวิทยาการและวิศวกรรมวัสดุ บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร ปีการศึกษา 2554

ลายมือชื่อนักศึกษา.....

ลายมือชื่ออาจารย์ที่ปรึกษาวิทยานิพนธ์ 1. 2.

51402208 : MAJOR : POLYMER SCIENCE AND ENGINEERING

KEY WORD : THERMOPLASTIC STARCH, REACTIVE BLEND, POLYLACTIC ACID

JIRAWAT LEADPRATHOM : POLYLACTIC ACID / THERMOPLASTIC STARCH
REACTIVE BLEND. THESIS ADVISORS : Dr. SUPAKIJ SUTTIRUENGWONG, Ass.Prof.Dr.
POONSUB THREEPONATKUL. 121 pp.

Blending two thermodynamically immiscible biodegradable polymers is very challenging and can extend their use and applications for replacing the products derived from petroleum-based polymers. Excellent candidates for such system are poly(lactic acid) (PLA) and thermoplastic starch (TPS) as both are at present commercially available and offer cost-performance benefits[1] together with the case of pollution. Attempts to blending PLA with TPS or other biodegradable polyesters with TPS have been extensively carried out by many routes. They are mostly involved with reactive blending or chemical modifications [2-4] through grafting reaction unto PLA or TPS and the copolymerization reaction to improve the interface between PLA and TPS. The effects of the reactive agents and blending routes of PLA and modified starch phase still need to be explored. Therefore, this work aimed to evaluate the effect of the amount of maleic anhydride drive (MA), and peroxide, as well as the process of adding reactive agent on morphology, mechanical, and thermal properties on the reactive blend of PLA/acetylated TPS. An addition of a small quantity of MA and peroxide was sufficient to improve the interfacial adhesion of PLA and acetylated TPS. The system is optimized with the use of both MA and peroxide were reactive agents ,that procedures offered reduce particle size and improved distribution of TPS phase, when investigated ratio between the PLA and TPS are different, it was found that with the process used of MA and peroxide for the same ratio demonstrated more uniform and dispersed TPS phase with smaller particle size when compared to the physical mixing. And mechanical properties were improved. % Crystallinity was highest for the ratio of 50/50 of all blends.

Department of Materials Science and Engineering Graduate School, Silpakorn University
Academic Year 2011

Student's signature

Thesis Advisors' signature 1. 2.