Dissertation Title	Spectroscopic Studies of Bismuth Borate Glass Doped with Dy_2O_3
Dissertation Credits	48
Candidate	Mr. Smit Insiripong
Dissertation Advisors	Prof. Dr. Pichet Limsuwan
	Asst. Prof. Dr. Jakrapong Kaewkhao
Program	Doctor of Philosophy
Field of Study	Physics
Department	Physics
Faculty	Science
B.E.	2555

Abstract

This research, bismuth borate glasses doped with dysprosium (Dy) were prepared using the glass composition formula $30Bi_2O_3$: $(70-x)B_2O_3$: xDy_2O_3 , where x is 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5 mol%. Glass samples were prepared by melt-quenching technique at temperature of 1,100 °C for 3 h. Glass samples were annealed at the temperature of 500 °C for 3 h to reduce thermal stress. The physical and optical properties were studied. X-ray diffraction pattern was used to confirm amorphous nature of glass samples. The results showed that the density did not depend on the Dy_2O_3 concentration. The molar volume increased with increasing Dy₂O₃ concentration due to the effect of non-bridging oxygen (NBOs) in the glass networks. The optical spectra revealed six absorption peaks corresponding to the trasition from the ground state ⁶H_{15/2} to energy level ${}^{6}F_{3/2}$ (762 nm), ${}^{6}F_{5/2}$ (805 nm), ${}^{6}F_{7/2}$ (905 nm), $({}^{6}H_{7/2}, {}^{6}F_{9/2})$ (1,100 nm), $({}^{6}F_{11/2}, {}^{6}H_{9/2})$ (1,280 nm) and ${}^{6}H_{11/2}$ (1,695 nm). The emission spectra (excited with 451 nm) revealed three emission peaks, which are assigned to ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ (484 nm), ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ (574 nm) and ${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$ (661 nm) transitions, respectively. The X-ray luminescence spectra showed four emission peaks at 480 nm, 575 nm, 660 nm and 750 nm due to the transition from

 ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$, ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$, ${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$ and ${}^{4}F_{9/2} \rightarrow {}^{6}H_{9/2} + {}^{6}F_{11/2}$, respectively. The luminescence intensity of 575 nm peak slightly increased with increasing the Dy₂O₃ concentration and the strongest intensity peak was obtained at 575 nm. Proton luminescence spectra of glass showed emission peak at 575 nm which in good agreement with photoluminescence and X-ray luminescence spectra.

Keywords : Bismuth Borate Glass / Dy₂O₃ / Optical Properties / Physical Properties

หัวข้อวิทยานิพนธ์ การศึกษาทางสเปกโทรสโกปีของแก้วบิสมัทบอเรตที่เติม Dy₂O₃ หน่วยกิต 48 ผู้เขียน นายสมิต อินทร์ศิริพงษ์ อาจารย์ที่ปรึกษา ศ . ดร. พิเชษฐ ลิ้มสุวรรณ ผศ. ดร. จักรพงษ์ แก้วขาว หลักสูตร ปรัชญาดุษฎีบัณฑิต สาขาวิชา ฟิสิกส์ ภาควิชา ฟิสิกส์ คณะ วิทยาศาสตร์ พ.ศ. 2555

บทคัดย่อ

้งานวิจัยนี้ได้ศึกษาการเตรียมแก้วบิสมัทบอเรตที่เติม ด้วยคืสโปรเซียม (Dy) ในสูตรแก้ว 30Bi₂O₃: (70-x)B₂O₃: xDy₂O₃ (เมื่อ x = 0.0, 0.5, 1.0, 1.5, 2.0 และ 2.5 เปอร์เซ็นโคยโมล) แก้วตัวอย่าง ถูกเตรียมโดยเทคนิคการหลอมและทำให้เย็นตัวอย่างรวคเร็วที่อุณหภูมิ $1,100~^0\mathrm{C}$ เป็นเวลา 3 ชั่วโมง ้อบอ่อนแก้วที่อุณหภูมิ 500 ⁰C เป็นเวลา 3 ชั่วโมง เพื่อลดความเครียดเชิงความร้อน ผลที่ได้พบว่า ้งากรูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ยืนยันถึงกวามเป็นวัสดุอสัณฐานของแก้วตัวอย่าง กวาม หนาแน่นของแก้วไม่ขึ้นกับความเข้มข้นของ $\mathbf{Dy}_2\mathbf{O}_3$ ค่าปริมาตรเชิงโมลขึ้น กับความเข้มข้นของ Dy₂O₃ อันเนื่องมาจากผลของออกซิเงนที่ไม่ได้เป็นสะพานเชื่อมต่อประจุในโครงสร้างแก้ว ผล ้สเปกตรัมการดูดกลืนแสงพบว่ามีพีกเกิดขึ้น 6 ตำแหน่ง เนื่องจากการดูดกลืนจากสถานะพื้น $^6\mathrm{H}_{15/2}$ ไปยังสถานะ ${}^{6}F_{3/2}$ (762 nm), ${}^{6}F_{5/2}$ (805 nm), ${}^{6}F_{7/2}$ (905 nm), (${}^{6}H_{7/2}$, ${}^{6}F_{9/2}$) (1,100 nm), (⁶F_{11/2}, ⁶H_{9/2}) (1,280 nm) และ ⁶H_{11/2} (1,695 nm) การศึกษาปรากฏการณ์โฟโตลูมิเนสเซนต์ พบว่า เกิดการเปล่งแสง (กระตุ้นที่ความยาวคลื่น 451 nm) 3 ตำแหน่ง ซึ่งเกิดจากการลดสถานะใน ⁴F_{9/2}→⁶H_{15/2} (484 nm), ⁴F_{9/2}→⁶H_{13/2} (574 nm) และ ⁴F_{9/2}→⁶H_{11/2} (661 nm) ตามลำคับ และ พบพิคความเข้มสูงสุดที่ความยาวคลื่น 574 nm การศึกษาการลูมิเนสเซนต์ เมื่อกระตุ้นด้วยรังสีเอ็กซ์ พบว่าเกิดพีดขึ้น 4 ตำแหน่งที่ ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ (480 nm), ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ (575 nm), ${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$ (660 nm) และ ${}^{4}F_{9/2} \rightarrow {}^{6}H_{9/2} + {}^{6}F_{11/2}$ (750 nm) ตามลำดับ โดยความเข้มของการเปล่งแสงที่พีค ้ตำแหน่ง 575 nm มีก่าเพิ่มขึ้นเล็กน้อย เมื่อเพิ่ม ความเข้มข้นของ Dy₂O₃ ในทุกแก้วตัวอย่าง และพบ พิกความเข้มสูงสุดที่ 575 nm ผลโปรตอนลูมิเนสเซนต์พบพิกการเปล่งแสงที่ตำแหน่ง 575 nm ้สอดคล้องกับผลโฟโตลูมิเนสเซนต์และผลลูมิเนสเซนต์เมื่อกระตุ้นด้วยรังสีเอ็กซ์

กำสำคัญ : แก้วบิสมัทบอเรต / ดีสโปรเซียม / สมบัติเชิงกายภาพ / สมบัติเชิงแสง

ACKNOWLEDGEMENTS

This dissertation is one part of the Ph.D. (Physics) program researching "Spectroscopic studies of bismuth borate glass doped with Dy_2O_3 ". I would like to special thank Prof. Dr. Pichet Limsuwan and Asst. Prof. Dr. Jakrapong Kaewkhao for their kind advice and helpful suggestions. This dissertation could not be successfully completed without the kind support of the advisor's teams. I would like to thank the staff at the Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, and the Radiation Science Research Institute, Kyungpook National University (KNU), Daegu 702-701, Korea, for all their assistance, including research data and facilities, in the writing of this paper. Also, much thank Prof. Dr. Hong Joo Kim, Department of Physics, Kyungpook National University, for gamma ray luminescence measurement, thank to chairman of dissertation committee, Asst. Prof. Dr. Kheamrutai Thamaphat, and member of dissertation committee, Dr. Kittisakchai Naemchanthara, and Dr. Parnuwat Chimalawong of the committee reviewing this dissertation. I would also like to thank my family for their love, support and understanding. As this dissertation has potential practical applications, I would like to show my appreciation and generosity to other physics researchers or writers whose names were inadvertently not mentioned in cited works or referred to. I will never forget this opportunity to add to academic knowledge and learning.

CONTENTS

EN	IGLISH	ABSTRACT	i
TH	THAI ABSTRACT		
A	ACKNOWLEDGEMENT		
CONTENTS			iv
LI	ST OF T	ABLES	vi
LI	ST OF F	IGURES	vii
LI	ST OF A	BBREVIATIONS AND SYMBOLS	viii
CI	HAPTEI	R	
1.	INTRO	DUCTION	1
	1.1	Background	1
	1.2	Motivation	2
	1.3	Objectives	3
	1.4	Literature Reviews	3
2.	THEO	PV	11
4.	2.1	Definitions of Glass	11
	2.2	The Enthalpy-Temperature Diagram	12
	2.3	Structural Model and Borate Glasses	15
	2.4	Density and Molar Volume	18
	2.5	Measurement of Density	19
	2.6	Optical Properties	19
	2.7	Absorption Processes in Solids	22
	2.8	Transitions across the Band Gap	23
	2.9	Evaluation of Absorption Coefficient	24
	2.10	Absorption in the UV	25
	2.11	Oxygen Ion Activity; Basicity	28
	2.12	Luminescence	29
	2.13	Mechanism of Luminescence	30
	2.14	The Phenomenon of Scintillation	31
	2.15	Rare-Earth Ions in Glasses	34
3.	MATE	RIALS AND METHODS	36
-	3.1	Materials Preparation	36
	3.2	Experimental Methodology	37
	3.2.1	X-ray Diffractometer (XRD)	39
	3.2.2	Density Measurement	40
	3.2.3	UV-VIS-NIR Spectrophotometer	41

3.2.4 Photoluminescence X-ray Luminescence 3.2.5 Proton Luminescence 3.2.6

3.2.6	Proton Luminescence	45
3.3	Material Characterization	46

PAGE

42

43

CONTENTS (Cont' d)

CHAPTER		PAGE	
4.	RESU	JLTS AND DISCUSSION	47
	4.1	General Characteristic of Glass Samples	47
	4.2	Amorphous Nature of Glass Samples	48
	4.3	Density and Molar Volume	49
	4.4	UV-VIS-NIR Absorption Spectra	51
	4.5	Photoluminescence	52
	4.6	X-ray Luminescence	55
	4.7	Proton Luminescence	56
5.	CON	CLUSION	58
	5.1	General Characteristic of Glass Samples	58
	5.2	Density and Molar Volume	58
	5.3	UV-VIS-NIR Absorption Study	58
	5.4	Luminescence Properties	58
RF	EFERE	ENCES	60
CU	J RRIC	ULUM VITAE	64

LIST OF TABLES

TABLE		PAGE
1.1	Summary table of literature reviews	8
2.1	Optical basicities according to Dimitrov and Sakka calculated from refractive index and energy gap	28
2.2	Electronic polarizabilities of oxide ion calculated from refractive index and energy gap, average, and binding energy of simple oxides	29
2.3	The sequence of processes leading to scintillation in a medium	32
2.4	Luminescence wavelength and transition level of tri-valence of rare- earth ions (dysprosium, Dy^{3+}) doped in bismuth borate glasses	35
3.1	Fractional doping of Dy_2O_3 in bismuth borate glasses	37
3.2	Some specification of spectrofluorophotometer	43
4.1	Density, molecular weight, and molar volume of $30Bi_2O_3$: (70-x)B ₂ O ₃ : xDy ₂ O ₃ glasses	49

LIST OF FIGURES

FIGURE		PAGE
2.1	Effect of temperature on the enthalpy-temperature of a glass forming melt	13
2.2	A two-dimensional representation of A_2O_3 : (a) crystal and (b) glass	15
2.3	Boroxol ring structures in vitreous boric oxide and borate glasses	16
2.4	Structural grouping in borate glasses: (a) boroxol ring, (b) tetraborate, and (c) diborate	17
2.5	Structural model of borate glass as a function of the modifier content (concentrations of intermediate range units in borate glass).	17
2.6	Characteristic types of optical transitions shown both for the flat-band model and for the E vs k plot	23
2.7	Optical absorption edges of $20BaO-(80-x)B_2O_3-xBi_2O_3$ for Ba1 is x=10, Ba3 is x=30, Ba5 is x=50	26
2.8	Optical absorption edges of 5BaO-15Na ₂ O-80B ₂ O ₃ at room temperature, showing Urbach behavior	27
3.1	Flow chart of the glass sample prepared process	38
3.2	X-ray diffractometer	39
3.3	Dense meter	40
3.4	UV-VIS-NIR spectrophotometer	41
3.5	Spectrofluorophotometer	42
3.6	Experimental setup of x-ray luminescence measurement	44
3.7	Diagram of x-ray luminescence measurement	44
3.8	Photograph of an exit window in the proton beam line with a sample	45
	glass sample attached to the sample holder	
3.9	Diagram of proton luminescence measurement	46
3.10	Diagram of glass samples characterizations	46
4.1	Illustration of $30Bi_2O_3$: $(70-x)B_2O_3$: xDy_2O_3 glasses	47
4.2	Diffraction pattern of $30Bi_2O_3$: $(70-x)B_2O_3$: xDy_2O_3 glasses	48
4.3	Density of $30Bi_2O_3$: $(70-x)B_2O_3$: xDy_2O_3 glasses	49
4.4	Molar volume of $30Bi_2O_3$: $(70-x)B_2O_3$: xDy_2O_3 glasses	50
4.5	Optical absorption spectra of $30Bi_2O_3 : (70-x)B_2O_3 : xDy_2O_3$ glasses	51
4.6	The excitation spectra of $30Bi_2O_3$: $(70-x)B_2O_3$: xDy_2O_3 glasses	52
4.7	The emission spectra of $30Bi_2O_3$: $(70-x)B_2O_3$: xDy_2O_3 glasses	53
4.8	Energy level and luminescence transitions of Dy^{3+} in $30Bi_2O_3$: (70-x)B ₂ O ₃ : xDy ₂ O ₃ glasses	54
4.9	The x-ray luminescence spectra $30Bi_2O_3 : (70-x)B_2O_3 : xDy_2O_3$ glasses	55
4.10	Expansion of Figure 4.9, the x-ray luminescence spectra $30Bi_2O_3$: (70-x)B ₂ O ₃ : xDy ₂ O ₃ glasses	55
4.11	X-ray luminescence process of Dy^{3+} in $30Bi_2O_3 : (70-x)B_2O_3 : xDy_2O_3$ glasses	56
4.12	The proton luminescence spectrum $30Bi_2O_3 : (70-x)B_2O_3 : xDy_2O_3$ glasses	57

LIST OF ABBREVIATIONS AND SYMBOLS

•	4.1 1
A	Absorbance
A(n0),	Refractive index-based Interaction Parameter
В	Band Tailing Parameter
BO	Bridging Oxygen Atom
С	Electromagnetic Wave Velocity in Vacuum
D	Optical Density
E _F	Fermi Energy
Eg	Energy Gap
Egopt	Optical Band Gap
$\mathrm{E}_{\mathrm{g}}^{\mathrm{dir}}$	Direct Optical Band Gap
$\mathrm{E}^{\mathrm{ind}}_{\mathrm{g}}$	Indirect Optical Band Gap
$\Delta \dot{E}$	Width of Tail
Eu	Urbach's Energy
Eo	Mobility Gap
eV	Electron Volt
F	Field Strength
Н	Planck's Constant
Io	Intensities of Incident Radiation
Ι	Intensities of Transmitted Radiation
IR	Infrared
Κ	Kelvin
k _B	Boltzmann's Constant
Nd	Refractive Index
M(n0),	Refractive index-based Metallization Criterion
MT	Molecular Weight
NBOs	Non-Bridging Oxygen
NL	Loschmidt Number
R	Refractance
RE	Rare-earth
Rm	Molar Refractivity
Rp	Ionic radius
Ri	Inter Nuclear Distance
Rp	Polaron Radius
T	Temperature
Tg	Glass Transition Temperature
Tm	Melting Temperature
UV	Ultraviolet
VIS	Visible
V _M	Molar Volume
Vp	Ion Packing Ratio
Wi	Weight Fraction
Wa	Weight of the Specimen in Air
Wb	Weight of the Specimen in Water

LIST OF ABBREVIATIONS AND SYMBOLS (cont'd)

X	Thickness of Sample
XPS	X-ray Photoelectron Spectroscopy
XRD	X-Ray Diffraction
A	Absorption Coefficient
α_T	Thermal Expansion Coefficient
α_o^{2-}	Electronic Oxide Polarizability
$\alpha_{oxide(-II)}$	Polarizability of the Oxide (-II) Species
α_{02} -(n ₀)	Refractive index-based Oxide Ion Polarizability
Eion	Extinction Coefficients of the Ions
Р	Density
V	Electromagnetic Wave Frequency
V_d	Abbe Number
χ^{av}	Average Electronegativity
$\chi^{av}_{\chi^{(3)}}$	Third-Order Non-Linear Susceptibility
Λ	Wavelength
λ_c	Cut-off Wavelength
Λ	Optical Basicity
Λ_{cal}	Calculated Basicity
$\Lambda(\mathbf{n}_0)$	Refractive Index-Based Optical Basicity
Λ_{th}	Theoretical Optical Basicity