CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results that will be used in the later chapters.

2.1 Basic results.

Definition 2.1. Let X be a linear space over the field \mathbb{K} (\mathbb{R} or \mathbb{C}). A function $\|\cdot\|: X \longrightarrow \mathbb{R}$ is said to be a norm on X if it satisfies the following conditions:

- $(1) ||x|| \ge 0, \forall x \in X;$
- $(2) ||x|| = 0 \Leftrightarrow x = 0;$
- (3) $||x + y|| \le ||x|| + ||y||, \forall x, y \in X$;
- (4) $\|\alpha x\| = |\alpha| \|x\|, \forall x \in X \text{ and } \forall \alpha \in \mathbb{K}.$

Definition 2.2. Let $(X, \|\cdot\|)$ be a normed space.

- (1) A sequence $\{x_n\} \subset X$ is said to converge strongly in X if there exists $x \in X$ such that $\lim_{n \to \infty} ||x_n x|| = 0$. That is, if for any $\epsilon > 0$ there exists a positive integer N such that $||x_n x|| < \epsilon, \forall n \ge N$. We often write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ to mean that x is the limit of the sequence $\{x_n\}$.
- (2) A sequence $\{x_n\} \subset X$ is said to be a Cauchy sequence if for any $\epsilon > 0$ there exists a positive integer N such that $||x_m x_n|| < \epsilon, \forall m, n \geq N$. That is, $\{x_n\}$ is a Cauchy sequence in X if and only if $||x_m x_n|| \longrightarrow 0$ as $m, n \longrightarrow \infty$.

Definition 2.3. A normed space X is called *complete* if every Cauchy sequence in X converges to an element in X.

Definition 2.4. A complete normed linear space over field \mathbb{K} is called a Banach space over \mathbb{K}

Definition 2.5. An element $x \in C$ is said to be a *fixed point* of a mapping $S : C \longrightarrow C$ proved Sx = x. The set of all fixed point of S is denoted by $F(S) = \{x \in C : Sx = x\}$.

Definition 2.6. A family $S = \{S(s) : 0 \le s \le \infty\}$ of mappings of C into itself is called a *nonexpansive semigroup* on C if it satisfies the following conditions:

- (1) S(0)x = x for all $x \in C$;
- (2) S(s+t) = S(s)S(t) for all $s, t \ge 0$;
- (3) $||S(s)x S(s)y|| \le ||x y||$ for all $x, y \in C$ and $s \ge 0$;
- (4) for all $x \in C$, $s \mapsto S(s)x$ is continuous.

We denoted by F(S) the set of all common fixed points of $S = \{S(s) : s \ge 0\}$, i.e., $F(S) = \bigcap_{s \ge 0} F(S(s))$. It is know that F(S) is closed and convex.

Definition 2.7. Let F and X be linear spaces over the field \mathbb{K} .

- (1) A mapping $T: F \longrightarrow X$ is called a linear operator if T(x+y) = Tx + Ty and $T(\alpha x) = \alpha Tx, \forall x, y \in F$, and $\forall \alpha \in \mathbb{K}$.
- (2) A mapping $T: F \longrightarrow \mathbb{K}$ is called a linear functional on F if T is a linear operator.

Definition 2.8. A sequence $\{x_n\}$ in a normed spaces is said to *converge weakly* to some vector x if $\lim_{n\to\infty} f(x_n) = f(x)$ holds for every continuous linear functional f. We often write $x_n \to x$ to mean that $\{x_n\}$ converge weakly to x.

Definition 2.9. Let F and X be normed spaces over the field \mathbb{K} and $T: X \longrightarrow F$ a linear operator. T is said to be *bounded* on X, if there exists a real number M > 0 such that $||T(x)|| \leq M||x||, \forall x \in X$.

Definition 2.10. Sequence $\{x_n\}_{n=1}^{\infty}$ in a normed linear space X is said to be a bounded sequence if there exists M > 0; such that $||x_n|| \leq M, \forall n \in \mathbb{N}$.

Definition 2.11. Let F and X be normed spaces over the field \mathbb{K} , $T: F \longrightarrow X$ an operator and $c \in F$. We say that T is continuous at c if for every $\epsilon > 0$ there exists $\delta > 0$ such that $||T(x) - T(c)|| < \epsilon$ whenever $||x - c|| < \delta$ and $x \in F$. If T is continuous at each $x \in F$, then T is said to be continuous on F.

Definition 2.12. Let X and Y be normed spaces. The mapping $T: X \longrightarrow Y$ is said to be *completely continuous* if T(C) is a compact subset of Y for every bounded subset C of X.

Definition 2.13. A subset C of a normed linear space X is said to be *convex* subset in X if $\lambda x + (1 - \lambda)y \in C$ for each $x, y \in C$ and for each scalar $\lambda \in [0, 1]$.

2.2 Hilbert spaces

Definition 2.14. The real-value function of two variables $\langle \cdot, \cdot \rangle : X \times X \longrightarrow \mathbb{R}$ is called *inner product* on a real vector space X if it satisfies the following conditions:

(1) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ for all $x, y, z \in X$ and all real number α and β ;

(2)
$$\langle x, y \rangle = \langle y, x \rangle$$
 for all $x, y \in X$; and

(3) $\langle x, x \rangle \geq 0$ for each $x \in X$ and $\langle x, x \rangle = 0$ if and only if x = 0. A real inner product space is a real vector space equipped with an inner product.

Definition 2.15. A Hilbert spaces is an inner product space which is complete under the norm induced by its inner product.

Definition 2.16. A sequence of points x_n in a Hilbert space H is said to *converge* weakly to a point x in H if $\lim_{n\to\infty}\langle x_n,y\rangle=\langle x,y\rangle$ for all $y\in H$. The notation $x_n\to x$ is sometimes used to denote this kind of convergence.

Definition 2.17. The metric (nearest point) projection P_C from a Hilbert space H to a closed convex subset C of H is defined as follows: Given $x \in H$, $P_C x$ is the

only point in C with the property

$$||x - P_C x|| = \inf\{||x - y|| : y \in C\}.$$

Definition 2.18. For every point $x \in H$, there exists a unique nearest point in C, denoted by $P_C x$, such that

$$||x - P_C x|| \le ||x - y||$$
 for all $y \in C$.

 P_C is called the metric projection of H onto C. It is well known that P_C is a firmly nonexpansive mapping of H onto C and satisfies

$$\langle x - y, P_C x - P_C y \rangle \ge ||P_C x - P_C y||^2, \quad \forall x, y \in H$$
(2.1)

Lemma 2.19. Let H be a real Hilbert space, C a closed convex subset of H. Given $x \in H$ and $y \in C$. Then $y = P_C x$ if and only if there holds the inequality

$$\langle x - y, y - z \rangle \ge 0, \forall z \in C.$$

2.3 Variational inequality problem

Definition 2.20. Let $A: C \longrightarrow H$ be a nonlinear mapping. The classical variational inequality which denoted by VI(C, A), is to find $x \in C$ such that

$$\langle Ax, y - x \rangle \ge 0, \quad \forall y \in C.$$
 (2.2)

Definition 2.21. $P_C x$ is characterized by the following properties: $P_C x \in C$ and

$$\langle x - P_C x, y - P_C x \rangle \le 0, \tag{2.3}$$

$$||x - y||^2 \ge ||x - P_C x||^2 + ||y - P_C x||^2, \quad \forall x \in H, y \in C.$$
 (2.4)

Lemma 2.22. [36] Let H be Hilbert space, let C be a nonempty closed convex subset of H and let B be a mapping of C into H. Let $u \in C$. Then for $\lambda > 0$,

$$u \in VI(C, B) \iff u = P_C(u - \lambda Bu),$$

where P_C is the metric projection of H onto C.

Definition 2.23. Let $A: C \longrightarrow H$ be nonlinear mappings. Then B is called

(1) monotone if

$$\langle Ax - Ay, x - y \rangle \ge 0, \quad \forall x, y \in C,$$

(2) v-strongly monotone if there exists a positive real number v such that

$$\langle Ax - Ay, x - y \rangle \ge v ||x - y||^2, \quad \forall x, y \in C,$$

for constant v > 0. This implies that

$$||Ax - Ay|| \ge v||x - y||, \tag{2.5}$$

that is, A is v-expansive and when v = 1, it is expansive.

(3) ξ -Lipschitz continuous if there exists a positive real number ξ such that

$$||Ax - Ay|| \le \xi ||x - y||, \quad \forall x, y \in C,$$

(4) u-inverse-strongly monotone, if there exists a positive real number u such that

$$\langle Ax - Ay, x - y \rangle \ge u ||Ax - Ay||^2, \quad \forall x, y \in C, \tag{2.6}$$

Clearly, every u-inverse-strongly monotone map A is $\frac{1}{u}$ -Lipschitz continuous,

(5) Let $f: C \longrightarrow C$ is said to be a α -contraction if there exists a coefficient α $(0 < \alpha < 1)$ such that

$$||f(x) - f(y)|| \le \alpha ||x - y||, \quad \forall x, y \in C.$$

(6) An operator A is strongly positive on H if there is a constant $\bar{\gamma} > 0$ with property

$$\langle Ax, x \rangle \ge \bar{\gamma} \|x\|^2, \quad \forall x \in H.$$
 (2.7)

(7) A set-valued mapping $T: H \longrightarrow 2^H$ is called monotone if for all $x, y \in H$, $f \in Tx$ and $g \in Ty$ imply $\langle x - y, f - g \rangle \geq 0$.

A monotone mapping $T: H \longrightarrow 2^H$ is maximal if the graph of G(T) of T is not properly contained in the graph of any other monotone mapping.

It is known that a monotone mapping T is maximal if and only if for $(x, f) \in H \times H$, $\langle x - y, f - g \rangle \geq 0$ for every $(y, g) \in G(T)$ implies $f \in Tx$. Let B be a monotone map of C into H and let $N_E w_1$ be the normal cone to C at $w_1 \in E$, i.e.,

$$N_E w_1 = \{ w \in H : \langle w_1 - u, w \rangle \ge 0, \forall u \in C \}.$$

Define

$$Tw_1 = \begin{cases} Aw_1 + N_E w_1, & w_1 \in C; \\ \emptyset, & w_1 \notin C. \end{cases}$$

Then T is the maximal monotone and $0 \in Tw_1$ if and only if $w_1 \in VI(C, A)$.

Definition 2.24. Let $\eta: C \times C \to H$ is called Lipschitz continuous, if there exists a constant L > 0 such that

$$\|\eta(x,y)\| \le L\|x-y\|, \ \forall x,y \in C.$$

Let $\mathcal{K}: C \to \mathcal{R}$ be a differentiable functional on a convex set C, which is called:

(1) η -convex [17] if

$$\mathcal{K}(y) - \mathcal{K}(x) \ge \langle \mathcal{K}'(x), \eta(y, x) \rangle, \ \forall x, y \in C,$$

where $\mathcal{K}'(x)$ is the Fréchet derivative of \mathcal{K} at x;

(2) η -strongly convex [2] if there exists a constant $\sigma > 0$ such that

$$\mathcal{K}(y) - \mathcal{K}(x) - \left\langle \mathcal{K}'(x), \eta(y, x) \right\rangle \ge \frac{\sigma}{2} ||x - y||^2, \ \forall x, y \in C.$$

In particular, if $\eta(x,y) = x - y$ for all $x,y \in C$, then K is said to be *strongly convex*.

2.4 Variational Inclusion Problem

Let $B: H \longrightarrow H$ be a single-valued nonlinear mapping and $M: H \longrightarrow 2^H$ be a set-valued mapping. The variational inclusion problem is to find $\hat{x} \in H$ such that

$$\theta \in B(\hat{x}) + M(\hat{x}),\tag{2.8}$$

where θ is the zero vecter in H. The set of solutions of problem (2.8) is denoted by I(B,M). A set-valued mapping $M:H\longrightarrow 2^H$ is called *monotone* if for all $x,y\in H$, $f\in M(x)$ and $g\in M(y)$ imply $\langle x-y,f-g\rangle\geq 0$. A monotone mapping M is maximal if its graph $G(M):=\{(f,x)\in H\times H:f\in M(x)\}$ of M is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping M is maximal if and only if for $(x,f)\in H\times H$, $\langle x-y,f-g\rangle\geq 0$ for all $(y,g)\in G(M)$ imply $f\in M(x)$.

Definition 2.25. Let $M: H \longrightarrow 2^H$ be a set-valued maximal monotone mapping, then the single-valued mapping $J_{M,\lambda}: H \longrightarrow H$ defined by

$$J_{M,\lambda}(\hat{x}) = (I + \lambda M)^{-1}(\hat{x}), \quad \hat{x} \in H$$
 (2.9)

is called the resolvent operator associated with M, where λ is any positive number and I is the identity mapping. The following characterizes the resolvent operator.

(R1) The resolvent operator $J_{M,\lambda}$ is single-valued and nonexpansive for all $\lambda > 0$, that is,

$$||J_{M,\lambda}(x) - J_{M,\lambda}(y)|| \le ||x - y||, \ \forall x, y \in H \text{ and } \forall \lambda > 0.$$

(R2) The resolvent operator $J_{M,\lambda}$ is 1-inverse-strongly monotone; see([6]), that is,

$$||J_{M,\lambda}(x) - J_{M,\lambda}(y)||^2 \le \langle x - y, J_{M,\lambda}(x) - J_{M,\lambda}(y) \rangle, \ \forall x, y \in H.$$

(R3) The solution of problem (2.8) is a fixed point of the operator $J_{M,\lambda}(I - \lambda B)$ for all $\lambda > 0$; see also ([22]), that is,

$$I(B, M) = F(J_{M,\lambda}(I - \lambda B)), \ \forall \lambda > 0.$$

(R4) If $0 < \lambda \le 2\beta$, then the mapping $J_{M,\lambda}(I - \lambda B) : H \longrightarrow H$ is nonexpansive.

(R5) I(B, M) is closed and convex.

Lemma 2.26. [6] Let $M: H \longrightarrow 2^H$ be a maximal monotone mapping and let $B: H \longrightarrow H$ be a Lipshitz continuous mapping. Then the mapping $L = M + B: H \longrightarrow 2^H$ is a maximal monotone mapping.

Lemma 2.27. [1] Let C be a closed convex subset of H. Let $\{x_n\}$ be a bounded sequence in H. Assume that

- (1). The weak ω -limit set $\omega_w(x_n) \subset C$,
- (2). For each $z \in C$, $\lim_{n \to \infty} ||x_n z||$ exists.

Then $\{x_n\}$ is weakly convergent to a point in C.

2.5 Equilibrium Problem

Definition 2.28. Let F be a bifunction of $C \times C$ into \mathbb{R} , where \mathbb{R} is the set of real numbers. The equilibrium problem for $F: C \times C \longrightarrow \mathbb{R}$ is to find $x \in C$ such that

$$F(x,y) \ge 0, \quad \forall y \in C.$$
 (2.10)

The set of solutions of (2.10) is denoted by EP(F). Given a mapping $A: C \longrightarrow H$, let $F(x,y) = \langle Ax, y-x \rangle$ for all $x,y \in C$. Then $z \in EP(F)$ if and only if $\langle Tz, y-z \rangle \geq 0$ for all $y \in C$, i.e., z is a solution of the variational inequality.

Definition 2.29. Let $\{F_i, i = 1, 2, ..., N\}$ be a finite family of bifunctions from $C \times C$ into \mathbb{R} , where \mathbb{R} is the set of real numbers. The system of equilibrium

problems for $\{F_1, F_2, \dots, F_N\}$ is to find a common element $x \in C$ such that

$$\begin{cases}
F_1(x,y) \ge 0, & \forall y \in C, \\
F_2(x,y) \ge 0, & \forall y \in C, \\
\vdots \\
F_N(x,y) \ge 0, & \forall y \in C.
\end{cases} \tag{2.11}$$

We denote the set of solutions of (2.11) by $\bigcap_{i=1}^{N} SEP(F_i)$, where $SEP(F_i)$ is the set of solutions to the equilibrium problems, that is,

$$F_i(x,y) \ge 0, \quad \forall y \in C.$$
 (2.12)

If N = 1, then the problem (2.11) is reduced to the equilibrium problems.

Definition 2.30. For solving the equilibrium problem, let us assume that the bifunction F satisfies the following conditions (see [4]):

- (A1) F(x,x) = 0 for all $x \in C$;
- (A2) F is monotone, i.e., $F(x,y) + F(y,x) \le 0$ for any $x,y \in C$;
- (A3) F is upper-hemicontinuous, i.e., for each $x, y, z \in C$,

$$\limsup_{t \to 0} F(tz + (1-t)x, y) \le F(x, y);$$

(A4) $F(x,\cdot)$ is convex and lower semicontinuous for each $x\in C$.

Lemma 2.31. [4] Let C be a nonempty closed convex subset of H and let F be a bifunction of $C \times C$ into R satisfying (A1)-(A4). Let r > 0 and $x \in H$. Then, there exists $z \in C$ such that

$$F(z,y) + \frac{1}{r}\langle y-z, z-x\rangle \ge 0 \text{ for all } y \in C.$$

Lemma 2.32. [10] Assume that $F: C \times C \longrightarrow \mathbb{R}$ satisfies (A1)-(A4). For r > 0 and $x \in H$, define a mapping $J_r^F: H \longrightarrow C$ as follows:

$$J_r^F(x) = \left\{ z \in C : F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0, \quad \forall y \in C \right\}$$

for all $z \in H$. Then, the following hold:

- (1) J_r^F is single-valued;
- (2) J_r^F is firmly nonexpansive, that is, for any $x, y \in H$,

$$||J_r^F x - J_r^F y||^2 \le \langle J_r^F x - J_r^F y, x - y \rangle;$$

- (3) $F(J_r^F) = EP(F);$
- (4) EP(F) is closed and convex.

2.6 Mixed Equilibrium Problem

Let $\Im = \{F_k\}_{k \in \Gamma}$ be a countable family of bifunctions from $C \times C$ to \mathcal{R} where \mathcal{R} is the set of real numbers and Γ is an arbitrary index set. Let $\varphi : C \to \mathcal{R} \cup \{+\infty\}$ be a proper extended real-valued function. The system of mixed equilibrium problems is to find $x \in C$ such that

$$F_k(x,y) + \varphi(y) \ge \varphi(x), \ \forall k \in \Gamma, \ \forall y \in C.$$
 (2.13)

The set of solutions of (2.13) is denoted by $SMEP(F_k, \varphi)$, that is

$$SMEP(F_k, \varphi) = \{ x \in C : F_k(x, y) + \varphi(y) \ge \varphi(x), \ \forall k \in \Gamma, \forall y \in C \}.$$
 (2.14)

If Γ is a singleton, the the problem (2.13) reduces to fined the following mixed equilibrium problem (see also Flores-Bazán [13]). For finding $x \in C$ such that

$$F(x,y) + \varphi(y) \ge \varphi(x), \ \forall y \in C.$$
 (2.15)

The set of solutions of (2.15) is denoted by $MEP(F,\varphi)$.

For solving the system of mixed equilibrium problem, let us assume that function $F_k: C \times C \longrightarrow \mathcal{R}, \ k = 1, 2, ..., N$ satisfies the following conditions:

- (H1) F_k is monotone, i.e., $F_k(x,y) + F_k(y,x) \le 0$, $\forall x,y \in C$;
- (H2) for each fixed $y \in C$, $x \mapsto F_k(x, y)$ is convex and upper semicontinuous;
- (H3) for each fixed $x \in C, y \mapsto F_k(x, y)$ is convex.

Lemma 2.33. [7] Let C be a nonempty closed convex subset of a real Hilbert space H and let φ be a lower semicontinuous and convex functional from C to R. Let F be a bifunction from $C \times C$ to R satisfying (H1)-(H3). Assume that

- (i) $\eta: C \times C \to H$ is k Lipschitz continuous with constant k > 0 such that;
 - (a) $\eta(x,y) + \eta(y,x) = 0$, $\forall x, y \in C$,
 - (b) $\eta(\cdot,\cdot)$ is affine in the first variable,
 - (c) for each fixed $x \in C$, $y \mapsto \eta(x, y)$ is sequentially continuous from the weak topology to the weak topology,
- (ii) $K: C \to \mathcal{R}$ is η -strongly convex with constant $\sigma > 0$ and its derivative K' is sequentially continuous from the weak topology to the strong topology;
- (iii) for each $x \in C$, there exist a bounded subset $D_x \subset C$ and $z_x \in C$ such that for any $y \in C \setminus D_x$,

$$F(y, z_x) + \varphi(z_x) - \varphi(y) + \frac{1}{r} \left\langle \mathcal{K}'(y) - \mathcal{K}'(x), \eta(z_x, y) \right\rangle < 0.$$

For given r > 0, Let $K_r^F : C \to C$ be the mapping defined by:

$$K_r^F(x) = \left\{ y \in C : F(y, z) + \varphi(z) - \varphi(y) + \frac{1}{r} \left\langle \mathcal{K}'(y) - \mathcal{K}'(x), \eta(z, y) \right\rangle \ge 0, \quad \forall z \in C \right\}$$
(2.16)

for all $x \in C$. Then the following hold

- (1) K_r^F is single-valued;
- (2) K_r^F is nonexpansive if K' is Lipschitz continuous with constant $\nu > 0$ such that $\sigma \geq k\nu$;
- (3) $F(K_r^F) = MEP(F,\varphi);$
- (4) $MEP(F,\varphi)$ is closed and convex.

Lemma 2.34. [25]. Let C be a nonempty closed convex subset of H and let f be a contraction of H into itself with $\alpha \in (0,1)$, and A be a strongly positive linear bounded operator on H with coefficient $\bar{\gamma} > 0$. Then, for $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$,

$$\langle x - y, (A - \gamma f)x - (A - \gamma f)y \rangle \ge (\bar{\gamma} - \alpha \gamma) \|x - y\|^2, \quad x, y \in H.$$

That is, $A - \gamma f$ is strongly monotone with coefficient $\bar{\gamma} - \alpha \gamma$.

Lemma 2.35. [25]. Assume A be a strongly positive linear bounded operator on H with coefficient $\bar{\gamma} > 0$ and $0 < \rho \le ||A||^{-1}$. Then $||I - \rho A|| \le 1 - \rho \bar{\gamma}$.

Lemma 2.36. Let H be a real Hilbert space. Then the following inequalities hold:

- (1) $||x + y||^2 \le ||x||^2 + 2\langle y, x + y \rangle$;
- (2) $||x+y||^2 \ge ||x||^2 + 2\langle y, x \rangle$;
- $(3) \ \|tx+(1-t)y\|^2=t\|x\|^2+(1-t)\|y\|^2-t(1-t)\|x-y\|^2, \ \forall t\in[0,1], \ \forall x,y\in H;$

for all $x, y \in H$.

Lemma 2.37. [36] Let H be a Hilbert space, let C be a nonempty closed convex subset of H. Let $\xi > 0$ and let $A : C \longrightarrow H$ be ξ -inverse strongly monotone. If $0 < \varrho \le 2\xi$, then $I - \varrho B$ is a nonexpansive mapping of C into H.

Lemma 2.38. [27] The **Opial's condition**; for any sequence $\{x_n\}$ with $x_n \rightharpoonup x$, the inequality $\liminf_{n \longrightarrow \infty} ||x_n - x|| < \liminf_{n \longrightarrow \infty} ||x_n - y||$, holds for every $y \in H$ with $y \neq x$.

Lemma 2.39. [34] Let $\{x_n\}$ and $\{l_n\}$ be bounded sequences in a Banach space X and let $\{\beta_n\}$ be a sequence in [0,1] with $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$. Suppose $x_{n+1} = (1 - \beta_n)l_n + \beta_n x_n$ for all integers $n \ge 0$ and $\limsup_{n \to \infty} (\|l_{n+1} - l_n\| - \|x_{n+1} - x_n\|) \le 0$. Then, $\lim_{n \to \infty} \|l_n - x_n\| = 0$.

Lemma 2.40. [40] Assume $\{a_n\}$ is a sequence of nonnegative real numbers such that

$$a_{n+1} \le (1 - b_n)a_n + c_n, \ n \ge 0,$$

where $\{b_n\}$ is a sequence in (0,1) and $\{c_n\}$ is a sequence in $\mathbb R$ such that

- (1) $\sum_{n=1}^{\infty} b_n = \infty$
- (2) $\limsup_{n \to \infty} \frac{c_n}{b_n} \le 0$ or $\sum_{n=1}^{\infty} |c_n| < \infty$,

Then $\lim_{n\to\infty} a_n = 0$.

Lemma 2.41. [32] Let C be a nonempty bounded closed convex subset of a Hilbert space H and let $S = \{S(s) : 0 \le s < \infty\}$ be a nonexpansive semigroup on C, then for any $h \ge 0$,

$$\lim_{t \to \infty} \sup_{x \in C} \left\| \frac{1}{t} \int_0^t T(s)xds - T(h) \left(\frac{1}{t} \int_0^t T(s)xds \right) \right\| = 0.$$

Lemma 2.42. [38] Let C be a nonempty bounded closed convex subset of H, $\{x_n\}$ be a sequence in C and $S = \{S(s) : 0 \le s < \infty\}$ be a nonexpansive semigroup on C. If the following conditions are satisfied:

- (i) $x_n \rightharpoonup z$;
- (ii) $\limsup_{s \to \infty} \limsup_{n \to \infty} ||S(s)x_n x_n|| = 0$, then $z \in F(S)$.