CHAPTER III

APPROXIMATION OF FIXED POINTS

In computational mathematics, an iterative method attempts to solve a
problem (for example, finding the root of an equation or system of equations)
by finding successive approximations to the solution starting from an initial guess.
This approach is in contrast to direct methods, which attempt to solve the problem
by a finite sequence of operations, and in the absence of rounding errors, would
deliver an exact solution. Iterative methods are usually the only choice for nonlinear
equations. However, iterative methods are often useful even for linear problems
involving a large number of variables (sometimes of the order of millions), where
direct methods would be prohibitively expensive (and in some cases impossible)

even with the best available computing power.

If an equation can be put into the form Sz = z, and a solution z is an
attractive fixed point of the function S, then one may begin with a point z; in
the basin of attraction of z, and let z,,, = Sz, for n > 1, and the sequence T,
will converge to the solution z. If the function S is continuously differentiable, a
sufficient condition for convergence is that the spectral radius of the derivative is
strictly bounded by one in a neighborhood of the fixed point. If this condition holds
at the fixed point, then a sufficiently small neighborhood (basin of attraction) must

exist.
Iteration Approximation of Fixed Point

In constructing an iterative method, it is frequently advantageous to pick
and choose among equivalent formulations of the problem. we illustrate this with

several important examples; to begin, consider the equation

f(z) =0, f is real function. (3.17)



17

In transforming (3.17) into an equivalent fixed point equation of the form
Sz =z,
we have at least the following possibilities:
(1) Sz =z — f(z) (simplest version),
(2) Sz =z — wf(z) (linear relaxation),

(3) Sz = 2z — wF(g(z)) (nonlinear relaxation),

(4) Sz =z — ;,((Z)) (Newton’s method),

(5) Sz = h7'(f(z) — k(x)), where f(z) = h(z) + k(z) (splitting method).
Here w denote a real, nonzero parameter, while F', k and h are suitable func-
tion with A™! denoting the inverse function. The corresponding iterative methods

derive from

Tnpr =Sz, VYn>0.

For example, linear relaxation leads to
Tntl = Tpn — Wf(.’L'n), Vn > 0.

In order to improve convergence, one frequently alters the parameter in some suit-

able way at each iteration. Then, we would have
Tntl = Tn —wnf(z,), Yn>0.
The classical iteration processes are often used to approximate a fixed point
of a nonlinear mapping S : C — C' and studied by many researchers.
Mann iteration

In 1953, Mann [24] introduced the iteration as follows: a sequence {z,}
defined by

Tnt1 = 0Ty + (1 — a,) Sz, (3.18)
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where the initial guess element zo € C is arbitrary and {a,} is a real sequence in
[0,1]. Mann iteration has been extensively investigated for nonexpansive mappings.
One of the fundamental convergence results was proved by Reich [30]. In an infinite-
dimensional Hilbert space, Mann iteration can yield only weak convergence (see [14]
and [3]). Attempts to modify the Mann iteration method (3.18) so that strong

convergence is guaranteed have recently been made.
Halpern iteration

In 1967, Halpern [16] introduced the iteration as follows: a sequence {z,}

defined by
Tny1 = anZo + (1 — ) S, (3.19)
where the initial guess element zy € C is arbitrary and {o,} is a real sequence in

[0,1] and prove strong convergence theorem under some certain control condition.
Ishikawa iteration

In 1974, Ishikawa [19] introduced the iteration as follows: a sequence {z,}
defined by
Yn = ;Bnl'n + (1 N ;Bn)an

Tns1 = QnZn + (1 — @n)SYn.

(3.20)

where the initial guess element zo € C'is arbitrary and {a,} and {a,} are real
sequence in [0,1] and and prove weak convergence theorem under some certain

control condition.

In order to find a common element of F(S)NVI(C, B),let S: H — H be
a nonexpansive mapping, Yamada [42] introduced the following iterative scheme

called the hybrid steepest descent method:
ZTnt1 = STy — auuBSz,, Yn > 1, (3.21)

where z; = =z € H, {on} C (0,1), B: H — H be a strongly monotone and

Lipschitz continuous mapping and g is a positive real number. He proved that the
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sequence {z,} generated by (3.21) converges strongly to the unique solution of the

F(S)NVI(C, B).

In 2007, Yao et al. [43] introduced the following so-called viscosity ap-

proximation method:

zo =2 € C,
Yn = Botin + (1 — B)Sxn, (3.22)
e a”f(xn) + (]‘ — an)yna Vn Z Oa

where S is a nonexpansive mapping of C into itself and f is a contraction on C.
They obtained a strong convergence theorem under some mild restrictions on the

parameters.

On the other hand, for finding an element of F(S)NVI(A,C)N EP(F), Su
et al. [35], introduced the following iterative scheme by the viscosity approximation
method in a Hilbert space: z; € H

F(tn,y) + (Y = thn, un —2,) >0, VyeC
" (3.23)

Tnt1 = an f(2q) + (1 — 0) S Po(un — A\ Auy,),
for all n € N, where o, C [0,1) and r, C (0,00) satisfy some appropriate con-

ditions. Furthermore, they proved {z,} and {u,} converge strongly to the same

point A F(S) ] VI(C, A) n EP(F) where z = PF(S)QV{(C’A)QEP(F)f(Z).

A typical problem is to minimize a quadratic function over the set of the

fixed points a nonexpansive mapping on a real Hilbert space H:

!
min i(Ax,:c) — (z,b), (3.24)

where F is the fixed point set of a nonexpansive mapping 7' on H and b is a given
point in H. Assume that A is strongly positive on H if there is a constant 5 > 0
with property

(Az,z) > 7|lz||>, Vz € H. (3.25)
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Moreover, it is shown in [25] that the sequence {z,} defince by the scheme
Tnt1 = fn'Yf(xn) + (1 - CnA)eru (326)

converges strongly to z = Pp(s)( — A+ f)(z). Recently, Plubtieng and Punpaeng

[28] proposed the following iterative algorithm:

F(urhy) + i<y = Up, Up — mn) _>_ 0, Vy € Hv

> (3.27)
Tn1 = 7f(xn) + (I — €, A)Su,.
They prove that if the sequence {¢,} and {r,} of parameters satisfy appropriate

condition, then the sequences {z,} and {u,} both converge to the unique solution

z of the variational inequality
((A=~vf)z,z—2) >0, Vz € F(S)NEP(F), (3.28)
which is the optimality condition for the minimization problem

LAz, 7) - hiz), (3.29)

min —
zEF(SYNEP(F) 2

where h is a potential function for vf (i.e., h'(z) = vf(x) for z € H).

Very recently, Chang et al. [8] introduced an iterative scheme for finding
a common element of the set of solutions of the equilibrium problem (2.10) and
the set of fixed points of an infinite family of nonexpansive mappings in a Hilbert
space. Starting with an arbitrary initial zo € E, define a sequence {z,},{k.},{vn}

and {u,} recursively by

(

Ftn, y) + 7y = tn, un — 2,) 20, Vy € E,

Yn = Pg(u, — \nBuy),
! (3.30)

kn = PE(yn - /\nByn)a

L Tnt+1 = anf(xn) + ,ann + ’Yankn, Vn _>_ 17

where {W, } is the sequence generated by (3.38), {@.}, {8.} and {7,} are sequences

in (0,1), {A,} in a sequence in [a,b] C (0,2¢). They proved that under certain
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appropriate conditions imposed on {a,}, {8.}, {1} and {r,}, the sequence {z,}
n=

and {u,} generated by (3.30) converge strongly to z € N2, F(T,,) N VI(E, B) N

EP(F), where z = Pne  pr)nvi(eBnerr) f(2)-

In 2009, Colao et al. [12] introduced and considered an implicit iterative
scheme for finding a common element of the set of solutions of the system equilib-
rium problems and the set of common fixed points of an infinite family of nonex-
pansive mappings on C. Starting with an arbitrary initial o € C' and defining a

sequence {z,} recursively by

T = eV f(20) + (1 = cnA)WyJfM Jlu-t JEv—2 gl B g, (3.31)

TM—-1n TM-2n 2,n Tin

where {€,} be a sequences in (0,1). It is proved [12] that under certain appropri-
ate conditions imposed on {¢,} and {r,}, the sequence {z,} generated by-(3.31)
converges strongly to z € N%, F(T,) N (N}L,SEP(Fy)), where z is the unique
solution of the variational inequality and which is the optimality condition for the

minimization problem.

In 2010, Colao and Marino [11] introduced the following explicit viscosity

scheme with respect to W-mappings for an infinite family of nonexpansive map-
pings
Tnt1 = en’yf(l‘n) + Bnn + ((1 — Ba)] — 611’4)1/‘/7LJ1~F;$11- (3'32)

They prove that sequence {x,} and {J '} converge strongly to z € N%, F(T,) N
EP(F), where z is an equilibrium point for F' and is the unique solution of the

variational inequality:
(vfz—Azz—2) <0, Yz € N, F(T,) N EP(F)
or, equivalently, the unique solution of the minimization problem

1
. Lo
zeng, F(TINEP(F) {2< z,7) h(x)} .

where h is a potential function for vf. Recently, Chantarangsi et al.[9] introduced

some iterative processes based on the viscosity hybrid steepest descent method for
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finding a common solutions of a generalized mixed equilibrium problem, the set
of fixed points of a nonexpansive mapping and the set of solutions of variational

inequality problem in a real Hilbert space.

In 2007, Takahashi et al. [39] proved the following strong convergence theo-
rem for a nonexpansive mapping by using the shrinking projection method in
mathematical programming. For C; = C and z; = Pg, z, they define a sequence

{z,} as follows

Yo = Ty + (1 — )Tz,
Crsr = {2 € Cat|lyn — 2|l <z — 2I}, (333)
Tn+1 = Fo,, %0, VR 20,

where 0 < a, < a < 1. They proved that the sequence {z,} generated by (3.33)

converges weakly to z € F(T), where z = Pp(r)o.

In 2008, Takahashi and Takahashi [37] introduced the following iterative
scheme for finding a common element of the set of solution of generalized equilib-
rium problem and the set of fixed points of a nonexpansive mapping in a Hilbert
space. They proved the strong convergence theorems under certain appropriate
conditions imposed on parameters. Next, Zhang et al. [44] introduced the follow-
ing new iterative scheme for finding a common element of the set of solution to
the problem (2.8) and the set of fixed points of a nonexpansive mapping in a real

Hilbert space. Starting with an arbitrary z; = z € H, define a sequence {z,} by

Yn = Jua(z, — ABz,), (334)
Tny1 = 0T + (1 — )Ty, Vn > 1,
where Jy» = (I+AM)™! is the resolvent operator associated with M and a positive
number A and {a,} is a sequence in the interval [0, 1]. Peng et al. [29] introduced
the iterative scheme by the viscosity approximation method for finding a common
element of the set of solutions to the problem (2.8), the set of solutions of an

equilibrium problem, and the set of fixed points of a nonexpansive map;ping in a

Hilbert space.
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In 2009, Saeidi [31] introduced a more general iterative algorithm for finding
a common element of the set of solution for a system of equilibrium problems
and the set of common fixed points for a finite family of nonexpansive mappings
and a nonexpansive semigroup. In 2010, Katchang and Kumam [20] obtained a
strong convergence theorem for finding a common element of the set of fixed points
of a family of finitely nonexpansive mappings, the set of solutions of a mixed
equilibrium problem and the set of solutions of a variational inclusion problem for
an inverse-strongly monotone mapping. Let W,, be W-mapping (defined by (3.38)),
f be a contraction mapping and A, B be inverse-strongly monotone mappings. Let
Jux = (I + AM)~! be the resolvent operator associated with M and a positive

number A. Starting with arbitrary initial x, € H, defined a sequence {z,} by

(

Ftn,y) + 0(y) — o(tn) + 2y = tn, un = 7,) >0, VyeC,

Tn

= Tt — A,
J ¥n = T ) (3.35)

Un = JM,)\(yn = AAyn)7
$n+1 - an’Yf(:En) + /ann + ((1 - 6n)[ - anB)anna Vn Z 17

\
They proved that under certain appropriate conditions imposed on {a,}, {8.}
and {r,}, the sequence {z,} generated by (3.35) converges strongly to p € Q :=
N2, F(S;)NI(A, MYNMEP(F, ), where p = Po(I — B+ f)p. Later, Kumam et
al. [21] proved a strongly convergence theorem of the iterative sequence generated
by the shrinking projection method for finding a common element of the set of
solutions of generalized mixed equilibrium problems, the set of fixed points of a
finite family of quasi-nonexpansive mappings, and the set of solutions of variational

inclusion problems.



