CHAPTER 1V

MAIN RESULTS

In this section, we will introduce an iterative scheme by using a shrinking
projection method for finding the common element of the set of common fixed
points for nonexpansive semigroups, the set of common fixed points for an infinite
family of &-strict pseudo-contraction, the set of solutions of a systems of mixed
equilibrium problems and the set of solutions of the variational inclusions problem

in a real Hilbert space.

In order to prove our main results, we need the following lemmas.

Lemma 4.43. [45] Let V : C — H be a &-strict pseudo-contraction, then

(1) the fized point set F(V) of V is closed convez so that the projection Pp(yy is
well defined;
(2) define a mapping T : C — H by

Tr=tz+(1-t)Vz,Vz e’ (4.36)
Ift € [¢,1), then T is a nonezpansive mapping such that F (V)= F(T).
A family of mappings {V; : C — H}®, is called a family of uniformly
§-strict pseudo-contractions, if there exists a constant £ € [0,1) such that
Vie = Viyll* < llz — 9ll* + €1 (I = i)z — (I = Vi)yl|, Va,y € C, Vi > 1.

Let {V; : C — C}22, be a countable family of uniformly &-strict pseudo-contractions.
Let

{Ti : C — C}Z, be the sequence of nonexpansive mappings defined by (4.36), i.e.,

Lrx=tz+(1~-t)Viz, Ve C,Vi > 1,t € [¢,1) (4.37)

Let {T;} be a sequence of nonexpansive mappings of C into itself

defined by (4.37) and let {u;} be a sequence of nonnegative numbers in [0,1]. For
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each n > 1, define a mapping W,, of C into itself as follows:

Unni1 = 1,
Unn = pnToUnnsr + (1 — po)1,
Unn-1 = pinc1TnotUnm + (1 — pn 1)1,
(4.38)
Uk = wlilUngsr + (1 — i),

Ung-1 = M1 T Un g + (1 = ppy)1,

Un,2 = /J'2T2Un,3 + (1 A H'Z)I’

Wo=Un1 = mTiUns+ (1 — )l

Such a mapping W, is nonexpansive from C to C and it is called the W -mapping
generated by Ty, T3, ..., T}, and py, o, ..., ft,. For each n, k € N, let the mapping U, 4
be defined by (4.38). Then we can have the following crucial conclusions concerning

W,

Lemma 4.44. (33, 4] Let C be a nonempty closed convez subset of a real Hilbert
space H. Let T\, Ty,... be an infinite family of nonezpansive mappings of C into
iself such that N2, F(T,) # 0, let p1, po, ... be real numbers such that 0 < pn <
b <1 for everyn > 1. Then,

(1) for every z € C and k € N, the limit lim, o, Uy 2 exists;

(2) the mapping W of C into itself as follows:

Wz = lim W,z = lim Uniz, z€C, (4.39)

n—m>aoo

s a nonezpansive mapping satisfying F(W) = Moo, F(T,.), which it is called
the W-mapping generated by 11, Ty, ... and pq, p, ...

(3) F(Wy,) =N, F(T,), for each n > 1;
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(4) If E is any bounded subset of C, then lim sup |Wzx — Wozl|| = 0.

Theorem 4.45. Let C be a nonempty closed conver subset of a real Hilbert space
H let {F,:CxC—TR, k=1,2,...,N} be a finite family of mized equilibrium
functions satisfying conditions (H1)-(H3). Let S = {S(s) : 0 < s < o0} be a
nonezpansive semigroup on C and let {t,} be a positive real divergent sequence. Let
{Vi: C — C}2, be a countable family of uniformly &-strict pseudo-contractions,
{T; : C — C}2, be the countable family of nonerpansive mappings defined by
Tiz =tr+ (1 - t)Viz,Vz € C\Vi > 1,t € [£,1), W, be the W-mapping defined by
(4.38) and W be a mapping defined by (4.39) with F(W) # 0. Let A B:C — H
be vy, B-inverse-strongly monotone mappings and My, My : H —s 2H be mazimal

monotone mappings such that
© = F(S)NF(W) N (ML, SMEP(F,)) N I(A, My) N I(B, M) # 0.

Let e > 0,k = 1,2,..., N, which are constants. Let {z,}, {yn}, {va}, {z.} and

{un} be sequences generated by o € C, C; = C, z; = Pe,xg, u, € C and

§
zg =z € C chosen arbitrary,

Fn prFn-y prFn_o B By
K K"N anrN 2,n K K"ln

Yn = JMQ,Jn(un = 5nBun)7

= I (U — Andyn),
. 4.40
2y = oy + (1 — an)t—/ S(s)W,vpds, (4.40)
n JO
Cut1 = {2 € Co sz = 2| < 12 — 2l = (1 — @)

_ %/otn S(s)W,v,ds ’2},

L Tptyr = PCn+1 ne N’

Un

where Kk : C — C, k=1,2,...,N is the mapping defined by (2.16) and {a,}

be a sequence in (0,1) for alln € N. Assume the following conditions are satisfied:

(C1) ;i : U x C — H is Lg-Lipschitz continuous with constant k = ,2,...,N
such that
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(a) m(z,y) + m(y,2) =0, Vr,yeC,
(b) x— ne(z,y) is affine,

(c) for each fired y € C, y = ni(z,y) is sequentially continuous from the

weak topology to the weak topology;

(C2) K : C — R 1s ny-strongly convezr with constant or > 0 and its derivative
Ky is not only sequentially continuous from the weak topology to the strong
topology but also Lipschitz continuous with a Lipschitz constant vy > 0 such

that g > Lkl/k,'

(C3) For each k € {1,2,...,N} and for all x € C, there exist a bounded subset
D, C C and z, € C such that for any y € C\D,,

Fuly, ) + 0(22) = (0) + = (K'0) — K (2, n(0,3) )< 0

(C4) {an} C [c,d] for some c,d € (€,1);
(C5) {An} C a1, b1] for some ay,b; € (0, 2v];
(C6) {6,} C [az,ba] for some ay, by € (0,20};

(C7) liminf, o7y, > 0 for each k € 1,2,3,...,N.
Then, {z,} and {u,} converge strongly to z = Pexo.

Proof. Pick any p € ©. Taking $* = Krkaan,:k_”lanik_‘zfn...K,f‘;?nKr":fn for k €
{1,2,3,...,N} and S® = [ for all n € N. From the definition of K+ is non-
expansive for each k = 1,2,3,..., N, then S¥ also and p = S p, we note that

Tk,n

u, = §Nx,. If follows that
e = pll = 11SY 20 — SVpll < [l20 — p)-

Next, we will divide the proof into eight steps.
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Step 1. We first show by induction that © C C,, for each n > 1.

Taking p € ©, we get that p = Juy, A, (p — A\eAp) = Jus 5, (p — 61.Bp). Since
Iy per IMy 5, are nonexpansive. From the assumption, we see that © ¢ C = (.

Suppose © C Cy, for some k > 1. For any p € © = C}, we have

loe =2l = [ Tan (W — AeAyk) — Tan (P — MeAp)||
< e — MeAy) — (p — AeAp)||
< NI = XeA)ye — (I — M A)p|
< lwe =2l (4.41)
and
lve =Pl = Wz, (ue — 0 Bug) = Jagy 5. (p — 6 Bp)||
< (ue — 8 Buy) — (p — 6 Bp)||
< llue = ol
<z —pll- (4.42)

Which yield that

lzx — P“2

= Josto =+ 1= (3 [ stomauas )|

< oo =l + (1= ) /O " 5(6) Weveds o

(1= an)foc -+ [ st wimas|]
< aulon =l + (1 = o)l = = an(1 = )~ - [ sto Wi
< flon =l — o1 — axe) o - % /0 § S(s) Wends| (4.43)

Applying (4.41) and (4.42), we get

1 [t 2
ot =P < ok~ ol — (1 - ) Ju — / S(s)Wevnds|| . (4.44)
k Jo
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Hence p € Cj,,. This implies that © c C,, for each n > 1.
Step 2. Next, we show that {zn} is well defined and C, is closed and convex for

any n € N.

It is obvious that C; = C is closed and convex. Suppose that C; is closed
and convex for some k > 1. Now, we show that Cl+1 is closed and convex for some

k. For any p € Cy, we obtain

lze — plI* < fjz = pl|?
is equivalent to
HZk S IL‘[C”2 + 2<Zk — Tk, T — p) S 0. (445)

Thus Cpyq is closed and convex. Then, C, is closed and convex for any n € N.
This implies that {z,} is well-defined.
Step 3. Next, we show that {x,} is bounded and lim,_., ||z, — %ol exists. From

z, = Pe, o, we have

<x0_xnaxn—y> ZO

for each y € C,,. Using © C C,,, we also have
(To = ZnyZn —p) >0, Vpe® and neN.
So, for p € ©. We observe that

0 < (zo—2Zn,z, — D)
= <.’L'0—J?n,l'n—.’130+.’170—‘p)
= —(To — Tn,To — Tn) + (To — Tp, T -p)

< —llwo = zall® + |lz0 — 2l llz0 — pI.
This implies that

lzo — 2.l < ||lzo —pl|, Vp€® and neN.
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Hence, we get {z,} is bounded. It follows by (4.41)-(4.43), that {v,}, {y.} and
{W,v,} are also bounded. From z, = Pc, 19, and .1 = Pe,..z0 € Cryy C Gy,

we obtain

(To — T, Tn — Tpy1) > 0. (4.46)

It follows that, we have for each n € N

0 < (®o— Zn,Tn — Tny1)
= (%o = Zn, T — Tp + T — Tny1)
= —(To = Tn, To — Tn) + (To — Tn, To — Tny1)

< —llzo = zall® + llzo = zallllzo — Trsr |-
It follows that
lzo — @all < 120 ~ Zns1 -

Thus, since the sequence {||z, — zo||} is a bounded and nondecreasing sequence, so

lim, . ||z, — To]| exists, that is
m = lim |z, ~ . (4.47)
Step 4. Next, we show that lim, o ||Zn41 — 2|l = 0 and lim,,__, |zn — za]} = 0.
Applying (4.46), we get

[ Y
= |[zn — zo + To — Tpi|)?
= |lzn — zol|® + 2(zs — o, 70 — Tni1) + ||Zo — Ty ||?
= |0 — zol® + 2(zn — @0, 0 — T + Ty — Tnt1) + |20 — Tosa ||
= |lzn — zoll* — 2(z0n — 70, 0 — 20) + 2(2p — o, Tn — Tns1) + |20 — T |
= —llzn = zoll* + 2(zn — 0, 20 ~ Tas1) + |70 — Tasa |?

< —llen = zoll® + llzo — zas |I*
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Thus, by (4.47), we obtain
RN L (4.48)
On the other hand, from z,., = P, 11T € Chyy C Cy, which implies that
Zns1 = 2znll < |Zns1 — zal|. (4.49)
It follows by (4.49), we also have
lzn = Zall SH120 = Zosall + l@nsr = zall < 20 — Tasi |-

By (4.48), we obtain

nlim |z, — z,]| = 0. (4.50)
Step 5. Next, we show that
lim Sz, — S5z, =0 (4.51)

n—~odo

for every k € {1,2,3,...,N}. Indeed, for p € O, note that K[k is the firmly

nonexpansie, so we have

Sz — SEpIP = KL ke, — K2 pl

Tk.n

c\-lcl

IA

n— D)

= {19k bl + 195 2, — ol 982, — 981 ),

(Stz, —p, S

Thus, we get

ISnan — SEpll> < 19512, —p|? — |22, — SE 1z, |2

It follows that

“un_p”2 < ”\y In — C‘}ﬁp“2

< IS e = plP ~ 1Sk 7 — S5
S Az = pl® = 19520 — S 2%, (4.52)
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By (4.41), (4.42), (4.43) and (4.52), we have for each k € {1,2,3,...,N}

“Zn - p”2 < ”vn —p”2
< “un - p”2
< ”-Tn p“2 - ”\S Ln — %ﬁ_lxnilZ-

Consequently, we have

S50 = SE'2all? < fl2a = DI = |20 — |2
< lan - Zn||(flzn — pll + llzn — pll)

Since (4.50) implies that for every k € {1,2,3,..., N}

hm 1S5z, — S5z, = 0. (4.53)

Step 6. Next, we show that lim,,__,, lyn —vn]l = 0 and lim,, ., [|[K, W0, —u|l =
0, where KC, = = [[" S(s)ds

For any given p € ©, A\, € (0,21], 6, € (0,28] and p = Jyy, 5, (p — MuAp) =
Iy 6, (P — 8nBp). Since I — A\, A and [ — §,B are nonexpansive, we have

lva = 2lI* = 000 (Un = AnAg) = Jagyn, (p — AuAp)||?

= ”(yn T p) - )‘n(Ayn > Ap)”2

S Hyn N p”2 B 2/\n(yn /) Ayn - Ap) + )‘i“Ayn - Ap”2
< llzn = pl? = 2207l Ay — Ap||* + A2|| Ay, — Apl|®
< lzn = 2P + Au(An — 29) || Ay, — Ap|J2. (4.54)

Similarly, we can show that

lyn = plII* < Nlzn = plI* + 64(6, — 28)|| Bu, — Bpl|*. (4.55)



Observe that

lzn — p”2

IA

AN

<
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an(vn —p) + (1 - an)(% /Otn S(8)Wpvnds — p) H2

1 [in 2
anllen = pIP + (1 = ) - / S(8)Wotnds —
nJo

—on (1 — ay)

1 [ 2
Up — —/ S(s)anndsu
tn Jo

O‘n“vn - p”2 + (1 - O‘n)

i/otn S(s)Wphv,ds — p“2

|z = pll* + (1 = aw)lfvn = pl* (4.56)

Substituting (4.54) into (4.56) and using conditions (C4) and (C5), we have

len —pl* <

It follows that

T, — pHZ + (1 — an){llzn - p“2 + A(An — 29) | Ayn — ApHQ}

lzn =PI + (1 = 0n)A(An = 27)[|Ayn — Ap|f2.

(1 = d)ar(2y = b))l Ayn — Apl> < (1 = an) M2y — M) || Ay — Ap]?

By (4.50), we obtain

< lza = p”2 — ||z — p“2
< lzn = zall(lzn — Il + {20 — pID)-
lim ||Ay, — Ap|| = 0. (4.57)

Since the resolvent operator Jy, , is l-inverse-strongly monotone, we obtain

”Un __p”2

IA

IN

194030 (W = AnAYn) = Jag 2 (p ~ M AD)|?
mi00 (I = AnA)yn = Jar 0, (1 = X A)p|)?
(U = My = (L= AaA)p, 50— p)

310 = 20— (1 = 200l + o, —
I = AAYga = (I = Ma)p = (v = D)}

3{1m = 21 + e =7 = e~ ) — Mo — AP}

1
5 {lan = I+ llon = I ~ flgn — vall?

= NollAgn = AplP -+ 2Xayn = v0, Ay — Ap) },
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which yields that

lon = PI* < lzn = I? = llyn = vall® + 20allyn = valll Ayn — Apll. ~ (4.58)
Similarly, we can obtain

Y = plI* < llzn — Pl = lfun — yall® + 20aflun — yalll| Bun — Bpl|. (4.59)
Substituting (4.58) into (4.56), and using condition (C4) and (C5), we have

llza — pl®

IA

nllzn = pII* + (1 ~ an)l|va — pl?

IA

anllen = I + (1 = a){ 12w =PI =l — val* + 2allgn — w0l Avi. — 4p] )
= llzn = pl* = (1 = an)llyn — val® + 21 — an)Aallyn — vallll Aya — Ap].
It follows that
(1 = an)llyn = val?

< llzn = pI* = llza — plI” + 2(1 = @) Anllym — vall| Ay — Ap|

< e = zall(lzn = pll + 120 = ) +2(1 = an)Anllyn — valll| Ay — Apl).
By (4.50) and (4.57), we get

il = vl =0 (4.60)

From (4.44) and (C4), we also have

an(1 - on)

IN

|z ~ P”2 — |lzn — p“2

1 [t 2
Up — —/ S(s)annds”
tn Jo

IA

20 = zall(lzn = Il + [l22 — pI})-

Since K, = ;- fot" S(s)ds, we obtain (4.50), we have
lim ||K,W,v, —v,|| = 0. (4.61)
Since {W,v,} is a bounded sequence in C, from Lemma 2.41 for all h > 0, we have

2

tn tn .
ti/ S(s)Whvnds — S(h) (ti/ S(s)annds)
n Jo n JOo

lim [|oWov, — S(R)KC, W,

= lim
n—o0

=0. (4.62)
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It follows from (4.61) and (4.62), we get
llon = S(s)vall
< lon = KeWavn|| + [|KaWovn — S(8)KCnWavn|| + [|S(s)Kn Wy, — S(s)vall
< 2ljun = KoWovn|| + |KaWov, — S(8)K W]

So, we have

lim [lv, — S(s)u,|| = 0. (4.63)

Step 7. Next, we show that ¢ € © := F(S)NF(W)n (N, SMEP(F;))n
I(A, M) N I(B, M) # 0.

Since {vn,} is bounded, there exists a subsequence {vn, } of {un} which

converges weakly to ¢ € C. Without loss of generality, we can assume that Un, — Q.

(1) First, we prove that ¢ € F(S). Indeed, from Lemma 2.42 and (4.63), we
get g € F(S), ie., ¢ = 5(s)q,Vs > 0.

(2) We show that ¢ € F(W) = N3, F(W,,), where F(W,,) = N2, F(T}),¥n >
1 and F(W,41) C F(W,). Assume that ¢ ¢ F(W), then there exists a positive
integer m such that ¢ ¢ F(T,,) and so ¢ ¢ N2, F(T;). Hence for any n > m, q ¢
Ny F(Ti) = F(W,), ie., ¢ # Waq. This together with q = S(s)q, Vs > 0 shows
q= 5(s)q # S(s)Whnq, Vs > 0, therefore we have q # K,W,q, Vn > m. It follows
from the Opial’s condition and (4.61) that

liminf |lv,, —ql] < limin [jv,, = K\, W, g
1—00 1—00

—<- hm inf(“vni - }CniWnivni” + “}CmWnivni N IcniWniq”)
< liminf [ju,, — 4,

which is a contradiction. Thus, we get ¢ € F(W).

(3) We prove that q € ML, SMEP(Fy,¢). Since §% =K% k=1,2,...,N
and u¥ = 3%z, we have

s

1
Fi(SEz,, x)+go(x)—go(§fla:n)+a<K'(%ﬁ$n)—ﬁ'(%ﬁ_lxn),n(x, Sﬁxn)> >0,Vz € C.
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It follows that

= (IS ) — K50, 10, 9520 ) 2 —Fu(Sh 2, ) — () + (S 2364
Tk ‘ : ‘ : i

for all z € C. From (4.53) and by conditions (C1)(c) and (C2), we get

1
lim —</c'(<s§ixni) - ic'(s’;;lxm),n(x,%:ixm)> -0

n;—00 Tp

By the assumption and by the condition (H1), we know that the function ¢ and
the mapping = —— (—F(z,y)) both are convex and lower semicontinuous, hence

they are weakly lower semicontinuous.
"(SF 2n) K (3R] 2ny)

Tk

<K’(%ﬁx_mm) - K'(SE11,.)

K
These together with — 0 and S’Tiizm — g, we have

0 = lim inf =, (s, %Zixni)>
. P

> liminf{—F(S7 2n,, 2) = p(2) + 0(SE 2}

Tk

Then, we obtain
Fi(q,z) +p(z) —plg) >0, Yz €C, Vk=,1,2,....N. (4.65)
Therefore ¢ € NY_, SMEP(Fy, o).
(4) Lastly, we prove that g € I(A4, M;) N I(B, M,).

We observe that A is an 1/v-Lipschitz monotone mapping and D(A)=H.
From Lemma 2.26, we know that M, + A is maximal monotone. Let (v,9) €

G(M, + A) that is, g — Av € M;(v). Since v, = Iuty A, (Yni — An, A, ), we have
Yni — )‘n;‘Ayni € (I + /\nij\/ll)(vni)‘l

that is,
1

2\ (yni — Up; — /\niAyni) € Ml (vni)* (466)

By virtue of the maximal monotonicity of M; 4+ A, we have

LY

. 1
<v——vni,g—Av—/\—

Ty

(yni = Un;, — /\niAyni)>Z O, (467)
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and so
1
<U_vnng> Z <v_vnwAv+:\‘“(yni—vni—)‘niAym)>

1
= <v — Un,, Av — Aup, + Av,, — Ayn, + )\—~(yn,. - vni)>(4.68)

1
> 0+ (v — vy, Avn, — Ayy,) + <v — Un,, )\—(yni — Un,-)>-

By (4.60), v,, — g and A is inverse-strongly monotone, we obtain that lim,_,« || Ay,—

Avy|| =0 and it follows that

lim (v—v,,9)={(v—gq,g) > 0. (4.69)

It follows from the maximal monotonicity of M + A that 6 € (M, + A)(g), that is,
q € I(A, My). Since {y,} is bounded, there exists a subsequence {ynl.j} of {yn,}
which converges weakly to ¢ € C. Without loss of generality, we can assume that

Yn, — ¢- In similar way, we can obtain q € I(B, M), hence q € I(A, M,)NI(B, M,)
Step 8. Finally, we show that z, — 2 and u, — z, where z = Pgz,.

Since © is nonempty closed convex subset of H, there exists a unique z’ € ©

such that 2’ = Pog. Since 2’ € © C C,, and z,, = P¢, z,, we have
llzo — znll < llzo — Po,mol| < llzo — /|| (4.70)

for all n € N. From (4.70) and {z,} is bounded, so w,(z,) # 0.

By the weakly lower semicontinuous of the norm, we have
lzo — 2|l < liminf flzg — 2 || < [l — 2| (4.71)
However, since z € w,(z,) C ©, we have
l20 — 2|l < llzo — Pe,zoll < flzo — 2||.
Using (4.70) and (4.71), we obtain z’ = z. Thus w,(z,) = {z} and z, — 2. So, we

have

o

o — Il < llzo — 2]l < liminf 2o ~ z,] < limsup 2o — 2] < Jlz — /.

n—-—00
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Thus, we obtain that
llwo =2l = lim |lzo - za]| = [lzo — #'||

From z, — z, we obtain (z¢9 — z,) — (2o — z). Using the Kadec-Klee property, we

obtain that

[€n = 2ll = (@n — 20) = (z = zo)|| — 0 as 7 — oo
and hence z, — z in norm. Finally, noticing |ju,—z|| = [|SVz,—SV2|| < ||z —2].
We also conclude that u,, — 2 in norm. This completes the proof. 0

Theorem 4.46. Let C be a nonempty closed conver subset of a real Hilbert space
H,let {F, :CxC—-R, k=1,2,...,N} be a finite family of mized equilibrium
functions satisfying conditions (H1)-(H3). Let S = {S(s) : 0 < s < oo} be a
nonezpansive semigroup on C and let {t,} be a positive real divergent sequence. Let
{Vi: C — C}2, be a countable family of uniformly &-strict pseudo-contractions,
{T; : C — C}2, be the countable family of nonerpansive mappings defined by
Tz =tz + (1 - t)Viz,Vz € C\Vi > 1,t € [£,1), W, be the W-mapping defined by
(4.38) and W be a mapping defined by (4.39) with F(W) # 0. Let A, B :C—>H

be vy, B-inverse-strongly monotone mapping. Such that
O =FS)nFW)n (ﬂ,/:’:lSMEP(Fk)) NVI(C,A)nVI(C, B) # 0.

Let e > 0,k = 1,2,..., N, which are constants. Let {z,}, {yn}, {vn}, {z,} and
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{un} be sequences generated by z9 € C, C, = C, z1 = Pg, 0o, u, € C and

.
zg = = € C chosen arbitrary,

_ Fn Fn-y Fn_2 2] Fy
un - KTN,nKrN—l,nKTN~—2,n e K"z.n Krl,nxn’

Yn = PC(Un - 5nBun),

Un = PC(yn - /\nAyn)7

1 [t (4.72)
2, = QuUn + (1 — an)z—/ S(s)W,vnds,
n Jo

Crsy = {z €Cot lzm— 2l < 2w = 2l = an(l — an)|lom

_ ;;/Ot S(s)annds“2},

| Znt1 = FPe,.,x0, n€EN,

where Kf;:k :C = C, k=1,2,...,N is the mapping defined by (2.16) and {a,}

be a sequence in (0,1) for alln € N. Assume the following conditions are satisfied:

(C1) m : C x C — H is Lg-Lipschitz continuous with constant k = 1,2,... N

such that

(a) me(z,y) +me(y,2) =0, Vz,yeC,

(6) T ni(z,y) is affine,

(c) for each fired y € C, y — ne(z,y) is sequentially continuous from the

weak topology to the weak topology;

(C2) Kt : C — R s ny-strongly convex with constant o, > 0 and its derivative
% s not only sequentially continuous from the weak topology to the strong
topology but also Lipschitz continuous with a Lipschitz constant v, > 0 such

that o, > Lyvg;

(C3) For each k € {1,2,...,N} and for all x € C, there exist a bounded subset
D, C C and z; € C such that for any y € C\D,,

Fily ) + ¢(z2) = 0la) + - (K0) = K2, 0,2) )< O
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(C4) {an} C e, d] for some c,d € (§,1);
(C5) {An} Cla1,by] for some aq,b; € (0,27];
(C6) {6n} C [az,bs] for some a2, by € (0,20);

(C7) liminf, 7, >0 for each k € 1,2,3,...,N.
Then, {z,} and {u,} converge strongly to z = Pgxy.

Proof. In Theorem 4.45 take M; = p;c : H — 2H where g;c : 0 — [0, 00] is the

indicator function of C, that is,

0, rz e,
Qic(m) <
+o00, z¢C,

for i = 1,2. Then (2.8) is equivalent to variational inequality problem , that is, to

find £ € C such that
(AZ,y— %) >0, YyeC.

Again, since M; = p;c, for i = 1,2 then
Irinn = Po = I 6,.-

So, we have

Up = PC(yn - /\nAyn) = JMl,/\n(yn - )\nAyn)’

and

Yn = Po(tn — 8, Buy) = Iy 5, (Un — 8, Buy,).

Hence, we can obtain the desired conclusion from Theorem 4.45 immediately. O

Next, we consider another class of important mapping:

Definition 4.47. A mapping S : C — C is called strictly pseudo-contraction if

there exists a constant 0 < k < 1 such that

ISz = SylI* < lle = yll* + £l = S)z = (I = S)y|’, Vz,yeC.
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If &K = 0, then S is nonexpansive. In this case, we say that S : C — C is a

s-strictly pseudo-contraction. Putting B = I — S. Then, we have
(I = B)z — (I = B)yl” < llz — y|)* + sl| Bz - By||>, Vz,y€C.
Observe that
I(I - B)x — (I - Byl = lz — y|* + || Bz — By|> — 2(z —y, Bz — By), Vz,yeC.

Hence, we obtain

]_._
(r —y, Bz — By) > —Q—KIIBJ? — Byl*, Vr,yeC.

Then, B is 1—;ﬁ-inverse—strongly monotone mapping.

Now, we obtain the following result.

Theorem 4.48. Let C' be a nonempty closed conver subset of a real Hilbert space
H,let {F,:CxC—->R, k=1,2,...,N} be a finite family of mized equilibrium
functions satisfying conditions (H1)-(H3). Let S = {S(s) : 0 < s < oo} be a
NONETPANSIVE SEMIGTOUD on C and let {tn} be a positive real divergent sequence. Let
{Vi: C — C}2, be a countable family of uniformly &-strict pseudo-contractions,
{T; : C — C}2, be the countable family of nonezpansive mappings defined by
Tix =tz + (1 —t)Viz,Vz € C,Vi > 1,t € [€,1), W, be the W-mapping defined by
(4.38) and W be a mapping defined by (4.39) with F(W) # 0. Let A,B:C — H
be vy, B-inverse-strongly monotone mapping and S4,Sp be k., kg-strictly pseudo-

contraction mapping of C into C for some 0 < k, < 1, 0 < kg < 1 such that
© := F(S)NF(W) N (ML SMEP(F)) N F(S4) N F(Sg) # 0.

Let r, > 0,k = 1,2,..., N, which are constants. Let {z,}, {yn}, {vn}, {22} and
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{un} be sequences generated by zo € C, C; = C, z; = Ps,x9, u, € C and

)
o =z € C chosen arbitrary,

u, = KF¥ K- KIve KPP KP g,

TN—-1,n" TN-2,n" T2,n

Un = (1 - /\n)yn + /\nSAyna

1 [t (4.73)
Zn = QU + (1 — an)t—/ S(s)W,vnds,
n Jo

Coir = {z € Co |lzw— 2I? < llzn — 2|I2 = an(l — an) ||

_ %/Otn S(s)anndSIIQ},

Tny1 = Pan.'L‘(), n e N,

\
where KF : C — C, k=1,2,...,N is the mapping defined by (2.16) and {a,
Tk

be a sequence in (0, 1) for alln € N. Assume the following conditions are satisfied:

(C1) m : C x C — H is Lg-Lipschitz continuous with constant k = 1,2,... N
such that

(a) ne(z,y) +ne(y, ) =0, Vz,yeC,
(b) = m(z,y) is affine,
(c) for each fized y € C, y — ni(z,y) is sequentially continuous from the

weak topology to the weak topology;

(C2) Kt : C — R is ny-strongly conver with constant o, > 0 and its derivative
K is not only sequentially continuous from the weak topology to the strong
topology but also Lipschitz continuous with a Lipschitz constant vy > 0 such

that T > Lkl/k,‘

(C3) For each k € {1,2,...,N} and for all x € C, there exist a bounded subset
D, C C and z, € C such that for any y € C\D,,

By ) + 6(z2) = o) + - (K'0) = K'(0),n(e ) )< 0



43

(C4) {an} C e, d] for some c,d € (€,1);
(C5) {An} C lay, by for some ay,b; € (0,29];
(C6) {0n} C a2, bs] for some ay, by € (0, 2;6];

(C7) liminf, o7k, > 0 for each k €1,2,3,...,N
Then, {x,} and {u,} converge strongly to z = Pozy.

Proof. Taking A=1~-S4 and B = I — Sp. Then we see that 4, B is 1_"”, 1-rg_

2 2

inverse-strongly monotone mapping, respectively. We have F(S4) = VI(C, A) and
F(Sp) =VI(C, B). So, we have

Yo = Po(un — 0, Bun) = Po((1 — 6,)un + 8,S8U,) = (1 = 6,)un + 6,5pu, € C.
and
Up = PC(yn - ’\nAyn) S PC'((1 - ’\n)yn = /\nSAyN) — (1 - ’\n)yn + /\nSAyn eC.

By using Theorem 4.46, it is easy to obtain the desired conclusion. O



