CHAPTER IV

MAIN RESULTS

In this section, we will introduce an iterative scheme by using a shrinking projection method for finding the common element of the set of common fixed points for nonexpansive semigroups, the set of common fixed points for an infinite family of ξ -strict pseudo-contraction, the set of solutions of a systems of mixed equilibrium problems and the set of solutions of the variational inclusions problem in a real Hilbert space.

In order to prove our main results, we need the following lemmas.

Lemma 4.43. [45] Let $V: C \to H$ be a ξ -strict pseudo-contraction, then

- (1) the fixed point set F(V) of V is closed convex so that the projection $P_{F(V)}$ is well defined;
- (2) define a mapping $T: C \to H$ by

$$Tx = tx + (1 - t)Vx, \forall x \in C$$
(4.36)

If $t \in [\xi, 1)$, then T is a nonexpansive mapping such that F(V) = F(T).

A family of mappings $\{V_i: C \to H\}_{i=1}^{\infty}$ is called a family of uniformly ξ -strict pseudo-contractions, if there exists a constant $\xi \in [0,1)$ such that

$$||V_i x - V_i y||^2 \le ||x - y||^2 + \xi ||(I - V_i) x - (I - V_i) y||^2, \ \forall x, y \in C, \forall i \ge 1.$$

Let $\{V_i:C\to C\}_{i=1}^\infty$ be a countable family of uniformly ξ -strict pseudo-contractions. Let

 $\{T_i:C\to C\}_{i=1}^\infty$ be the sequence of nonexpansive mappings defined by (4.36), i.e.,

$$T_i x = tx + (1 - t)V_i x, \forall x \in C, \forall i \ge 1, t \in [\xi, 1)$$
 (4.37)

Let $\{T_i\}$ be a sequence of nonexpansive mappings of C into itself defined by (4.37) and let $\{\mu_i\}$ be a sequence of nonnegative numbers in [0,1]. For

each $n \geq 1$, define a mapping W_n of C into itself as follows:

$$U_{n,n+1} = I,$$

$$U_{n,n} = \mu_n T_n U_{n,n+1} + (1 - \mu_n) I,$$

$$U_{n,n-1} = \mu_{n-1} T_{n-1} U_{n,n} + (1 - \mu_{n-1}) I,$$

$$\vdots$$

$$U_{n,k} = \mu_k T_k U_{n,k+1} + (1 - \mu_k) I,$$

$$U_{n,k-1} = \mu_{k-1} T_{k-1} U_{n,k} + (1 - \mu_{k-1}) I,$$

$$\vdots$$

$$U_{n,2} = \mu_2 T_2 U_{n,3} + (1 - \mu_2) I,$$

$$W_n = U_{n,1} = \mu_1 T_1 U_{n,2} + (1 - \mu_1) I.$$

$$(4.38)$$

Such a mapping W_n is nonexpansive from C to C and it is called the W-mapping generated by $T_1, T_2, ..., T_n$ and $\mu_1, \mu_2, ..., \mu_n$. For each $n, k \in \mathbb{N}$, let the mapping $U_{n,k}$ be defined by (4.38). Then we can have the following crucial conclusions concerning W_n .

Lemma 4.44. [33, 44] Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T_1, T_2, ...$ be an infinite family of nonexpansive mappings of C into itself such that $\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$, let $\mu_1, \mu_2, ...$ be real numbers such that $0 \leq \mu_n \leq b < 1$ for every $n \geq 1$. Then,

- (1) for every $x \in C$ and $k \in \mathbb{N}$, the limit $\lim_{n \to \infty} U_{n,k}x$ exists;
- (2) the mapping W of C into itself as follows:

$$Wx = \lim_{n \to \infty} W_n x = \lim_{n \to \infty} U_{n,1} x, \quad x \in C, \tag{4.39}$$

is a nonexpansive mapping satisfying $F(W) = \bigcap_{n=1}^{\infty} F(T_n)$, which it is called the W-mapping generated by $T_1, T_2, ...$ and $\mu_1, \mu_2, ...$

(3) $F(W_n) = \bigcap_{n=1}^{\infty} F(T_n)$, for each $n \ge 1$;

(4) If E is any bounded subset of C, then $\lim_{n\to\infty} \sup_{x\in E} ||Wx - W_nx|| = 0$.

Theorem 4.45. Let C be a nonempty closed convex subset of a real Hilbert space H, let $\{F_k: C \times C \to \mathcal{R}, k=1,2,\ldots,N\}$ be a finite family of mixed equilibrium functions satisfying conditions (H1)-(H3). Let $S=\{S(s): 0 \leq s < \infty\}$ be a nonexpansive semigroup on C and let $\{t_n\}$ be a positive real divergent sequence. Let $\{V_i: C \to C\}_{i=1}^{\infty}$ be a countable family of uniformly ξ -strict pseudo-contractions, $\{T_i: C \to C\}_{i=1}^{\infty}$ be the countable family of nonexpansive mappings defined by $T_i x = t x + (1-t)V_i x, \forall x \in C, \forall i \geq 1, t \in [\xi, 1), W_n$ be the W-mapping defined by (4.38) and W be a mapping defined by (4.39) with $F(W) \neq \emptyset$. Let $A, B: C \to H$ be γ, β -inverse-strongly monotone mappings and $M_1, M_2: H \longrightarrow 2^H$ be maximal monotone mappings such that

$$\Theta := F(\mathcal{S}) \cap F(W) \cap \left(\bigcap_{k=1}^{N} SMEP(F_k) \right) \cap I(A, M_1) \cap I(B, M_2) \neq \emptyset.$$

Let $r_k > 0, k = 1, 2, ..., N$, which are constants. Let $\{x_n\}$, $\{y_n\}$, $\{v_n\}$, $\{z_n\}$ and $\{u_n\}$ be sequences generated by $x_0 \in C$, $C_1 = C$, $x_1 = P_{C_1}x_0$, $u_n \in C$ and

$$\begin{cases} x_{0} = x \in C \text{ chosen arbitrary,} \\ u_{n} = K_{r_{N,n}}^{F_{N}} K_{r_{N-1,n}}^{F_{N-1}} K_{r_{N-2,n}}^{F_{N-2}} \dots K_{r_{2,n}}^{F_{2}} K_{r_{1,n}}^{F_{1}} x_{n}, \\ u_{n} = J_{M_{2},\delta_{n}}(u_{n} - \delta_{n}Bu_{n}), \\ v_{n} = J_{M_{2},\delta_{n}}(u_{n} - \delta_{n}Bu_{n}), \\ v_{n} = J_{M_{1},\lambda_{n}}(y_{n} - \lambda_{n}Ay_{n}), \\ z_{n} = \alpha_{n}v_{n} + (1 - \alpha_{n})\frac{1}{t_{n}} \int_{0}^{t_{n}} S(s)W_{n}v_{n}ds, \\ C_{n+1} = \left\{z \in C_{n} : \|z_{n} - z\|^{2} \leq \|x_{n} - z\|^{2} - \alpha_{n}(1 - \alpha_{n})\|v_{n} - \frac{1}{t_{n}} \int_{0}^{t_{n}} S(s)W_{n}v_{n}ds\|^{2}\right\}, \\ x_{n+1} = P_{C_{n+1}}x_{0}, \quad n \in \mathbb{N}, \end{cases}$$

$$(4.40)$$

$$K_{r}^{F_{k}} : C \to C_{r}, k = 1, 2, N \text{ is the manning defined by (2.16) and (a.1)}$$

where $K_{r_k}^{F_k}: C \to C$, k = 1, 2, ..., N is the mapping defined by (2.16) and $\{\alpha_n\}$ be a sequence in (0, 1) for all $n \in \mathbb{N}$. Assume the following conditions are satisfied:

(C1) $\eta_k : \mathbb{C} \times \mathbb{C} \to H$ is L_k -Lipschitz continuous with constant k = 1, 2, ..., N such that

- (a) $\eta_k(x,y) + \eta_k(y,x) = 0$, $\forall x,y \in C$,
- (b) $x \mapsto \eta_k(x, y)$ is affine,
- (c) for each fixed $y \in C$, $y \mapsto \eta_k(x, y)$ is sequentially continuous from the weak topology to the weak topology;
- (C2) $K_k: C \to \mathcal{R}$ is η_k -strongly convex with constant $\sigma_k > 0$ and its derivative K'_k is not only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with a Lipschitz constant $\nu_k > 0$ such that $\sigma_k > L_k \nu_k$;
- (C3) For each $k \in \{1, 2, ..., N\}$ and for all $x \in C$, there exist a bounded subset $D_x \subset C$ and $z_x \in C$ such that for any $y \in C \setminus D_x$,

$$F_k(y, z_x) + \varphi(z_x) - \varphi(y) + \frac{1}{r_k} \langle \mathcal{K}'(y) - \mathcal{K}'(x), \eta(z_x, y) \rangle < 0;$$

- (C4) $\{\alpha_n\} \subset [c,d]$ for some $c,d \in (\xi,1)$;
- (C5) $\{\lambda_n\} \subset [a_1, b_1] \text{ for some } a_1, b_1 \in (0, 2\gamma];$
- (C6) $\{\delta_n\} \subset [a_2, b_2]$ for some $a_2, b_2 \in (0, 2\beta]$;
- (C7) $\liminf_{n\to\infty} r_{k,n} > 0$ for each $k \in 1, 2, 3, ..., N$.

Then, $\{x_n\}$ and $\{u_n\}$ converge strongly to $z = P_{\Theta}x_0$.

Proof. Pick any $p \in \Theta$. Taking $\mathfrak{S}_n^k = K_{r_{k,n}}^{F_k} K_{r_{k-1,n}}^{F_{k-1}} K_{r_{k-2,n}}^{F_{k-2}} \dots K_{r_{2,n}}^{F_2} K_{r_{1,n}}^{F_1}$ for $k \in \{1,2,3,\ldots,N\}$ and $\mathfrak{S}_n^0 = I$ for all $n \in \mathbb{N}$. From the definition of $K_{r_{k,n}}^{F_k}$ is non-expansive for each $k=1,2,3,\ldots,N$, then \mathfrak{S}_n^k also and $p=\mathfrak{S}_{r_{k,n}}^{F_k}p$, we note that $u_n=\mathfrak{S}_n^N x_n$. If follows that

$$||u_n - p|| = ||\Im_n^N x_n - \Im_n^N p|| \le ||x_n - p||.$$

Next, we will divide the proof into eight steps.

Step 1. We first show by induction that $\Theta \subset C_n$ for each $n \geq 1$.

Taking $p \in \Theta$, we get that $p = J_{M_1,\lambda_k}(p - \lambda_k Ap) = J_{M_2,\delta_k}(p - \delta_k Bp)$. Since J_{M_1,λ_k} , J_{M_2,δ_k} are nonexpansive. From the assumption, we see that $\Theta \subset C = C_1$. Suppose $\Theta \subset C_k$ for some $k \geq 1$. For any $p \in \Theta = C_k$, we have

$$||v_{k} - p|| = ||J_{M_{1},\lambda_{k}}(y_{k} - \lambda_{k}Ay_{k}) - J_{M_{1},\lambda_{k}}(p - \lambda_{k}Ap)||$$

$$\leq ||(y_{k} - \lambda_{k}Ay_{k}) - (p - \lambda_{k}Ap)||$$

$$\leq ||(I - \lambda_{k}A)y_{k} - (I - \lambda_{k}A)p||$$

$$\leq ||y_{k} - p||, \tag{4.41}$$

and

$$||y_{k} - p|| = ||J_{M_{2},\delta_{k}}(u_{k} - \delta_{k}Bu_{k}) - J_{M_{2},\delta_{k}}(p - \delta_{k}Bp)||$$

$$\leq ||(u_{k} - \delta_{k}Bu_{k}) - (p - \delta_{k}Bp)||$$

$$\leq ||u_{k} - p||$$

$$\leq ||x_{k} - p||.$$
(4.42)

Which yield that

$$||z_{k} - p||^{2}$$

$$= \left\| \alpha_{k}(v_{k} - p) + (1 - \alpha_{k}) \left(\frac{1}{t_{k}} \int_{0}^{t_{k}} S(s) W_{k} v_{k} ds - p \right) \right\|^{2}$$

$$\leq \alpha_{k} ||v_{k} - p||^{2} + (1 - \alpha_{k}) \left\| \frac{1}{t_{k}} \int_{0}^{t_{k}} S(s) W_{k} v_{k} ds - p \right\|^{2}$$

$$-\alpha_{k} (1 - \alpha_{k}) \left\| v_{k} - \frac{1}{t_{k}} \int_{0}^{t_{k}} S(s) W_{k} v_{k} ds \right\|^{2}$$

$$\leq \alpha_{k} ||v_{k} - p||^{2} + (1 - \alpha_{k}) ||v_{k} - p||^{2} - \alpha_{k} (1 - \alpha_{k}) \left\| v_{k} - \frac{1}{t_{k}} \int_{0}^{t_{k}} S(s) W_{k} v_{k} ds \right\|^{2}$$

$$\leq ||v_{k} - p||^{2} - \alpha_{k} (1 - \alpha_{k}) \left\| v_{k} - \frac{1}{t_{k}} \int_{0}^{t_{k}} S(s) W_{k} v_{k} ds \right\|^{2}. \tag{4.43}$$

Applying (4.41) and (4.42), we get

$$||z_k - p||^2 \le ||x_k - p||^2 - \alpha_k (1 - \alpha_k) ||v_k - \frac{1}{t_k} \int_0^{t_k} S(s) W_k v_k ds||^2. \quad (4.44)$$

Hence $p \in C_{k+1}$. This implies that $\Theta \subset C_n$ for each $n \geq 1$.

Step 2. Next, we show that $\{x_n\}$ is well defined and C_n is closed and convex for any $n \in \mathbb{N}$.

It is obvious that $C_1 = C$ is closed and convex. Suppose that C_k is closed and convex for some $k \geq 1$. Now, we show that C_{k+1} is closed and convex for some k. For any $p \in C_k$, we obtain

$$||z_k - p||^2 \le ||x_k - p||^2$$

is equivalent to

$$||z_k - x_k||^2 + 2\langle z_k - x_k, x_k - p \rangle \le 0.$$
(4.45)

Thus C_{k+1} is closed and convex. Then, C_n is closed and convex for any $n \in \mathbb{N}$. This implies that $\{x_n\}$ is well-defined.

Step 3. Next, we show that $\{x_n\}$ is bounded and $\lim_{n\to\infty} ||x_n-x_0||$ exists. From $x_n=P_{C_n}x_0$, we have

$$\langle x_0 - x_n, x_n - y \rangle \ge 0$$

for each $y \in C_n$. Using $\Theta \subset C_n$, we also have

$$\langle x_0 - x_n, x_n - p \rangle \ge 0, \quad \forall p \in \Theta \quad \text{and} \quad n \in \mathbb{N}.$$

So, for $p \in \Theta$. We observe that

$$0 \leq \langle x_0 - x_n, x_n - p \rangle$$

$$= \langle x_0 - x_n, x_n - x_0 + x_0 - p \rangle$$

$$= -\langle x_0 - x_n, x_0 - x_n \rangle + \langle x_0 - x_n, x_0 - p \rangle$$

$$\leq -\|x_0 - x_n\|^2 + \|x_0 - x_n\| \|x_0 - p\|.$$

This implies that

$$||x_0 - x_n|| \le ||x_0 - p||, \quad \forall p \in \Theta \quad \text{and} \quad n \in \mathbb{N}.$$

Hence, we get $\{x_n\}$ is bounded. It follows by (4.41)-(4.43), that $\{v_n\}, \{y_n\}$ and $\{W_nv_n\}$ are also bounded. From $x_n = P_{C_n}x_0$, and $x_{n+1} = P_{C_{n+1}}x_0 \in C_{n+1} \subset C_n$, we obtain

$$\langle x_0 - x_n, x_n - x_{n+1} \rangle \ge 0.$$
 (4.46)

It follows that, we have for each $n \in \mathbb{N}$

$$0 \leq \langle x_0 - x_n, x_n - x_{n+1} \rangle$$

$$= \langle x_0 - x_n, x_n - x_0 + x_0 - x_{n+1} \rangle$$

$$= -\langle x_0 - x_n, x_0 - x_n \rangle + \langle x_0 - x_n, x_0 - x_{n+1} \rangle$$

$$\leq -\|x_0 - x_n\|^2 + \|x_0 - x_n\| \|x_0 - x_{n+1}\|.$$

It follows that

$$||x_0 - x_n|| \le ||x_0 - x_{n+1}||$$
.

Thus, since the sequence $\{\|x_n - x_0\|\}$ is a bounded and nondecreasing sequence, so $\lim_{n \to \infty} \|x_n - x_0\|$ exists, that is

$$m = \lim_{n \to \infty} \|x_n - x_0\|. \tag{4.47}$$

Step 4. Next, we show that $\lim_{n\to\infty} ||x_{n+1}-x_n|| = 0$ and $\lim_{n\to\infty} ||x_n-z_n|| = 0$.

Applying (4.46), we get

$$||x_{n} - x_{n+1}||^{2}$$

$$= ||x_{n} - x_{0} + x_{0} - x_{n+1}||^{2}$$

$$= ||x_{n} - x_{0}||^{2} + 2\langle x_{n} - x_{0}, x_{0} - x_{n+1} \rangle + ||x_{0} - x_{n+1}||^{2}$$

$$= ||x_{n} - x_{0}||^{2} + 2\langle x_{n} - x_{0}, x_{0} - x_{n} + x_{n} - x_{n+1} \rangle + ||x_{0} - x_{n+1}||^{2}$$

$$= ||x_{n} - x_{0}||^{2} + 2\langle x_{n} - x_{0}, x_{n} - x_{0} \rangle + 2\langle x_{n} - x_{0}, x_{n} - x_{n+1} \rangle + ||x_{0} - x_{n+1}||^{2}$$

$$= -||x_{n} - x_{0}||^{2} + 2\langle x_{n} - x_{0}, x_{n} - x_{n+1} \rangle + ||x_{0} - x_{n+1}||^{2}$$

$$\leq -||x_{n} - x_{0}||^{2} + ||x_{0} - x_{n+1}||^{2}.$$

Thus, by (4.47), we obtain

$$\lim_{n \to \infty} ||x_n - x_{n+1}|| = 0. (4.48)$$

On the other hand, from $x_{n+1} = P_{C_{n+1}}x_0 \in C_{n+1} \subset C_n$, which implies that

$$||x_{n+1} - z_n|| \le ||x_{n+1} - x_n||. \tag{4.49}$$

It follows by (4.49), we also have

$$||z_n - x_n|| \le ||z_n - x_{n+1}|| + ||x_{n+1} - x_n|| \le 2||x_n - x_{n+1}||.$$

By (4.48), we obtain

$$\lim_{n \to \infty} \|x_n - z_n\| = 0. {(4.50)}$$

Step 5. Next, we show that

$$\lim_{n \to \infty} \|\mathfrak{J}_n^k x_n - \mathfrak{J}_n^{k-1} x_n\| = 0 \tag{4.51}$$

for every $k \in \{1, 2, 3, ..., N\}$. Indeed, for $p \in \Theta$, note that $K_{r_{k,n}}^{F_k}$ is the firmly nonexpansie, so we have

$$\begin{split} \|\Im_{n}^{k}x_{n} - \Im_{n}^{k}p\|^{2} &= \|K_{r_{k,n}}^{F_{k}}\Im_{n}^{k-1}x_{n} - K_{r_{k,n}}^{F_{k}}p\|^{2} \\ &\leq \langle \Im_{n}^{k}x_{n} - p, \Im_{n}^{k-1}x_{n} - p \rangle \\ &= \frac{1}{2} \Big\{ \|\Im_{n}^{k}x_{n} - p\|^{2} + \|\Im_{n}^{k-1}x_{n} - p\|^{2} - \|\Im_{n}^{k}x_{n} - \Im_{n}^{k-1}x_{n}\|^{2} \Big\}. \end{split}$$

Thus, we get

$$\|\Im_n^k x_n - \Im_n^k p\|^2 \le \|\Im_n^{k-1} x_n - p\|^2 - \|\Im_n^k x_n - \Im_n^{k-1} x_n\|^2.$$

It follows that

$$||u_{n} - p||^{2} \leq ||\Im_{n}^{k} x_{n} - \Im_{n}^{k} p||^{2}$$

$$\leq ||\Im_{n}^{k-1} x_{n} - p||^{2} - ||\Im_{n}^{k} x_{n} - \Im_{n}^{k-1} x_{n}||^{2}$$

$$\leq ||x_{n} - p||^{2} - ||\Im_{n}^{k} x_{n} - \Im_{n}^{k-1} x_{n}||^{2}.$$

$$(4.52)$$

By (4.41), (4.42), (4.43) and (4.52), we have for each $k \in \{1, 2, 3, ..., N\}$

$$||z_n - p||^2 \le ||v_n - p||^2$$

$$\le ||u_n - p||^2$$

$$\le ||x_n - p||^2 - ||\Im_n^k x_n - \Im_n^{k-1} x_n||^2.$$

Consequently, we have

$$\|\Im_n^k x_n - \Im_n^{k-1} x_n\|^2 \le \|x_n - p\|^2 - \|z_n - p\|^2$$

$$\le \|x_n - z_n\|(\|x_n - p\| + \|z_n - p\|).$$

Since (4.50) implies that for every $k \in \{1, 2, 3, ..., N\}$

$$\lim_{n \to \infty} \|\mathfrak{S}_n^k x_n - \mathfrak{S}_n^{k-1} x_n\| = 0. \tag{4.53}$$

Step 6. Next, we show that $\lim_{n\to\infty} ||y_n - v_n|| = 0$ and $\lim_{n\to\infty} ||\mathcal{K}_n W_n v_n - v_n|| = 0$, where $\mathcal{K}_n = \frac{1}{t_n} \int_0^{t_n} S(s) ds$

For any given $p \in \Theta$, $\lambda_n \in (0, 2\gamma]$, $\delta_n \in (0, 2\beta]$ and $p = J_{M_1, \lambda_n}(p - \lambda_n Ap) = J_{M_2, \delta_n}(p - \delta_n Bp)$. Since $I - \lambda_n A$ and $I - \delta_n B$ are nonexpansive, we have

$$||v_{n} - p||^{2} = ||J_{M_{1},\lambda_{n}}(y_{n} - \lambda_{n}Ay_{n}) - J_{M_{1},\lambda_{n}}(p - \lambda_{n}Ap)||^{2}$$

$$\leq ||(y_{n} - \lambda_{n}Ay_{n}) - (p - \lambda_{n}Ap)||^{2}$$

$$= ||(y_{n} - p) - \lambda_{n}(Ay_{n} - Ap)||^{2}$$

$$\leq ||y_{n} - p||^{2} - 2\lambda_{n}\langle y_{n} - p, Ay_{n} - Ap\rangle + \lambda_{n}^{2}||Ay_{n} - Ap||^{2}$$

$$\leq ||x_{n} - p||^{2} - 2\lambda_{n}\gamma||Ay_{n} - Ap||^{2} + \lambda_{n}^{2}||Ay_{n} - Ap||^{2}$$

$$\leq ||x_{n} - p||^{2} + \lambda_{n}(\lambda_{n} - 2\gamma)||Ay_{n} - Ap||^{2}.$$

$$(4.54)$$

Similarly, we can show that

$$||y_n - p||^2 \le ||x_n - p||^2 + \delta_n(\delta_n - 2\beta)||Bu_n - Bp||^2.$$
 (4.55)

Observe that

$$||z_{n} - p||^{2} = ||\alpha_{n}(v_{n} - p) + (1 - \alpha_{n})\left(\frac{1}{t_{n}}\int_{0}^{t_{n}}S(s)W_{n}v_{n}ds - p\right)||^{2}$$

$$\leq \alpha_{n}||v_{n} - p||^{2} + (1 - \alpha_{n})\left||\frac{1}{t_{n}}\int_{0}^{t_{n}}S(s)W_{n}v_{n}ds - p\right||^{2}$$

$$-\alpha_{n}(1 - \alpha_{n})\left||v_{n} - \frac{1}{t_{n}}\int_{0}^{t_{n}}S(s)W_{n}v_{n}ds\right||^{2}$$

$$\leq \alpha_{n}||v_{n} - p||^{2} + (1 - \alpha_{n})\left||\frac{1}{t_{n}}\int_{0}^{t_{n}}S(s)W_{n}v_{n}ds - p\right||^{2}$$

$$\leq \alpha_{n}||x_{n} - p||^{2} + (1 - \alpha_{n})||v_{n} - p||^{2}. \tag{4.56}$$

Substituting (4.54) into (4.56) and using conditions (C4) and (C5), we have

$$||z_n - p||^2 \le \alpha_n ||x_n - p||^2 + (1 - \alpha_n) \{ ||x_n - p||^2 + \lambda_n (\lambda_n - 2\gamma) ||Ay_n - Ap||^2 \}$$

$$= ||x_n - p||^2 + (1 - \alpha_n) \lambda_n (\lambda_n - 2\gamma) ||Ay_n - Ap||^2.$$

It follows that

$$(1-d)a_1(2\gamma - b_1)||Ay_n - Ap||^2 \leq (1-\alpha_n)\lambda_n(2\gamma - \lambda_n)||Ay_n - Ap||^2$$

$$\leq ||x_n - p||^2 - ||z_n - p||^2$$

$$\leq ||x_n - z_n||(||x_n - p|| + ||z_n - p||).$$

By (4.50), we obtain

$$\lim_{n \to \infty} ||Ay_n - Ap|| = 0. (4.57)$$

Since the resolvent operator J_{M_1,λ_n} is 1-inverse-strongly monotone, we obtain

$$||v_{n} - p||^{2} = ||J_{M_{1},\lambda_{n}}(y_{n} - \lambda_{n}Ay_{n}) - J_{M_{1},\lambda_{n}}(p - \lambda_{n}Ap)||^{2}$$

$$= ||J_{M_{1},\lambda_{n}}(I - \lambda_{n}A)y_{n} - J_{M_{1},\lambda_{n}}(I - \lambda_{n}A)p||^{2}$$

$$\leq \langle (I - \lambda_{n}A)y_{n} - (I - \lambda_{n}A)p, v_{n} - p \rangle$$

$$= \frac{1}{2} \Big\{ ||(I - \lambda_{n}A)y_{n} - (I - \lambda_{n}A)p||^{2} + ||v_{n} - p||^{2}$$

$$- ||(I - \lambda_{n}A)y_{n} - (I - \lambda_{n}A)p - (v_{n} - p)||^{2} \Big\}$$

$$\leq \frac{1}{2} \Big\{ ||y_{n} - p||^{2} + ||v_{n} - p||^{2} - ||(y_{n} - v_{n}) - \lambda_{n}(Ay_{n} - Ap)||^{2} \Big\}$$

$$\leq \frac{1}{2} \Big\{ ||x_{n} - p||^{2} + ||v_{n} - p||^{2} - ||y_{n} - v_{n}||^{2}$$

$$- \lambda_{n}^{2} ||Ay_{n} - Ap||^{2} + 2\lambda_{n} \langle y_{n} - v_{n}, Ay_{n} - Ap \rangle \Big\},$$

which yields that

$$||v_n - p||^2 \le ||x_n - p||^2 - ||y_n - v_n||^2 + 2\lambda_n ||y_n - v_n|| ||Ay_n - Ap||.$$

$$(4.58)$$

Similarly, we can obtain

$$||y_n - p||^2 \le ||x_n - p||^2 - ||u_n - y_n||^2 + 2\delta_n ||u_n - y_n|| ||Bu_n - Bp||.$$
 (4.59)

Substituting (4.58) into (4.56), and using condition (C4) and (C5), we have

$$||z_{n} - p||^{2}$$

$$\leq \alpha_{n} ||x_{n} - p||^{2} + (1 - \alpha_{n}) ||v_{n} - p||^{2}$$

$$\leq \alpha_{n} ||x_{n} - p||^{2} + (1 - \alpha_{n}) \left\{ ||x_{n} - p||^{2} - ||y_{n} - v_{n}||^{2} + 2\lambda_{n} ||y_{n} - v_{n}|| ||Ay_{n} - Ap|| \right\}$$

$$= ||x_{n} - p||^{2} - (1 - \alpha_{n}) ||y_{n} - v_{n}||^{2} + 2(1 - \alpha_{n})\lambda_{n} ||y_{n} - v_{n}|| ||Ay_{n} - Ap||.$$

It follows that

$$(1 - \alpha_n) \|y_n - v_n\|^2$$

$$\leq \|x_n - p\|^2 - \|z_n - p\|^2 + 2(1 - \alpha_n)\lambda_n \|y_n - v_n\| \|Ay_n - Ap\|$$

$$\leq \|x_n - z_n\| (\|x_n - p\| + \|z_n - p\|) + 2(1 - \alpha_n)\lambda_n \|y_n - v_n\| \|Ay_n - Ap\|.$$

By (4.50) and (4.57), we get

$$\lim_{n \to \infty} \|y_n - v_n\| = 0. {(4.60)}$$

From (4.44) and (C4), we also have

$$\alpha_{n}(1-\alpha_{n})\left\|v_{n}-\frac{1}{t_{n}}\int_{0}^{t_{n}}S(s)W_{n}v_{n}ds\right\|^{2} \leq \|x_{n}-p\|^{2}-\|z_{n}-p\|^{2}$$

$$\leq \|x_{n}-z_{n}\|(\|x_{n}-p\|+\|z_{n}-p\|).$$

Since $\mathcal{K}_n = \frac{1}{t_n} \int_0^{t_n} S(s) ds$, we obtain (4.50), we have

$$\lim_{n \to \infty} \|\mathcal{K}_n W_n v_n - v_n\| = 0. \tag{4.61}$$

Since $\{W_n v_n\}$ is a bounded sequence in C, from Lemma 2.41 for all $h \geq 0$, we have

$$\lim_{n \to \infty} \| \mathcal{K}_n W_n v_n - S(h) \mathcal{K}_n W_n v_n \|$$

$$= \lim_{n \to \infty} \left\| \frac{1}{t_n} \int_0^{t_n} S(s) W_n v_n ds - S(h) \left(\frac{1}{t_n} \int_0^{t_n} S(s) W_n v_n ds \right) \right\| = 0. \quad (4.62)$$

It follows from (4.61) and (4.62), we get

$$||v_{n} - S(s)v_{n}||$$

$$\leq ||v_{n} - \mathcal{K}_{n}W_{n}v_{n}|| + ||\mathcal{K}_{n}W_{n}v_{n} - S(s)\mathcal{K}_{n}W_{n}v_{n}|| + ||S(s)\mathcal{K}_{n}W_{n}v_{n} - S(s)v_{n}||$$

$$\leq 2||v_{n} - \mathcal{K}_{n}W_{n}v_{n}|| + ||\mathcal{K}_{n}W_{n}v_{n} - S(s)\mathcal{K}_{n}W_{n}v_{n}||.$$

So, we have

$$\lim_{n \to \infty} ||v_n - S(s)v_n|| = 0. \tag{4.63}$$

Step 7. Next, we show that $q \in \Theta := F(S) \cap F(W) \cap (\bigcap_{k=1}^{N} SMEP(F_k)) \cap I(A, M_1) \cap I(B, M_2) \neq \emptyset$.

Since $\{v_{n_i}\}$ is bounded, there exists a subsequence $\{v_{n_{i_j}}\}$ of $\{v_{n_i}\}$ which converges weakly to $q \in C$. Without loss of generality, we can assume that $v_{n_i} \rightharpoonup q$.

- (1) First, we prove that $q \in F(S)$. Indeed, from Lemma 2.42 and (4.63), we get $q \in F(S)$, i.e., $q = S(s)q, \forall s \geq 0$.
- (2) We show that $q \in F(W) = \bigcap_{n=1}^{\infty} F(W_n)$, where $F(W_n) = \bigcap_{i=1}^{\infty} F(T_i)$, $\forall n \geq 1$ and $F(W_{n+1}) \subset F(W_n)$. Assume that $q \notin F(W)$, then there exists a positive integer m such that $q \notin F(T_m)$ and so $q \notin \bigcap_{i=1}^m F(T_i)$. Hence for any $n \geq m$, $q \notin \bigcap_{i=1}^n F(T_i) = F(W_n)$, i.e., $q \neq W_n q$. This together with q = S(s)q, $\forall s \geq 0$ shows $q = S(s)q \neq S(s)W_n q$, $\forall s \geq 0$, therefore we have $q \neq \mathcal{K}_n W_n q$, $\forall n \geq m$. It follows from the Opial's condition and (4.61) that

$$\lim_{i \to \infty} \inf \|v_{n_{i}} - q\| < \lim_{i \to \infty} \inf \|v_{n_{i}} - \mathcal{K}_{n_{i}} W_{n_{i}} q\|
\leq \lim_{i \to \infty} \inf (\|v_{n_{i}} - \mathcal{K}_{n_{i}} W_{n_{i}} v_{n_{i}}\| + \|\mathcal{K}_{n_{i}} W_{n_{i}} v_{n_{i}} - \mathcal{K}_{n_{i}} W_{n_{i}} q\|)
\leq \lim_{i \to \infty} \inf \|v_{n_{i}} - q\|,$$

which is a contradiction. Thus, we get $q \in F(W)$.

(3) We prove that $q \in \bigcap_{k=1}^N SMEP(F_k, \varphi)$. Since $\mathfrak{F}_n^k = \mathcal{K}_{r_k}^{F_k}$, k = 1, 2, ..., N and $u_n^k = \mathfrak{F}_n^k x_n$, we have

$$F_k(\Im_n^k x_n, x) + \varphi(x) - \varphi(\Im_n^k x_n) + \frac{1}{r_k} \left\langle \mathcal{K}'(\Im_n^k x_n) - \mathcal{K}'(\Im_n^{k-1} x_n), \eta(x, \Im_n^k x_n) \right\rangle \ge 0, \forall x \in C.$$

It follows that

$$\frac{1}{r_k} \left\langle \mathcal{K}'(\Im_{n_i}^k x_{n_i}) - \mathcal{K}'(\Im_{n_i}^{k-1} x_{n_i}), \eta(x, \Im_{n_i}^k x_{n_i}) \right\rangle \ge -F_k(\Im_{n_i}^k x_{n_i}, x) - \varphi(x) + \varphi(\Im_{n_i}^k x_{n_i}, x) - \varphi(x) + \varphi(X) +$$

for all $x \in C$. From (4.53) and by conditions (C1)(c) and (C2), we get

$$\lim_{n_i \to \infty} \frac{1}{r_k} \left\langle \mathcal{K}'(\Im_{n_i}^k x_{n_i}) - \mathcal{K}'(\Im_{n_i}^{k-1} x_{n_i}), \eta(x, \Im_{n_i}^k x_{n_i}) \right\rangle = 0.$$

By the assumption and by the condition (H1), we know that the function φ and the mapping $x \longmapsto (-F_k(x,y))$ both are convex and lower semicontinuous, hence they are weakly lower semicontinuous.

These together with $\frac{\mathcal{K}'(\Im_{n_i}^k x_{n_i}) - \mathcal{K}'(\Im_{n_i}^{k-1} x_{n_i})}{r_k} \to 0$ and $\Im_{n_i}^k x_{n_i} \rightharpoonup q$, we have

$$0 = \liminf_{n_i \to \infty} \left\langle \frac{\mathcal{K}'(\Im_{n_i}^k x_{n_i}) - \mathcal{K}'(\Im_{n_i}^{k-1} x_{n_i})}{r_k}, \eta(x, \Im_{n_i}^k x_{n_i}) \right\rangle$$

$$\geq \liminf_{n_i \to \infty} \left\{ -F_k(\Im_{n_i}^k x_{n_i}, x) - \varphi(x) + \varphi(\Im_{n_i}^k x_{n_i}) \right\}.$$

Then, we obtain

$$F_k(q, x) + \varphi(x) - \varphi(q) \ge 0, \quad \forall x \in C, \quad \forall k = 1, 2, \dots, N.$$

$$(4.65)$$

Therefore $q \in \bigcap_{k=1}^{N} SMEP(F_k, \varphi)$.

(4) Lastly, we prove that $q \in I(A, M_1) \cap I(B, M_2)$.

We observe that A is an $1/\gamma$ -Lipschitz monotone mapping and D(A) = H. From Lemma 2.26, we know that $M_1 + A$ is maximal monotone. Let $(v, g) \in G(M_1 + A)$ that is, $g - Av \in M_1(v)$. Since $v_{n_i} = J_{M_1,\lambda_{n_i}}(y_{n_i} - \lambda_{n_i}Ay_{n_i})$, we have

$$y_{n_i} - \lambda_{n_i} A y_{n_i} \in (I + \lambda_{n_i} M_1)(v_{n_i}),$$

that is,

$$\frac{1}{\lambda_{n_i}}(y_{n_i} - v_{n_i} - \lambda_{n_i} A y_{n_i}) \in M_1(v_{n_i}). \tag{4.66}$$

By virtue of the maximal monotonicity of $M_1 + A$, we have

$$\left\langle v - v_{n_i}, g - Av - \frac{1}{\lambda_{n_i}} (y_{n_i} - v_{n_i} - \lambda_{n_i} A y_{n_i}) \right\rangle \ge 0,$$
 (4.67)

and so

$$\left\langle v - v_{n_{i}}, g \right\rangle \geq \left\langle v - v_{n_{i}}, Av + \frac{1}{\lambda_{n_{i}}} (y_{n_{i}} - v_{n_{i}} - \lambda_{n_{i}} Ay_{n_{i}}) \right\rangle
= \left\langle v - v_{n_{i}}, Av - Av_{n_{i}} + Av_{n_{i}} - Ay_{n_{i}} + \frac{1}{\lambda_{n_{i}}} (y_{n_{i}} - v_{n_{i}}) \right\rangle (4.68)
\geq 0 + \left\langle v - v_{n_{i}}, Av_{n_{i}} - Ay_{n_{i}} \right\rangle + \left\langle v - v_{n_{i}}, \frac{1}{\lambda_{n_{i}}} (y_{n_{i}} - v_{n_{i}}) \right\rangle.$$

By (4.60), $v_{n_i} \rightharpoonup q$ and A is inverse-strongly monotone, we obtain that $\lim_{n\to\infty} ||Ay_n - Av_n|| = 0$ and it follows that

$$\lim_{n_i \to \infty} \langle v - v_{n_i}, g \rangle = \langle v - q, g \rangle \ge 0.$$
 (4.69)

It follows from the maximal monotonicity of $M_1 + A$ that $\theta \in (M_1 + A)(q)$, that is, $q \in I(A, M_1)$. Since $\{y_{n_i}\}$ is bounded, there exists a subsequence $\{y_{n_{i_j}}\}$ of $\{y_{n_i}\}$ which converges weakly to $q \in C$. Without loss of generality, we can assume that $y_{n_i} \rightharpoonup q$. In similar way, we can obtain $q \in I(B, M_2)$, hence $q \in I(A, M_1) \cap I(B, M_2)$

Step 8. Finally, we show that $x_n \longrightarrow z$ and $u_n \longrightarrow z$, where $z = P_{\Theta}x_0$.

Since Θ is nonempty closed convex subset of H, there exists a unique $z' \in \Theta$ such that $z' = P_{\Theta}x_0$. Since $z' \in \Theta \subset C_n$ and $x_n = P_{C_n}x_0$, we have

$$||x_0 - x_n|| \le ||x_0 - P_{C_n} x_0|| \le ||x_0 - z'|| \tag{4.70}$$

for all $n \in \mathbb{N}$. From (4.70) and $\{x_n\}$ is bounded, so $\omega_w(x_n) \neq \emptyset$.

By the weakly lower semicontinuous of the norm, we have

$$||x_0 - z|| \le \liminf_{n_i \to \infty} ||x_0 - x_{n_i}|| \le ||x_0 - z'||.$$
(4.71)

However, since $z \in \omega_w(x_n) \subset \Theta$, we have

$$||x_0 - z'|| \le ||x_0 - P_{C_2} x_0|| \le ||x_0 - z||$$

Using (4.70) and (4.71), we obtain z'=z. Thus $\omega_w(x_n)=\{z\}$ and $x_n\rightharpoonup z$. So, we have

$$||x_0 - z'|| \le ||x_0 - z|| \le \liminf_{n \to \infty} ||x_0 - x_n|| \le \limsup_{n \to \infty} ||x_0 - x_n|| \le ||x_0 - z'||.$$

Thus, we obtain that

$$||x_0 - z|| = \lim_{n \to \infty} ||x_0 - x_n|| = ||x_0 - z'||.$$

From $x_n \rightharpoonup z$, we obtain $(x_0 - x_n) \rightharpoonup (x_0 - z)$. Using the Kadec-Klee property, we obtain that

$$||x_n-z||=||(x_n-x_0)-(z-x_0)||\longrightarrow 0$$
 as $n\longrightarrow \infty$

and hence $x_n \longrightarrow z$ in norm. Finally, noticing $||u_n - z|| = ||\Im_n^N x_n - \Im_n^N z|| \le ||x_n - z||$. We also conclude that $u_n \longrightarrow z$ in norm. This completes the proof.

Theorem 4.46. Let C be a nonempty closed convex subset of a real Hilbert space H, let $\{F_k: C \times C \to \mathcal{R}, k=1,2,\ldots,N\}$ be a finite family of mixed equilibrium functions satisfying conditions (H1)-(H3). Let $S = \{S(s): 0 \leq s < \infty\}$ be a nonexpansive semigroup on C and let $\{t_n\}$ be a positive real divergent sequence. Let $\{V_i: C \to C\}_{i=1}^{\infty}$ be a countable family of uniformly ξ -strict pseudo-contractions, $\{T_i: C \to C\}_{i=1}^{\infty}$ be the countable family of nonexpansive mappings defined by $T_i x = t x + (1-t)V_i x, \forall x \in C, \forall i \geq 1, t \in [\xi, 1), W_n$ be the W-mapping defined by (4.38) and W be a mapping defined by (4.39) with $F(W) \neq \emptyset$. Let $A, B: C \to H$ be γ, β -inverse-strongly monotone mapping. Such that

$$\Theta := F(\mathcal{S}) \cap F(W) \cap \left(\cap_{k=1}^{N} SMEP(F_k) \right) \cap VI(C, A) \cap VI(C, B) \neq \emptyset.$$

Let $r_k > 0, k = 1, 2, ..., N$, which are constants. Let $\{x_n\}$, $\{y_n\}$, $\{v_n\}$, $\{z_n\}$ and

 $\{u_n\}$ be sequences generated by $x_0 \in C$, $C_1 = C$, $x_1 = P_{C_1}x_0$, $u_n \in C$ and

$$e \ sequences \ generated \ by \ x_{0} \in C, \ C_{1} = C, \ x_{1} = P_{C_{1}}x_{0}, \ u_{n} \in C \ and$$

$$\begin{cases} x_{0} = x \in C \ chosen \ arbitrary, \\ u_{n} = K_{r_{N,n}}^{F_{N}} K_{r_{N-1,n}}^{F_{N-1}} K_{r_{N-2,n}}^{F_{N-2}} \dots K_{r_{2,n}}^{F_{2}} K_{r_{1,n}}^{F_{1}} x_{n}, \\ y_{n} = P_{C}(u_{n} - \delta_{n}Bu_{n}), \\ v_{n} = P_{C}(y_{n} - \lambda_{n}Ay_{n}), \\ z_{n} = \alpha_{n}v_{n} + (1 - \alpha_{n})\frac{1}{t_{n}} \int_{0}^{t_{n}} S(s)W_{n}v_{n}ds, \\ C_{n+1} = \left\{z \in C_{n} : \|z_{n} - z\|^{2} \leq \|x_{n} - z\|^{2} - \alpha_{n}(1 - \alpha_{n})\|v_{n} - \frac{1}{t_{n}} \int_{0}^{t_{n}} S(s)W_{n}v_{n}ds\|^{2} \right\}, \\ x_{n+1} = P_{C_{n+1}}x_{0}, \quad n \in \mathbb{N}, \end{cases}$$

$$\begin{cases} K^{F_{K}} : C \to C, \quad k = 1, 2, \dots, N \text{ in the maximal defined by } (2.16) \text{ and } (a, b) \end{cases}$$

where $K_{r_k}^{F_k}: C \to C$, k = 1, 2, ..., N is the mapping defined by (2.16) and $\{\alpha_n\}$ be a sequence in (0,1) for all $n \in \mathbb{N}$. Assume the following conditions are satisfied:

- (C1) $\eta_k: C \times C \to H$ is L_k -Lipschitz continuous with constant k = 1, 2, ..., Nsuch that
 - (a) $\eta_k(x,y) + \eta_k(y,x) = 0$, $\forall x, y \in C$,
 - (b) $x \mapsto \eta_k(x,y)$ is affine.
 - (c) for each fixed $y \in C$, $y \mapsto \eta_k(x,y)$ is sequentially continuous from the weak topology to the weak topology;
- (C2) $\mathcal{K}_k: C \to \mathcal{R}$ is η_k -strongly convex with constant $\sigma_k > 0$ and its derivative \mathcal{K}_k' is not only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with a Lipschitz constant $\nu_k > 0$ such that $\sigma_k > L_k \nu_k$;
- (C3) For each $k \in \{1, 2, ..., N\}$ and for all $x \in C$, there exist a bounded subset $D_x \subset C$ and $z_x \in C$ such that for any $y \in C \setminus D_x$,

$$F_k(y, z_x) + \varphi(z_x) - \varphi(y) + \frac{1}{r_k} \langle \mathcal{K}'(y) - \mathcal{K}'(x), \eta(z_x, y) \rangle < 0;$$

(C4) $\{\alpha_n\} \subset [c,d]$ for some $c,d \in (\xi,1)$;

(C5)
$$\{\lambda_n\} \subset [a_1, b_1]$$
 for some $a_1, b_1 \in (0, 2\gamma]$;

(C6)
$$\{\delta_n\} \subset [a_2, b_2]$$
 for some $a_2, b_2 \in (0, 2\beta]$;

(C7)
$$\liminf_{n\to\infty} r_{k,n} > 0 \text{ for each } k \in \{1, 2, 3, ..., N.$$

Then, $\{x_n\}$ and $\{u_n\}$ converge strongly to $z = P_{\Theta}x_0$.

Proof. In Theorem 4.45 take $M_i = \varrho_{iC} : H \longrightarrow 2^H$, where $\varrho_{iC} : 0 \longrightarrow [0, \infty]$ is the indicator function of C, that is,

$$\varrho_{iC}(x) = \begin{cases} 0, & x \in C; \\ +\infty, & x \notin C, \end{cases}$$

for i=1,2. Then (2.8) is equivalent to variational inequality problem , that is, to find $\hat{x} \in C$ such that

$$\langle A\hat{x}, y - \hat{x} \rangle \ge 0, \quad \forall y \in C.$$

Again, since $M_i = \varrho_{iC}$, for i = 1, 2 then

$$J_{M_1,\lambda_n} = P_C = J_{M_2,\delta_n}$$

So, we have

$$v_n = P_C(y_n - \lambda_n A y_n) = J_{M_1, \lambda_n}(y_n - \lambda_n A y_n),$$

and

$$y_n = P_C(u_n - \delta_n B u_n) = J_{M_2, \delta_n}(u_n - \delta_n B u_n).$$

Hence, we can obtain the desired conclusion from Theorem 4.45 immediately.

Next, we consider another class of important mapping:

Definition 4.47. A mapping $S: C \longrightarrow C$ is called *strictly pseudo-contraction* if there exists a constant $0 \le \kappa < 1$ such that

$$||Sx - Sy||^2 \le ||x - y||^2 + \kappa ||(I - S)x - (I - S)y||^2, \quad \forall x, y \in C.$$

If $\kappa=0$, then S is nonexpansive. In this case, we say that $S:C\longrightarrow C$ is a κ -strictly pseudo-contraction. Putting B=I-S. Then, we have

$$||(I - B)x - (I - B)y||^2 \le ||x - y||^2 + \kappa ||Bx - By||^2, \quad \forall x, y \in C.$$

Observe that

$$||(I-B)x - (I-B)y||^2 = ||x-y||^2 + ||Bx - By||^2 - 2\langle x - y, Bx - By \rangle, \quad \forall x, y \in C.$$

Hence, we obtain

$$\langle x - y, Bx - By \rangle \ge \frac{1 - \kappa}{2} \|Bx - By\|^2, \quad \forall x, y \in C.$$

Then, B is $\frac{1-\kappa}{2}$ -inverse-strongly monotone mapping.

Now, we obtain the following result.

Theorem 4.48. Let C be a nonempty closed convex subset of a real Hilbert space H, let $\{F_k: C \times C \to \mathcal{R}, k=1,2,\ldots,N\}$ be a finite family of mixed equilibrium functions satisfying conditions (H1)-(H3). Let $S=\{S(s): 0 \leq s < \infty\}$ be a nonexpansive semigroup on C and let $\{t_n\}$ be a positive real divergent sequence. Let $\{V_i: C \to C\}_{i=1}^{\infty}$ be a countable family of uniformly ξ -strict pseudo-contractions, $\{T_i: C \to C\}_{i=1}^{\infty}$ be the countable family of nonexpansive mappings defined by $T_i x = t x + (1-t)V_i x, \forall x \in C, \forall i \geq 1, t \in [\xi, 1), W_n$ be the W-mapping defined by (4.38) and W be a mapping defined by (4.39) with $F(W) \neq \emptyset$. Let $A, B: C \to H$ be γ, β -inverse-strongly monotone mapping and S_A, S_B be $\kappa_{\gamma}, \kappa_{\beta}$ -strictly pseudo-contraction mapping of C into C for some $0 \leq \kappa_{\gamma} < 1, 0 \leq \kappa_{\beta} < 1$ such that

$$\Theta := F(S) \cap F(W) \cap \left(\bigcap_{k=1}^{N} SMEP(F_k) \right) \cap F(S_A) \cap F(S_B) \neq \emptyset.$$

Let $r_k > 0, k = 1, 2, ..., N$, which are constants. Let $\{x_n\}$, $\{y_n\}$, $\{v_n\}$, $\{z_n\}$ and

 $\{u_n\}$ be sequences generated by $x_0 \in C$, $C_1 = C$, $x_1 = P_{C_1}x_0$, $u_n \in C$ and

$$\begin{cases} x_{0} = x \in C \text{ chosen arbitrary,} \\ u_{n} = K_{r_{N,n}}^{F_{N}} K_{r_{N-1,n}}^{F_{N-1}} K_{r_{N-2,n}}^{F_{N-2}} \dots K_{r_{2,n}}^{F_{2}} K_{r_{1,n}}^{F_{1}} x_{n}, \\ y_{n} = (1 - \delta_{n}) u_{n} + \delta_{n} S_{B} u_{n}, \\ v_{n} = (1 - \lambda_{n}) y_{n} + \lambda_{n} S_{A} y_{n}, \\ z_{n} = \alpha_{n} v_{n} + (1 - \alpha_{n}) \frac{1}{t_{n}} \int_{0}^{t_{n}} S(s) W_{n} v_{n} ds, \\ C_{n+1} = \left\{ z \in C_{n} : \|z_{n} - z\|^{2} \leq \|x_{n} - z\|^{2} - \alpha_{n} (1 - \alpha_{n}) \|v_{n} - \frac{1}{t_{n}} \int_{0}^{t_{n}} S(s) W_{n} v_{n} ds \right\|^{2} \right\}, \\ x_{n+1} = P_{C_{n+1}} x_{0}, \quad n \in \mathbb{N}, \end{cases}$$

$$(4.73)$$

where $K_{r_k}^{F_k}: C \to C$, k = 1, 2, ..., N is the mapping defined by (2.16) and $\{\alpha_n\}$ be a sequence in (0, 1) for all $n \in \mathbb{N}$. Assume the following conditions are satisfied:

- (C1) $\eta_k : C \times C \to H$ is L_k -Lipschitz continuous with constant k = 1, 2, ..., N such that
 - (a) $\eta_k(x,y) + \eta_k(y,x) = 0$, $\forall x,y \in C$,
 - (b) $x \mapsto \eta_k(x,y)$ is affine,
 - (c) for each fixed $y \in C$, $y \mapsto \eta_k(x,y)$ is sequentially continuous from the weak topology to the weak topology;
- (C2) $K_k: C \to \mathcal{R}$ is η_k -strongly convex with constant $\sigma_k > 0$ and its derivative K'_k is not only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with a Lipschitz constant $\nu_k > 0$ such that $\sigma_k > L_k \nu_k$;
- (C3) For each $k \in \{1, 2, ..., N\}$ and for all $x \in C$, there exist a bounded subset $D_x \subset C$ and $z_x \in C$ such that for any $y \in C \setminus D_x$,

$$F_k(y, z_x) + \varphi(z_x) - \varphi(y) + \frac{1}{r_k} \langle \mathcal{K}'(y) - \mathcal{K}'(x), \eta(z_x, y) \rangle < 0;$$

(C4)
$$\{\alpha_n\} \subset [c,d]$$
 for some $c,d \in (\xi,1)$;

(C5)
$$\{\lambda_n\} \subset [a_1, b_1] \text{ for some } a_1, b_1 \in (0, 2\gamma];$$

(C6)
$$\{\delta_n\} \subset [a_2, b_2] \text{ for some } a_2, b_2 \in (0, 2\beta];$$

(C7)
$$\liminf_{n\to\infty} r_{k,n} > 0$$
 for each $k \in \{1, 2, 3, ..., N\}$

Then, $\{x_n\}$ and $\{u_n\}$ converge strongly to $z = P_{\Theta}x_0$.

Proof. Taking $A \equiv I - S_A$ and $B \equiv I - S_B$. Then we see that A, B is $\frac{1-\kappa_{\gamma}}{2}$, $\frac{1-\kappa_{\beta}}{2}$ inverse-strongly monotone mapping, respectively. We have $F(S_A) = VI(C,A)$ and $F(S_B) = VI(C,B)$. So, we have

$$y_n = P_C(u_n - \delta_n B u_n) = P_C((1 - \delta_n)u_n + \delta_n S_B u_n) = (1 - \delta_n)u_n + \delta_n S_B u_n \in C.$$

and

$$v_n = P_C(y_n - \lambda_n A y_n) = P_C((1 - \lambda_n)y_n + \lambda_n S_A y_n) = (1 - \lambda_n)y_n + \lambda_n S_A y_n \in C.$$

By using Theorem 4.46, it is easy to obtain the desired conclusion.