Synthesis and Characterization of Nanographite and Graphene for pH Sensor

Miss Bupphapan Puangbuppha B.Sc. (Physics)

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (Physics) Faculty of Science King Mongkut's University of Technology Thonburi 2012

Thesis Committee

(Lect. Watchara Liewrian, Ph.D.)	Chairman of Thesis Committee
(Lect. Piyapong Asanithi, Ph.D.)	Member and Thesis Advisor
(Lect. Kriangkrai Wantong, Ph.D.)	Member
(Lect. Worasak Sukkabot, Ph.D.)	Member

Copyright reserved

หัวข้อวิทยานิพนธ์	การสังเคราะห์และการศึกษาลักษณะของนาโนแกรไฟต์และแกรฟืนสำหรับ		
	ใช้เป็นเซนเซอร์ตรวจจับความเป็นกรคค่าง		
หน่วยกิต	12		
ผู้เขียน	นางสาวบุปผาพันธุ์ พวงบุปผา		
อาจารย์ที่ปรึกษา	คร.ปียะพงษ์ อะสะนิธิ		
หลักสูตร	วิทยาศาสตรมหาบัณฑิต		
สาขาวิชา	ฟิสิกส์		
ภาควิชา	ฟิสิกส์		
คณะ	วิทยาศาสตร์		
พ.ศ.	2555		

บทคัดย่อ

้นาโนแกรไฟต์สามารถเตรียมได้โดยการโซนิเคทแกรไฟต์ในน้ำกลั่น เวลาที่ใช้ในการโซนิเคทที่ต่างกัน ซึ่งประกอบด้วย 3, 6, 12, 36 และ 72 ชั่วโมง จะส่งผลต่อความหนาของนาโนแกรไฟต์ เมื่อเวลาในการ ์ โซนิเคทมากขึ้นจะส่งผลให้สารแขวนลอยของนาโนแกรไฟต์มีความเป็นเนื้อเคียวกันและมีความเข้มข้น ้งองนาโนแกรไฟต์ที่หลุดล่อนเพิ่มมากขึ้น สารแงวนลอยที่เสลียรได้มาจากการโซนิเคทเป็นเวลา 36 และ 72 ชั่วโมง โดยแสดงให้เห็นเป็นสารละลายสีเทาเป็นเวลามากกว่า 3 เดือน แกรฟีนออกไซด์ซึ่งมีสีเหลือง ้น้ำตาลถูกเตรียม โดยวิธีของฮัมเมอร์ จากนั้นแกรฟีนออกไซด์จะถูกรีดิวซ์ โดยการเติมด้วยไฮดราซีน ้ไฮเครทและส่งผลให้สารแขวนลอยกลายเป็นสีคำ ความหนาของและลักษณะทางสัณฐานวิทยาของ นาโนแกรไฟต์และรีคิวซ์แกรฟีนออกไซด์สามารถตรวจสอบได้โดยใช้ scanning electron microscopy, atomic force microscopy และ transmission electron spectroscopy ลักษณะทางแกรไฟต์ของ นาโนแกรไฟต์และรีดิวซ์แกรฟีนออกไซด์ศึกษาโดยใช้ UV-visible spectroscopy และ Raman ้ในการสร้างเซนเซอร์ตรวจจับความเป็นกรคค่างจะใช้นาโนแกรไฟต์ที่เตรียมจากการ spectroscopy ์ โซนิเคทเป็นเวลา 72 ชั่วโมง (อปกรณ์ A) และรีคิวซ์แกรฟีนออกไซค์ (อปกรณ์ B) หยุคลงบนอิเล็กโทรค และอบให้แห้งในเตาอบ (75°C) เพื่อฟอร์มตัวเป็นฟิล์มบนอิเล็กโทรค ค่าความต้านทานไฟฟ้าของ ้อุปกรณ์ทั้งสองถูกวัคและเปรียบเทียบกันหลังจากสัมผัสกับของเหลวที่มีค่าพีเอชต่าง ๆ ในช่วง 1-14 ้ ค่าความต้านทานไฟฟ้าของเซนเซอร์ทั้งสองมีค่าลดลงเมื่อค่าพีเอชสูงขึ้น โดยค่าความสามารถในการ ตรวจจับของเซนเซอร์ซึ่งมีค่า 220 และ 2.30 k Ω pH⁻¹ได้มาจากเซนเซอร์ที่สร้างจากนาโนแกรไฟต์และ รีดิวซ์แกรฟีนออกไซด์ตามถำดับ

้ กำสำคัญ : แกรฟีน / วิธีฮัมเมอร์ / นาโนแกรไฟต์ / เซนเซอร์ตรวจจับความเป็นกรคค่าง / โซนิเคชัน

Thesis Title	Synthesis and Characterization of Nanographite and Graphene for
	pH Sensor
Thesis credits	12
Candidate	Miss Bupphapan Puangbuppha
Thesis Advisor	Dr. Piyapong Asanithi
Program	Master of Science
Field of Study	Physics
Department	Physics
Faculty	Science
B.E.	2555

Abstract

Nanographites were successfully prepared by sonicating of the bulk graphite in distilled water. Effect of different sonication times with 3, 6, 12, 36 and 72 hours on thickness of nanographite was reported. Longer time of sonication enhanced the suspension homogeneity and increased the concentration of exfoliated nanographite. The stable suspensions were obtained from 36 and 72 hours of sonication, which represented gray suspension for more than 3 months. The graphene oxide with yellow brown color was prepared by Hummers' method. Then, reduced graphene oxide was obtained by adding hydrazine hydrate and the suspension became black. The thickness and morphology of nanographite and reduced graphene oxide were investigated by scanning electron microscopy, atomic force microscopy and transmission electron spectroscopy. Graphitic characteristics of the nanographite and reduced graphene oxide were studied by UVvisible spectroscopy and Raman spectroscopy. To fabricate a pH sensor, nanographite prepared from 72 hours of sonication (device A) and reduced graphene oxide (device B) were dropped on the electrodes and dried in the oven (75°C) to form thin films on the electrodes. The electrical resistance of both devices was measured and compared after in contact with liquid of different pH values, ranging from 1 to 14. The electrical resistance of both devices decreased with increasing pH values. The sensitivity of 220 and 2.30 k Ω pH⁻¹ was obtained for nanographite- and reduced graphene oxid-based pH sensors, respectively.

Keywords : Graphene / Hummers' Method / Nanographite / pH Sensor / Sonication

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Dr. Piyapong Asanithi, my advisor for his support and knowledgeable guidance in this thesis work. Special thank is directed to Ms. Worranus Tongpool, Ms. Phitsini Suvarnaphaet and Mr.Santi Rattanaveeranon, for their all helping.

My gratitude is dedicated to all my family for giving me love and inspiration, especially my mother, Duangporn Puangbuppha, my father, Chalearmphon Puangbuppha. I am also very pleased to thanks Mr. Kriangkai Supanpong, Mr. Duangphon Puangbuppha and all my friends, who have accompanied me along the journey.

Finally, I acknowledge the Research Professional Development Project under the Science Achievement Scholarship of Thailand (SAST) for providing her financial support on MSc studies.

CONTENTS

ABSTR	RACT (Thai)	ii
ABSTRACT (English)		
ACKNOWLEDGMENTS		iv
CONTE	CONTENTS	
LIST O	FTABLES	vii
LIST O	F FIGURES	viii
LIST O	FSYMBOLS	xi
CHAP	ГER	
1. INTI	RODUCTION	1
1.1	Introduction	1
1.2	Research objectives	3
1.3	Literature review	3
1.4	Research boundaries	5
2. THE	CORY	6
2.1	Graphite	6
2.2	Nanographite	8
2.3	Graphene	9
2.3.1	Morphology and structure of graphene	9
2.3.2	Synthesis of graphene	11
2.3.2.1	Scotch tape method	11
2.3.2.2	Hummers' method	11
2.3.2.3	Chemical vapor deposition (CVD)	13
2.3.2.4	Electrochemical exfoliation	14
2.3.2.5	Sonication technique	15
2.3.3	Property of graphene	16
2.3.4	Application of graphene	18
2.3.4.1	Microchip	18
2.3.4.2	Transistor	18
2.3.4.3	Ultracapacitor	18
2.3.4.4	Sensor	18
2.3.4.5	Solar cell	18
2.3.4.6	Enhanced plastic	19
2.3.4.7	Next generation display	19
2.4	Chemical sensor	19
2.5	pH sensor	21
2.6	Ultrasonic bath	22
2.7	Scanning electron microscopy (SEM)	23

Page

2.8	Atomic force microscopy (AFM)	27
2.8.1	Contact mode	28
2.8.2	Semicontact mode	28
2.8.3	Non-contact mode	29
2.9	Raman spectroscopy	29
2.10	Ultraviolet spectroscopy	32
2.10.1	The nature of electron excitation	32
2.10.2	The origin of UV band structure	33
2.10.3	Principles of absorption spectroscopy	34
2.11	Transmission electron microscopy (TEM)	35
2.12	Sputtering deposition	38
3. EXF	PERIMENTAL	41
3.1	Material	41
3.2	Equipment	41
3.3	Preparation and characterization of nanographite	42
3.4	Preparation and characterization of reduced graphene oxide	43
3.4.1	Synthesis of graphene oxide	43
3.4.2	Reduction of exfoliated graphene oxide with hydrazine hydrate	44
3.5	Fabrication of the nanographite and reduced graphene	45
	oxide-based pH sensors	
4. RES	ULTS AND DISCUSSION	47
4.1	Nanographite	47
4.2	Reduced graphene oxide	51
4.3	Nanographite-based pH sensor (device A)	54
4.4	Reduced graphene oxide-based pH sensor (device B)	55
4.5	The sensing mechanism of nanographite and reduced graphene	57
	oxide-based pH sensor	
5. COI	NCLUSIONS	60
5.1	Nanographite	60
5.2	Reduced graphene oxide	60
5.3	Characterization of nanographite and reduced graphene oxide-	61
	based pH sensor	
5.4	Future works	62
REFE	RENCES	63
CURR	ICULUM VITAE	68

LIST OF TABLES

Table		Page
2.1	Physical properties of graphite	7
2.2	Parameters of chemical sensors	20
4.1	The results from Raman spectroscopy: nanographite	51
4.2	The results from Raman spectroscopy: reduced graphene oxide	53
4.3	The average resistance values changing of nanographite sensor upon	54
	doping with liquids of different pH values	
4.4	The average resistance values changing of reduced graphene oxide	56
	sensor upon doping with liquids of different pH values	
4.5	Standard deviations of the sensor from pH 1 to 14	58

LIST OF FIGURES

Figure	e P	age
2.1	Graphite specimen	6
2.2	Schematic of hexagonal graphite crystal (a) top view (b) cross section	6
2.3	Schematic of rhombohedral graphite crystal (a) top view (b) cross section	17
2.4	Microstructure of the nanographite: (a) ×5000 magnification;	9
	(b) $\times 100,000$ magnification	
2.5	Structure of graphene	9
2.6	σ and π bond of graphene	10
2.7	'Rippled graphene' from a Monte Carlo simulation	10
	The red arrows are $\sim 8 \text{ nm long}$	
2.8	Graphene: mother of all graphitic forms	10
2.9	Synthesis of graphene by scotch tape method	11
2.10	TEM image of graphene oxide which obtained from	12
	Hummers' method	
2.11	Graphene synthesis by CVD (a) nickel was deposited via electron	13
	beam evaporation on a SiO_2/Si substrate (b) then used CVD to	
	lay down a graphene film over the nickel. (c) The nickel evaporates	
	leaving (d) the graphene film directly on the SiO ₂ /Si substrate	
2.12	Reaction timeline detailing the CVD process for graphene	14
	and its different stages	
2.13	(a) Schematic illustration and photo for electrochemical	15
	exfoliation of (b) Photos of the graphite flakes before and after	
	electrochemical exfoliation (c) Photo of the dispersed graphene	
	sheets in a DMF solution	
2.14	Schematic of sonication for graphene/nanographite synthesis	15
2.15	(a) Photograph of a 50 μ m aperture partially covered by graphene	16
	and its bilayer. The line scan profile shows the intensity of	
	transmitted white light along the yellow line. Inset shows the	
	sample design: a 20 μ m thick metal support structure has	
	apertures 20, 30, and 50 μ m in diameter with graphene flakes	
	deposited over them (b) Optical image of graphene flakes with one,	
	two, three, and four layers on a 285 nm thick SiO_2 -on-Si substrate	. –
2.16	(a) Scanning electron microscopy (SEM) image of a graphene flake	17
	spanning an array of circular holes (scale bar, $3 \mu m$) and (b) Schematic	
0.15	illustration of nanoindentation on membranes	10
2.17	Diagram of basic sensor operations	19
2.18	I ne main component of sensor measurement system	19
2.19	Scheme of a typical chemical sensor system	20
2.20	Ultrasonic bath	22
2.21	Scanning electron microscopy	23

LIST OF FIGURES (cont'd)

Figure		Page
2.22	Schematic drawing of a conventional SEM. The evacuated microscope column (inside the bold dashed frame) contains the electron gun, electromagnetic lenses, electromagnetic deflection coils, apertures, the specimen stage, and the detectors. The electronics console houses the power supplies for the acceleration voltage and the electromagnetic lenses, the scan generator, amplifiers for the signals, and monitors for display and recording of images.	24
2.23	Schematic drawing of signals for a thin sample generated by the impinging electrons	25
2.24	Micrograph of magnification of the head and the eye of a fly, recorded with secondary electrons at 30 kV. The specimen was air dried and sputter coated with about 15 nm gold. The last magnification step from (a) to (b) barely reveals further fine details of the specimen because of the preparation used. The scale of dimensions of the micrographs covers about three orders of magnitude	26
2.25	Atomic Force Microscope	27
2.26	AFM's probe working	27
2.27	Contact mode	28
2.28	Semicontact mode	28
2.29	Non-contact mode	29
2.30	Optical diagram of a Raman spectroscopy	30
2.31	Diagrammatic representation of an energy transfer model of Rayleigh scattering, Stokes Raman and anti-Stokes Raman scattering	31
2.32	Example of Raman spectra of reduced graphene oxide	31
2.33	The excitation process; $E = energy$ of photon (J), $h = Planck's$	32
	constant (6.626×10 ⁻³⁴ σ ·s) and v = frequency (Hz) of its associated electromagnetic wave	
2.34	Electronic energy levels and transitions	33
2.35	Electronic transitions with vibrational transitions superimposed (Rotational levels, which are very closely spaced within the vibrational levels, are omitted for clarity)	33
2.36	A beam of monochromatic radiation of radiant power P_0 , directed at a sample solution. Absorption takes place and the beam of radiation leaving the sample has radiant power P	34
2.37	Example of UV-vis absorption spectra of as-prepared graphite oxide dispersed in different solvents by means of bath ultrasonication	35
2.38	Schematic diagram of transmission electron microscope	36
2.39	Example of TEM image of graphite milled for 20 hour	38
2.40	Sputtering deposition	38

LIST OF FIGURES (cont'd)

Figure	2	Page
2.41	The interactions of ions with surfaces	40
3.1	Preparation of nanographite	42
3.2	Synthesis of graphene oxide	43
3.3	Reduction of exfoliated graphene oxide with hydrazine hydrate	44
3.4	Schematic of nanographite-based pH sensor (device A)	45
3.5	Assembly of nanographite sheets on gold electrodes	46
3.6	Schematic of reduced graphene oxide-based pH sensor (device B)	46
3.7	Assembly of reduced graphene oxide sheets on gold electrodes	46
4.1	Photograph of nanographite suspensions prepared from different times of sonication, including 3, 6, 12, 36, and 72 hours	47
4.2	UV-Vis absorption spectra of nanographite suspensions prepared from different times of sonication, including 3, 6, 12, 36, and 72 hours	47
4.3	SEM images of nanographite obtained from different time of Sonication. (a) - (b) Raw graphite, (c) – (d) 3 hour of sonocation, (e) – (f) 6 hour of sonication (g) – (h) 36 hour of sonication	48
	and (i) – (j) 72 hour of sonication (j) – (ii) 50 hour of sonication	10
4.4	(a) AFM height image of nanographite obtained from 72 hour of sonication (b) Height profile for the sheets marked by the green, black and red lines in figure (a)	49
4.5	TEM image of nanographite prepared from sonication technique	50
4.6	(a) Raman spectra of raw graphite and nanographite(72 hour of sonication) (b) D and G bands (c) 2D bands	50
4.7	Photos of (a) graphene oxide and (b) reduced graphene oxide suspension	n 52
4.8	TEM images of (a) graphene oxide and (b) reduced graphene oxide which obtained from Hummers' method	52
4.9	Raman spectra of raw graphite and reduced graphene oxide (RGO)	53
4.10	SEM image of assembly of nanographite flakes as a film	54
4.11	Resistance data plotted against pH values of nanographite-based pH sensor, including with and without nanographite	55
4.12	Resistance data plotted against pH values of reduced graphene oxide- based pH sensor, including with and without reduced graphene oxide	56
4.13	Helmholtz plane	57
4.14	Resistance data plotted against pH values (a) nanographite (device A) (b) reduced graphene oxide (device B)	58
4.15	Normalized resistances versus pH values for device A and B	59

LIST OF SYMBOLS

nm	Nanometer
μm	Micrometer
°C	Degree Celsius
mL	Milliliter
mg	Milligram
DI	Deionized
Κ	Kelvin
atm	Atmosphere
rpm	Round per minute
min	Minute
TPa	Terra Pascal
E	Energy of photon
Н	Planck's constant
ν	Frequency
А	Absorbance
I_0	Intensity of light incident upon sample cell
Ι	Intensity of light leaving sample cell
С	Molar concentration of solute
L	Length of sample cell
3	Molar absorptivity
I_D/I_G	Intensity ratio of the D and G bands
E _l	Excitation laser energy
eV	Electron volt
i _c	Current of capacitor
С	Capacitance
V_{c}	Voltage of capacitor
R	Resistance
V	Voltage
Ι	Current
ΔpH	pH resolution
σ_{max}	Maximum standard deviation
k	Sensitivity