CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results

that will be used in the later chapters.

2.1 Basic results.

Definition 2.1. Let X be a linear space over the field K (R or C). A function

I -1l : X — R is said to be a norm on X if it satisfies the following conditions:
(1) f|lz|]| =2 0,Vz € X;
@)zl =0&z =0
@) llz +yll < llzlf +llyll, vz, y € X;
(4) x| = |a|llz|,Vz € X and Ya € K.
Definition 2.2. Let (X, || - ||) be a normed space.

(1) A sequence {z,} C X is said to converge strongly in X if there exists

z € X such that lim |z, —z| = 0. That is, if for any € > 0 there exists a positive
n—-—:u0

integer N such that ||z, —z|| < ¢,Vn > N. We often write lim z, =zorz, — z

n—oo

to mean that z is the limit of the sequence {z,}.

(2) A sequence {z,} C X is said to be a Cauchy sequence if for any € > 0
there exists a positive integer N such that ||z, — z,]| < ¢,V m,n > N. That is,

{zn} is a Cauchy sequence in X if and only if ||z, — z,|| — 0 as m,n — oo.

Definition 2.3. A normed space X is called complete if every Cauchy sequence in

X converges to an element in X.

Definition 2.4. A complete normed linear space over field K is called a Banach

space over K



Definition 2.5. An element z € C is said to be a fized point of a mapping S :
C' — C proved Sz = z. The set of all fixed point of S is denoted by F(S) = {z €
C: Sz = z}.

Definition 2.6. A family & = {S(s) : 0 < s < 0o} of mappings of C into itself is

called a nonezpansive semigroup on C if it satisfies the following conditions:
(1) S(0)z =z for all z € C;
(2) S(s+t) = S(s)S(t) for all 5,t > 0;
(3 IS(s)x - S(s)yll < |lz =yl for all z,y € C and s > 0;
(4) for all z € C, s+ S(s)z is continuous.
We denoted by F'(S) the set of all common fixed points of S = {S(s) : s >
0}, ie., F(S) = Ny F(S(s)). It is know that F(S) is closed and convex.

Definition 2.7. Let F' and X be linear spaces over the field K.

(1) A mapping T': F — X is called a linear operator if T(z+y)=Tz+Ty
and T(az) = oTz,VYz,y € F, and Yo € K. '

(2) A mapping T : F — K is called a linear functional on F if T is a linear

operator.

Definition 2.8. A sequence {z,} in a normed spaces is said to converge weakly to
some vector z if lim, .., f(z,) = f(z) holds for every continuous linear functional

f. We often write x,, — z to mean that {z,} converge weakly to z.

Definition 2.9. Let F and X be normed spaces over the field K and 7 : X — F

a linear operator. T is said to be bounded on X, if there exists a real number M > 0

such that || T(z)|] < M||z||,Vz € X.

Definition 2.10. Sequence {z,}°°, in a normed linear space X is said to be a

bounded sequence if there exists M > 0; such that ||z,|| < M,Vn € N.



Definition 2.11. Let F' and X be normed spaces over the field K, T: F — X
an operator and ¢ € F. We say that T is continuous at c if for every € > 0 there
exists § > 0 such that ||T(z) — T(c)|| < € whenever ||z —c|| < dand z € F. If T is

continuous at each x € F, then T is said to be continuous on F.

Definition 2.12. Let X and Y be normed spaces. The mapping T : X — Y

is said to be completely continuous if T(C) is a compact subset of Y for every

bounded subset C of X.

Definition 2.13. A subset C of a normed linear space X is said to be convex

subset in X if Az + (1 — A)y € C for each z,y € C and for each scalar \ € [0, 1].

2.2 Hilbert spaces
Definition 2.14. The real-value function of two variables (-,) : X x X — R is

called inner product on a real vector space X if it satisfies the following conditions:

(1) (az + By, z) = oz, 2) + By, 2) for all z,y, z € X and all real number o
and S;

(2) (z,y) = (y,z) for all 2,y € X; and

(3) (z,z) > 0 for each z € X and (z,z) = 0 if and only if z = 0. A real

inner product space is a real vector space equipped with an inner product.

Definition 2.15. A Hilbert spaces is an inner product space which is complete

under the norm induced by its inner product.

Definition 2.16. A sequence of points x, in a Hilbert space H is said to converge
weakly to a point z in H if lim, oo (zs,y) = (x,y) for all y € H. The notation

Z, — z is sometimes used to denote this kind of convergence.

Definition 2.17. The metric (nearest point) projection Pc from a Hilbert space

H to a closed convex subset C' of H is defined as follows: Given x € H, Pz is the



only point in C' with the property
lz — Pez| = inf{llz — y|| : y € C}.

Definition 2.18. For every point = € H, there exists a unique nearest point in C,

denoted by Pcz, such that
lz — Poz|| < ||z —y|| forallyeC.

Fc is called the metric projection of H onto C. It is well known that Py is a firmly

nonexpansive mapping of H onto C and satisfies
(z——vaCx_PCZ» 2 ”PC'T_PCZJ”2’ Vr)ye H (21)

Lemma 2.19. Let H be a real Hilbert space, C' a closed convex subset of H. Given

z € H andy € C. Then y = Pcx if and only if there holds the inequality

(r—y,y—2)>0,VzeC.

2.3 Variational inequality problem
Definition 2.20. Let A: C — H be a nonlinear mapping. The classical varia-
tional inequality which denoted by VI(C, A), is to find = € C such that
(Az,y—z) >0, VyeC. (2.2)
Definition 2.21. Pcz is characterized by the following properties: Poz € C and
(z — Pox,y — Pex) <0, (2.3)
lz = yli* > llz — Pez|® + |ly - Pez|?, Vze H,yeC. (2.4)

Lemma 2.22. [36]Let H be Hilbert space, let C' be a nonempty closed conver subset
of H and let B be a mapping of C into H. Let u € C. Then for X > 0,

u € VI(C,B) <= u = Po(u — ABu),

where P is the metric projection of H onto C.



Definition 2.23. Let A: C — H be nonlinear mappings. Then B is called
(1) monotone if
(Ar — Ay,z —y) 20, Vz,yeC,
(2) v-strongly monotone if there exists a positive real number v such that
(Az — Ay, —y) > vllz —y|?>, Vz,yeC,
for constant v > 0. This implies that
[Az — Ay|| = vz -y, (2.5)
that is, A is v-expansive and when v = 1, it is expansive.

(3) &-Lipschitz continuous if there exists a positive real number ¢ such that

4z — Ayl <&lle —yll, Yo,y €C,

(4) u-inverse-strongly monotone, if there exists a positive real number u such

that

(Az — Ay, z — y) > u||Az — Ay||2, Vr,y € C, (2.6)

Clearly, every u-inverse-strongly monotone map A is %—Lipschitz continuous,

(6) Let f: C — C is said to be a a-contraction if there exists a coefficient o

(0 < @ < 1) such that

1f(z) = f@W <ellz—yll, Vz,yeC.

(6) An operator A is strongly positive on H if there is a constant 5 > 0 with
property
(Az,z) > 7||z||?, Vz e H. (2.7)



(7) A set-valued mapping T : H — 2 is called monotone if for all z,y € H,

f€Tzand g € Ty imply (x —y, f —g) > 0.

A monotone mapping T : H — 2/ is maximal if the graph of G(T) of T is

not properly contained in the graph of any other monotone mapping.

It is known that a monotone mapping T is maximal if and only if for (z, f) €
HxH, (x—y,f—g) >0 for every (y,g9) € G(T) implies f € Tz. Let B
be a monotone map of C into H and let Ngw; be the normal cone to C at

w, € F, ie.,
Ngw, ={w € H: (w; — u,w) > 0,Vu € C}.

Define
Aw1+NEw1, wh GC;

@, wq ¢ =
Then T is the maximal monotone and 0 € T'w; if and only if w, € VI(C, A).

Twl =

Definition 2.24. Let n: C x C' — H is called Lipschitz continuous, if there exists

a constant L > 0 such that

In(z,v)|l < Lz —y|, Vz,y € C.

Let K : C — R be a differentiable functional on a convex set C, which is called:

(1) n-convex [17] if
K(v) - K() = (K'(@),n(y,2)), Va,y € C,
where K'(z) is the Fréchet derivative of K at z;

(2) n-strongly convex [2] if there exists a constant ¢ > 0 such that

K) = K@) = (K@) n(.2)) 2 Slle =yl Yoy € C.

In particular, if n(x,y) = z — y for all z,y € C, then K is said to be strongly

COnvex.



2.4 Variational Inclusion Problem

Let B : H — H be a single-valued nonlinear mapping and M : H — 2H be a
set-valued mapping. The variational inclusion problem is to find £ € H such that
0 € B(Z) + M(z), (2.8)

where 0 is the zero vecter in H. The set of solutions of problem (2.8) is denoted
by I(B,M). A set-valued mapping M : H — 2 is called monotone if for all
z,y € H, fe M(z)and g € M(y) imply (zx—y, f—g) > 0. A monotone mapping
M is mazimal if its graph G(M) := {(f,z) € H x H : f € M(z)} of M is not
properly contained in the graph of any other monotone mapping. It is known that a
monotone mapping M is maximal if and only if for (z, f) € HxH, {(z~y, f—g) >0
for all (y,g9) € G(M) imply f € M(z).

Definition 2.25. Let M : H — 2 be a set-valued maximal monotone mapping,

then the single-valued mapping Jy,» : H — H defined by
Jua(@) =T +XM)"Yz), t€H (2.9)
is called the resolvent operator associated with M, where A is any positive number
and [ is the identity mapping. The following characterizes the resolvent operator.
(R1) The resolvent operator Jy;  is single-valued and nonexpansive for all

A > 0, that is,
I Ima(x) = Tmua@)l < llz —yll, Vz,y € H and VYA > 0.
(R2) The resolvent operator Jy, is l-inverse-strongly monotone; see([6]),
that is,
1 Tm7 (@) = Tua W < (2~ y, Jua(z) = Tna(®)), Va,y € H.
(R3) The solution of problem (2.8) is a fixed point of the operator Jy (1 —
AB) for all A > 0; see also ([22]), that is, .o

I(B,M) = F(Jux(I —AB)), YA >0.
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(R4) If 0 < A < 24, then the mapping Jy (I — AB) : H — H is nonex-
pansive.
(R5) I(B, M) is closed and convex.

Lemma 2.26. (6] Let M : H — 2% be a mazimal monotone mapping and let
B : H — H be a Lipshitz continuous mapping. Then the mapping L = M + B :

H — 2% is a mazimal monotone mapping.

Lemma 2.27. (1] Let C be a closed conver subset of H. Let {z,} be a bounded
sequence in H. Assume that

(1). The weak w-limit set wy,(z,) C C,

(2). For each z € C, lim,__, ||z, — 2| exists.

Then {z,} is weakly convergent to a point in C.

2.5 Equilibrium Problem

Definition 2.28. Let F' be a bifunction of C' x C into R, where R is the set of real

numbers. The equilibrium problem for F : C x C — R is to find z € C such that
F(z,y) >0, VyeC. (2.10)

The set of solutions of (2.10) is denoted by EP(F). Given a mapping A : C —
H, let F(z,y) = (Az,y — x) for all z,y € C. Then z € EP(F) if and only if

(Tz,y—2) >0forally € C, ie, z is a solution of the variational inequality.

Definition 2.29. Let {F;, i =1,2,..., N} be a finite family of bifunctions from

C x C into R, where R is the set of real numbers. The system of equilibrium

o
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problems for {F, F5, ..., Fn} is to find a common element x € C such that

4

Fi(z,y) >0, YyeC,

Fy(z,y) >0, YyeC,
(2.11)

We denote the set of solutions of (2.11) by NY, SEP(F;), where SEP(F}) is the

set of solutions to the equilibrium problems, that is,
Fi(z,y) >0, YyeC. (2.12)

If N =1, then the problem (2.11) is reduced to the equilibrium problems.

Definition 2.30. For solving the equilibrium problem, let us assume that the

bifunction F satisfies the following conditions (see [4]):

(A1) F(z,z) =0for all z € C;
(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for any =,y € C;

(A3) F is upper-hemicontinuous, i.e., for each z,y, 2 € C,

limsup F(tz+ (1 — t)z,y) < F(z,y);

t—0

(A4) F(z,-) is convex and lower semicontinuous for each z € C.

Lemma 2.31. [4] Let C be a nonempty closed convex subset of H and let F be a
bifunction of C' x C into R satisfying (A1)-(A4). Letr > 0 and x € H. Then,
there exists z € C such that

F(z,y)—l—%(y—z,zﬁx).ZQforallyEC‘
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Lemma 2.32. [10] Assume that F : C x C — R satisfies (A1)-(A4). Forr >0
and z € H, define a mapping JF : H — C as follows:

JrF(x)={zEC:F(z,y)+%(y—z,z—x)20, ‘V’yEC}

for all z € H. Then, the following hold:

(1) JF is single-valued;

(2) JE is firmly nonexpansive, that is, for any x,y € H,

o= IFy|* < (JFe - Iryz —y);

(3) F(J7) = EP(F);

(4) EP(F) is closed and convez.

2.6 Mixed Equilibrium Problem

Let & = {F} }ker be a countable family of bifunctions from C x C to R where R is
the set of real numbers and I is an arbitrary index set. Let ¢ : C — RU {+00} be
a proper extended real-valued function. The system of mized equilibrium problems

is to find z € C such that
Fe(z,y) + o(y) > ¢(z), Vk €T, Yy € C. (2.13)
The set of solutions of (2.13) is denoted by SM EP(Fy, ), that is
SMEP(Fy,p) ={z € C: Fi(z,y) + ¢(y) > o(z), Vke T, Vy € C}.  (2.14)

If T is a singleton, the the problem (2.13) reduces to fined the following

mized equilibrium problem (see also Flores-Bazéan [13]). For finding z € C such

Y

that
F(z,y) +¢(y) 2 ¢(z), Yy € C. (2.15)
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The set of solutions of (2.15) is denoted by M EP(F, ).

For solving the system of mixed equilibrium problem, let us assume that
function Fi, : C x C — R, k = 1,2,..., N satisfies the following conditions:
(H1) Fj is monotone, i.e., Fy(z,y) + Fr(y,z) <0, Vz,y € C;
(H2) for each fixed y € C, &+ Fy(z,y) is convex and upper semicontinuous;
(H3) for each fixed z € C,y +— Fi(z,y) is convex.

Lemma 2.33. [7] Let C be a nonempty closed conver subset of a real Hilbert space
H and let ¢ be a lower semicontinuous and convez functional from C to R. Let F

be a bifunction from C x C to R satisfying (H1)-(H3). Assume that

(i) n: C x C — H is k Lipschitz continuous with constant k > 0 such that;
() n(z,y) +n(y,z) =0, Va,yeC,
(b) n(-,-) is affine in the first variable,

(c) for each fized x € C, y — n(z,y) is sequentially continuous from the

weak topology to the weak topology,

(it) K : C — R is n-strongly convez with constant o > 0 and its derivative K' is

sequentially continuous from the weak topology to the strong topology;

(iii) for each x € C, there exist a bounded subset D, C C and z, € C such that
for any y € C\D,,

F(y, 2:) + ¢(zz) — o(y) + %<1C’(y) ~ K'(z), n(za, y)> <0.

For givenr >0, Let KF : C — C be the mapping defined by:

]' ! !
Kf(z) = {y €C: F(y,z)+so(2)—90(y)+;</C (y)-K'(z), n(z, y)> >0, Vze C}
- (2.16)
for all z € C. Then the following hold
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(1) KF is single-valued;

(2) KF is nonexpansive if K' is Lipschitz continuous with constant v > 0 such

that o > kv;
(3) F(K]) = MEP(F,¢);
(4) MEP(F,¢) is closed and convex.

Lemma 2.34. [25]. Let C be a nonempty closed convex subset of H and let f be
a contraction of H into itself with a € (0,1), and A be a strongly positive linear

bounded operator on H with coefficient ¥ > 0. Then , for 0 <y < g,
(z=y(A=1Nr—(A=1Ny) 2 (T-anle-yl®, zyeH
That is, A — v f is strongly monotone with coefficient ¥ — ary.

Lemma 2.35. [25]. Assume A be a strongly positive linear bounded operator on

H with coefficient ¥ > 0 and 0 < p < ||A||™'. Then ||I — pA|| <1 - p7.

Lemma 2.36. Let H be a real Hilbert space. Then the following inequalities hold:

(1) llz +yl* < llzl® + 2(y, z + y);
(2) Iz +yl* = ll=]” + 2{y, z);

(3) lltz+(1-t)yl* = tlel®+ Q= t)llyl® —t(1 - t)|lz—ylf*, vt € [0, 1], Vz,y € H;

forallz,y € H.

Lemma 2.37. [36] Let H be a Hilbert space, let C' be a nonempty closed convez
subset of H. Let £ > 0 and let A: C — H be &-inverse strongly monotone. If

0< <2, then I — pB is a nonexpansive mapping of C into H.

Lemma 2.38. [27] The Opial’s condition; for any sequence {z,} with z, —

the inequality lim inf, o |lzn — z|| < liminf, . ||z, — yl|, holds for everyy € H

with y # .
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Lemma 2.39. (34] Let {z,} and {l,} be bounded sequences in a Banach space X
and let {B,} be a sequence in {0, 1] with 0 < liminf, . G, <limsup, . G, <1.
Suppose Tny1 = (1 — Bu)ln + Bnzn for all integers n > 0 and limsup,, __ (||las1 —

Lol = |ne1 — zall) < 0. Then, lim, . ||l, — z.|| = 0.

Lemma 2.40. [40] Assume {a,} is a sequence of nonnegative real numbers such
that

Anp1 £ (1 =by)an + ¢, n >0,

where {b,} is a sequence in (0,1) and {c,} is a sequence in R such that

(1) >y bn =00,

(2) limsup, . g <0 0r 3 7 ca] < 00,

Then lim, .o an = 0.

Lemma 2.41. [32] Let C be a nonempty bounded closed convex subset of a Hilbert
space H and let S = {S(s) : 0 < s < 00} be a nonexpansive semigroup on C, then

for any h > 0,

lim sup =0.

t—00 zeC

% /0 tT(s)a:ds—T(h)(% /O t T(s)wds)

Lemma 2.42. [38] Let C be a nonempty bounded closed convez subset of H, {z,}

be a sequence in C and S = {S(s) : 0 < s < oo} be a nonerpansive semigroup on

C. If the following conditions are satisfied:

(i) T, — z;

() limsup, ., limsup, . [|S(s)zn, — z,|| =0, then z € F(S).



