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CHAPTER 1 INTRODUCTION 
 
1.1 Motivation and Background   
     
In the 3G/4G (the third/fourth-generation) digital cellular systems, wireless networks 

and devices will support not only voice communication but also other high-speed data 

and multimedia services including facsimile, file transfer, e-mail and video 

teleconferencing. These services require the high data rate with low delay and bit error 

rate (BER).  Supporting these requirements is challenging since wireless systems are 

subjected to many major constraints such as a complex and harsh fading channel, a 

scare useable radio spectrum, and limitations on the power and size of hand-held 

terminals [77].  Although increasing the transmitted power and channel bandwidth may 

improve the data rate in wireless systems, these radio resources are very scarce and 

expensive in a practical communication link [77], [79].  Moreover, increasing the 

transmitted power leads to raise the power of interference and reduces the battery 

lifetime of mobile transmitters.  Therefore to obtain a high data rate together with 

reliable transmission in wireless systems, the effective spectral and power efficient 

fading mitigation techniques are required.  In this dissertation, two particular techniques 

such as diversity combining techniques and cooperation communications to improve the 

performance of wireless systems are presented. In these techniques, the improvement is 

achieved without an increase in the transmitted bandwidth and power but at the expense 

of a higher system complexity.   

 

1.2  Diversity Combining Techniques 

For point-to-point wireless communications, various diversity combining techniques 

such as selection combining (SC), maximum ratio combining (MRC), and equal gain 

combining (EGC) have been proposed to mitigate the detrimental effects of multipath 
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fading in the wireless channels [3], [4], [11], [17], [19], [66-69]. In the absence of 

interference, MRC offers the best performance improvement but comes at the expense 

of complexity since it requires the knowledge of all channel fading parameters [36], 

[77]. Alternative combining techniques such as EGC and SC are often used in the 

practice because of their reduced complexity relative to the MRC. However, since many 

practical wireless systems suffer from both interference and noise, attention has also 

turned recently to the analysis of a communication link with the presence of channel 

noise as well as multiple co-channel interferers (CCI) [1], [23]. In this case, the 

optimum combining (OC) that maximizes the output signal-to-interference-plus-noise 

ratio (SINR) has been widely studied in the literature [2], [23], [29], [34-35], [72-73], 

[89].   

 

1.3 Cooperative Communications     

Although diversity combining techniques can unfold their huge benefit in cellular base 

stations, they may face limitations which come from the deployment in mobile 

handsets.  In particular, the typically small size and low power of mobile handsets make 

them impractical to deploy multiple antennas. An innovative approach to apply the 

diversity combining without deploying multiple antennas is the cooperative 

communications [44], [65].  The cooperative communications through multi-hop 

relaying technology has emerged as an effective tool to enhance the spectral efficiency 

and extend the coverage of cellular and ad hoc wireless networks [21], [56].  In 

particular, multi-hop relaying can enable the source and destination nodes to 

communicate through a set of cooperating relay nodes in which the transmitted signals 

propagate through cascaded relay nodes, with the aim of extending coverage and 

improving the performance of the network.  For example, idle mobile stations between 
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the source and destination may be employed as relay nodes to provide extra diversity 

links [51].  Recently, the two main types of relaying protocols which are widely studied 

in the literature are amplify-and-forward (AF), and decode-and-forward (DF) relaying 

protocol.   

1.3.1 Amplify-and-Forward (AF) Relaying Protocol 

In the most commonly used signal processing technique at the relay, the information 

from the previous node is simply amplified and forwarded to the next node as shown in 

Figure 1.1; this is known as amplify-and-forward  relaying protocol.  In Figure 1.1, 2
nG

denotes the gain at the nth relay node. AF relaying protocol is very simple to implement 

as the relaying node essentially acts as an analog repeater. The resulting end-to-end 

SINR of AF relaying depends on the choice of gain adopted at relay node [40-42], [45], 

[51], [71].    
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                                  Figure 1.1  Multi-hop AF relaying systems 

          

• Optimum Channel-state Information (CSI)   

The optimal choice of the relay gain called the optimum channel-state information (CSI) 

assisted relay that maximizes the end-to-end SINR inverts a linear combination of the 

instantaneous channel gain and interference and noise powers at the relay node. The CSI 

gain at the nth relay node 2
nG  is given by [45], [51], [71] 
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where  nα  is the fading amplitude of the desired signal at the nth node, and 2σn  is the 

noise power. The instantaneous power of the ith interferer at relay node n is denoted by

, ,i nZ 1,2,..., ni L= , where nL  is the number of interferers.  

 

• Suboptimum Channel-state Information (suboptimum CSI)  

The suboptimal choice of the relay gain ignores the presence of interference and noise 

information and is given by [40], [71] 

                                               2
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.                                                                         (1.2) 

• Fixed Gain Relay 

For the simplification, the fixed or constant gain relay is chosen as [42], [71] 
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where [ ]−E  is the expected value operator.  

1.3.2 Decode-and-Forward (DF) Relaying Protocol 

In large networks with many geographically distributed nodes, AF relaying may be 

difficult to scale due to the strict synchronization requirement [65]. Alternatively, the 

receiving node may first decode the information in the received signal and then re-

encodes it before forwarding it to the next node; this relaying format is referred to as 

decode-and-forward relaying protocol.  DF relaying provides the possibility to vary the 

communication rate and prevents error propagation, but leads to higher decoder 

complexity.  

In addition, there are other relay processing techniques that have also been studied in 

the literature.  For example, the decode-amplify-and-forward (DAF) in which the relay 

performs soft decoding and forwards the reliability information at the output of the 
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decoder instead of that extracted directly from the raw channel, to the destination.  The 

DAF protocol combines the merit of both AF and DF [15]. Also, the estimate-and-

forward relay (EF) transmits a hyperbolic tangent function of the received signal to the 

destination [52]; the piecewise-and-forward (PF) provides a fine segment approximation 

of the EF protocol [84], while in several other protocols the relays provide more 

complicated functions of the received signals to the destination [37]. 

 

1.4 Objective  
 
In this dissertation, we study the performance of OC technique and multi-hop AF&DF 

relaying systems operating over multipath fading channels in the presence of 

interference and thermal noise. The main dessertation objective is to provide easy-to-

compute analytical expressions that allow the researcher or system designer to perform 

the comparison and tradeoff (performance versus complexity) studies among various 

communication types and OC technique/ multi-hop AF&DF relaying systems so as to 

determine the optimum choice in the face of his/her available constraints.   

 

1.5 Outline 
 
The remainder of the dissertation is organized as follows. In Chapter 2, a brief review of 

the principal characteristics and models of wireless fading channels are presented while 

in Chapter 3 the derivations for several system performance measures such as moment 

generating function (MGF), outage probability, average symbol error rate (ASER) for 

digital modulation schemes, amount of fading (AoF), and channel capacity are shown. 

Then in Chapter 4 the performance of OC combining technique operating over 

Generalized Gamma (GG) fading environment in the presence of co-channel 

interference is investigated. Also several performance measures such as outage 
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probability, MGF, and ASER for digital modulation schemes are derived in this chapter. 

In addition, the performance of dual-hop AF relaying system operating over Raleigh 

fading environment in the presence of co-channel interference and noise is studied in 

Chapter 5. Moreover, the outage probability in terms of the incomplete Weber function, 

which can be easily evaluated numerically is derived. An approximate expression for 

the outage probability, which is quite accurate for moderate and large average signal 

powers along the source-relay and relay-destination links is also provided.  Based on 

this approximation the average bit error rate for both coherent and non-

coherent/differentially coherent binary modulations are then derived as well. In Chapter 

6, the performance of multi-hop AF&DF relay transmission systems operating in a 

Rayleigh fading environment in the presence of both CCI and thermal noise are 

evaluated. Several performance measures for these multi-hop relay systems such as the 

outage probability, the average symbol error rate, and the average channel capacity are 

obtained. Moreover in Chapter 7, the outage performance of multi-hop AF&DF relay 

transmission systems in the interference-limited Nakagami-m fading channels are also 

obtained in terms of the Lauricella multivariate hypergeometric function of the second 

kind  which can be easily and accurately computed by the software programs e.g., 

MAPLE and MATHEMATICA.  The accuracy of the analytical results is then verified 

and depicted by computer simulation. Finally, the concluding remarks and future work 

are given in Chapter 8.  
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           CHAPTER 2 MODELING OF WIRELESS FADING  

                                           CHANNELS 
 
Radio-wave propagation through wireless channel is a complicated phenomenon 

characterized by various effects, such as multipath and shadowing. A precise 

mathematical description of this phenomenon is either unknown or too complex for 

tractable wireless system analyses. However, considerable efforts have been devoted to 

the statistical modeling and characterization of these different effects. The result is 

range of relatively simple and accurate statistical models for fading channels which 

depend on the particular propagation environment and the underlying communication 

scenario. In this chapter, the three common effects that are often encountered in wireless 

systems such as multipath fading, shadowing and composite multipath/shadowing are 

presented.  The simple and accurate statistical models for characterization of these 

different effects are then provided. 

 

2.1 Multipath Fading   

Multipath fading is due to the constructive and destructive combination of randomly 

delayed, reflected, scattered, and diffracted signal components [36], [70], [77], [83]. 

Depending on the nature of radio propagation environments, there are two main 

statistical models that can be used to describe behavior of multipath fading envelope, 

namely, Gaussian and non-Gaussian model.      

2.1.1 Gaussian Model 

A Gaussian model is commonly used  in modelling wireless communication channels 

due to the mathematical tractability. Two well-known distributions of Gaussian model 

that are widely used to characterize behavior of multipath fading envelope in both 

outdoor and indoor environment are Rayleigh and Rice distribution [18].  



8 
 

• Rayleigh Distribution 

Rayleigh distribution is frequently used to model signal multipath fading with no direct 

line-of-sight (LOS) path.  In this case, the channel amplitude  α   is distributed 

according to   

 
                               

( )
2

exp
2=fα
α αα

⎛ ⎞
−⎜ ⎟Ω Ω⎝ ⎠

,                                                              (2.1) 

where Ω  is average mean-square value, 2Ω = α .  

Using [77, eq. (2.3)], the probability density function (pdf) of the instantaneous signal-

to-noise (SNR) ratio, γ  can be given by 

                              ( )
( )/

=
2 /

f
f

α

γ

γ γ
γ

γγ

Ω

Ω
,                                                                   (2.2) 

where  2/=Ωγ σ is average signal-to-noise ratio and 2σ is the power of noise.  

Substituting (2.1) in (2.2), the pdf of γ  can then be shown as   

                                 
( ) ( )1= exp /fγ γ γ γ

γ
− .                                                               (2.3) 

• Rice Distribution 

Rice distribution is often used to model propagation paths consisting one strong direct 

LOS component and many random weak components [18]. In this case, the channel 

amplitude  α   is given by  

               ( ) ( ) ( ) ( )2

0e
2 1 1 1

= exp 2KK K K K
f Iα

α α
α α−

⎛ ⎞⎛ ⎞+ + +
⎜ ⎟−⎜ ⎟ ⎜ ⎟Ω Ω Ω⎝ ⎠ ⎝ ⎠

,                     (2.4)    

where K is the Rician factor and  ( )0 .I   is the modified Bessel function of the first kind 

and zero order [7].  

Using (2.2), the pdf of the instantaneous signal-to-noise (SNR) ratio is given by  
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2.1.2 Non-Gaussian Model 

Recall that the Gaussian distribution is commonly used to describe the multipath fading 

in an environment where there are a large number of received radio wave paths. Hence, 

Rayleigh and Rice model are derived theoretically by using a central limit theorem 

(CLT) argument [18]. However, when the number of incoming radio paths is limited, 

these distributions may not be the appropriate fading models since the conditions for 

validity of the CLT may not hold [18], [32]. In this situation, some evidence indicates 

that the signal amplitude can be well described by a non-Gaussian model such as 

Nakagami, and Weibull distribution [77].  

• Nakagami Distribution  

The pdf of Nakagami distribution is given by [77] 
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where m is the Nakagami-m fading parameter.  

Applying (2.2) shows that the average SNR is distributed according to gamma 

distribution given by        

                                   
( ) ( ) ( )

1

= exp /
m mmf m

mγ
γγ γ γ

γ

−⎛ ⎞
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.                                             (2.7) 

• Weibull Distribution  

For Weibull distribution, the pdf of average SNR can be expressed as [26] 

                                        ( )1( ) exp /−= −b bbfγ γ γ γ γ
γ

,                                                       (2.8)                    

where b is the Weibull fading parameter with the range from 0 to ∞. 
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2.2 Shadowing    

In terrestrial and satellite land-mobile system, the link quality is also affected by slow 

variation to the mean signal level due to the shadowing from terrain, building and trees. 

The communication system performance will be interrupted only on shadowing if the 

receiver is able to average out the fast multipath fading or using an efficient micro-

diversity system eliminates the effect of multipath. The well-known distribution which 

can be model shadowing for various indoor and indoor environments is log-normal 

distribution [77], [82].      

2.2.1 Log-normal Distribution  

For log-normal distribution, the pdf of average SNR can be given by [77], [82]     

                                             
{ }2

10
2

10log
( ) exp

22
fγ

γ μεγ
σπσγ

⎛ ⎞−
= −⎜ ⎟

⎜ ⎟
⎝ ⎠

,                          (2.9) 

where  10 / ln10 4.3429= =ε , μ  and σ  are the mean and the standard derivation of 

1010log γ , respectively.  

 

2.3 Composite Multipath/Shadowing   

A composite multipath/shadowed fading environment consists of multipath fading 

superimposed on log-normal shadowing. This environment is often encountered in the 

communication systems whose receiver does not average out the envelope fading due to 

multipath but rather, reacts to the instantaneous composite multipath/shadowed signal 

such as congested downtown areas with slow-moving pedestrian and vehicles, and 

mobile satellite systems [16], [27], [57], [77].  There are several composite models that 

were proposed in literatures such as Raleigh-lognormal [38], Nakagami-lognormal 

distribution [43], Generalized-K distribution [6], [62] and Generalized Gamma 
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distribution [78], [90]. The main concept of the composite model is that the 

instantaneous SNR, γ  due to multipath fading is averaged over the conditional diversity 

of average SNR, γ  due to shadowing. Therefore, the pdf of instantaneous SNR in the 

composite multipath/shadowed channel is given by [39], [77] 

                                     
0

( ) ( ) ( )f f f dγ γ γγ γ γ γ γ
∞

= ∫ .                                                (2.10) 

2.3.1 Nakagami-lognormal Distribution  

For Nakagami-lognormal distribution, the pdf of instantaneous SNR, γ   is gamma 

distribution given in (2.7) while the pdf of average SNR, γ  is log-normal distribution 

given by 
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Substituting (2.7) and (2.11) in (2.10), the pdf of instantaneous SNR, γ  in  a Nakagami-

lognormal fading channel can be given by 

                       ( )
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∫ .           (2.12) 

Note that replacing  m=1 in (2.12), (2.12) becomes Rayleigh-lognormal distribution. It 

is unfortunate that the result of (2.12) is not in closed form, thereby making the 

performance evaluation of communication links over this channel cumbersome. 

Therefore other tractable composite distributions such as Generalized-K and 

Generalized Gamma distribution are alternatively introduced in the literature. 

2.3.2 Generalized-K Distribution  

In Generalized-K distribution, the log-normal shadowing was approximated by a 

gamma shadowing which has the pdf given by [6], [62] 
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                                ( ) ( ) ( )
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,                                           (2.13) 

where k is the Nakagami parameter for shadowing.  

Substituting (2.7) and (2.13) in (2.10) yields     

                  ( ) ( )
1

1

0
( ) exp /

km m
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Using the identity in [38, eq.(3.471.9)], the pdf of instantaneous SNR, γ  in                   

a Generalized-K fading channel can be given by    

                    ( ) ( ) ( )
11

2( )
2 k mf K

m k

ββ

γ β

νγ γ ν γ
−+

−=
Γ Γ

,                                                (2.15) 

where now 4 /= kmν γ ,  1= + −k mβ , and ( ).mK   is the modified Bessel function of 

the second kind and  mth order [7], [61].  

2.3.3 Generalized Gamma Distribution  

The other composite distribution which includes many well-known channel models for 

both multipath as well as shadowing is the Generalized Gamma distribution. This model 

includes the Rayleigh, Nakagami and Weibull as special cases, the log-normal 

distribution as a limiting case, and can also appropriately approximate the Suzuki 

distribution.  The pdf of instantaneous SNR in a GG fading channel is given by [78]    
 

                         ( )
( )

/
1 exp( ) /

/
−=

⎛ ⎞
−⎜ ⎟ Γ⎝ ⎠

a c
a ck cf k

a c
γ γ γ γγ γ

,                                      (2.16)                   

where  k, a and c  are GG  fading parameters. These fading parameters can be chosen to 

introduce the different distributions for multipath fading and shadowing as shown in 

Table 2.1.      
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Table 2.1 The envelope distributions derived by GG distribution 
 
 

 

 

 

 

 

 

                                                       
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distributions a                 c                k 
                                           
Generalized Rayleigh      
 Rayleigh 
Gamma 
Chi 
Nakagami-m 
Weibull 
Chi-square 
 Half-Gaussian        
One-sided exponential  
Log-normal        
                                          

 
            2 
            2                 2               1     
                                                1 
           2v                2 
           2m               2                m 
                      a=c 
            d/2              1               1/2 
             1                2 
             1                1 
                          0c →        k →∞  
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CHAPTER 3 SYSTEM PERFORMANCE MEASURES 

As the performance of wireless communication systems is degraded by several 

detrimental effects e.g. multipath fading, shadowing, co-channel interference and noise, 

it is important for the system designer to have the analytical measures that allow easy 

and accurate performance evaluation. In this chapter, the wireless system performance 

measures are presented including moment generating function, outage probability, 

average symbol error rate for digital modulation schemes, amount of fading (AoF), and 

channel capacity.   

 

3.1 Moment Generating Function (MGF)   

The moment generating function of output SINR is given by [58], [77]  

                                   ( ) ( )
0

tM t e f d
∞

− γ
γ γ= γ γ∫ ,                                                              (3.1)                   

where ( )fγ γ  is the pdf of instantaneous SINR. Moreover, the MGF may be alternatively 

expressed as  

                  
                 ( ) ( )

0

1 t FM t e d
∞

− γ
γ γ γ= − γ∫ ,                                                        (3.2) 

where ( )γ γF  is the complementary cumulative density function (ccdf) of the SINR, 

defined as ( ) ( )
1

1γ γγ = − γ
eq

F F . Note that the (3.2) is obtained from (3.1) by using 

integration by parts. 

 

3.2 Outage Probability   

The outage probability is defined as the probability that the output SINR γ  falls below a 

predetermined protection ratio thγ  and is given by                                            
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                                       ( ) ( )= = 
0

th

out thf dP F
γ

γγ γγ γ∫ ,                                                              (3.3) 

where ( ).Fγ  is the cumulative density function (cdf) of instantaneous SINR. 

Furthermore, using the MGF-based approach, the outage probability can be evaluated as  

[5] 
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P
M t

xt
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γ
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where -1 (.)L  is the inverse Laplace transform [38]. 

 

3.3 Average Symbol Error Rate (ASER)   

The ASER which is an important performance study of digital communication systems 

with fading channel can be derived by averaging the conditional SER ( )sP ε γ  over the 

instantaneous SINR γ  as 

                              
( ) ( )

0

∞
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The conditional SER ( )sP ε γ  can be shown in a generic form as [63], [77], [87],  
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where parameters Z� , zλ� , zφ�  and zθ �  are used to represent the various modulation 

schemes as shown in Table 3.1. 

Substituting (3.6) in (3.5), the average symbol error rate  can be given by 
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where ( )γ tM is the MGF given in (3.1).  

Table 3.1 The parameters of a generic form for several modulation schemes 
 

Modulation 
Schemes Z�  

zλ�  zφ�  zθ �  
MPSK 
 
MQAM 
 
 
 
 
MPAM 
 
MSK 
 
 
 
 
DE-BPSK 
 
 
DE-QPSK 

1 
 
2 
 
 
 
 
1 
 
2 
 
 
 
 
2 
 
 
4 

1 / π  
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( )2
4 / 1 1/ Mπ− −  
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2
π
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4 / π−  
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1 / 2  
 
1 / 2  
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2
π  

/ 2π  

4
π  

/ 2π  
/ 4π  

2
π  

/ 4π  

6
π  

( )1 2
sin 1/ 3 /π−

 
 
3.4 Amount of Fading (AoF)   

The AoF, or “fading figure,” is a unified measure of the severity of the fading and is 

defined as [77],    
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                                        (3.8) 

where [.]E  is the expected value operator defined as ( )
0
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∞
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xx x f x dxE  

[58]. In 

addition, using the MGF-based approach, [.]E  may be defined as    
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3.5 Channel Capacity  

Channel capacity is the tightest upper bound on the amount of information that can be 

reliably transmitted over a communications channel which can be defined by  

                                    ( ) ( )2
0

log 1C W f dγγ γ γ
∞

= +∫ ,                                        (3.10a) 

                                       
  

( )
0 1

F
W dγ γ

γ
γ

∞

=
+∫ ,                                                             (3.10b) 

where W  is the channel bandwidth.   
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CHAPTER 4 OPTIMUM COMBINING TECHNIQUE IN  

                       GENERALIZED GAMMA FADING CHANNELS 

4.1 Introduction 

As a consequence of the growing interest in wireless communication systems, much 

effort is being devoted to the channel characterization and modeling. This is obvious 

since the performance depends fundamentally on the channels under consideration, so a 

communication system design must be preceded by the study of channel characteristics. 

Wireless communication channels are mainly described by considering three separable 

phenomena, namely, multipath, shadowing, and composite multipath fading/shadowing 

[77]. There are different fading-shadowing distributions that have been used to model 

these composite fading such as Rayleigh-lognormal, and Nakagami-lognormal 

distribution. However as shown in Chapter 2, the main drawback of these composite 

fading models is their complicated mathematical forms which make the analytical 

performance evaluation very difficult. A relatively simple and versatile envelope 

distribution that generalizes many of the commonly used models for multipath and 

shadow fading is the Generalized Gamma distribution [28], [89]. The GG distribution 

can be used to account for both multipath fading and shadowing conditions and includes 

the Rayleigh, Nakagami and Weibull distributions as special cases, the lognormal 

distribution as a limiting case, and can appropriately approximate the Suzuki 

distribution as well [28], [89].  

The GG distribution was originally introduced by Stacy [78] as a generalization of the 

gamma distribution. Due to the highly flexible form of the probability density function, 

it has applications in many areas. For example, in teletraffic analysis, Zonoozi and 

Dassanayake [94] have shown that the GG distribution is adequate to characterize the 

cell residence time of both new and handover calls in cellular mobile networks. In radar 
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applications it has been shown that the GG distribution, as a clutter model, encompasses 

a wide range of distributions ranging from the Rayleigh distribution to the Weibull 

distribution and other pdfs with longer tails based on the statistical moments and 

goodness-of-fit tests [12], [49]. In speech signal processing, Shin et al. [74] have shown 

that a two-sided GG distribution models speech signals better than the generalized 

Gaussian, Laplacian, or gamma distributions. In the context of image and video 

processing, it is important to know the pdf of the image signal in the discrete cosine 

transform (DCT) domain. The same authors showed that the DCT coefficients based on 

the GG distribution gives the best performance [75]. In the field of wireless 

communications, Coulson et al. [28] have shown, via simulation, that the GG pdf (like 

the Suzuki pdf) can characterize the behavior of multipath/shadowing fading. As a 

result the performance evaluation of digital mobile receivers in the presence of GG 

composite fading is of practical importance. 

Although the Generalized Gamma distribution has been shown to adequately 

characterize the wireless channel in many practical fading environments, the study of 

performance results in such channels have so far limited to the case of no interferers.  

For example with the absence of interference, the performance of ASER for digital 

modulation schemes with no diversity in GG fading channel was studied in [4], [28]. 

Moreover the outage probability and the ASER of MRC, EGC, SC, and SWC receivers 

were obtained in [3], [66], [68].  However many wireless systems suffer both effects of 

interference and noise.  In this case, the OC technique that maximizes the output signal-

to-interference-plus-noise ratio should be employed at the receiver to mitigate the 

effects of CCI and noise. To the best our knowledge, the performance of OC receivers 

over GG fading channels with CCI  is still not available in the open literature.     
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In this chapter, we investigate the system performance of OC operating over a GG 

fading channel in the presence of co-channel interference. The closed-form expressions 

for the important performance measures such as the outage probability, moment 

generating function, and average symbol probability for various digital modulation 

schemes are then derived.  

 
4.2  System Model  

In this section, we consider a wireless communication system employing optimum 

combining receivers in an interference-limited environment as shown in Figure 4.1.  

                      

                         

                                    

                                                           
                      

                                       

 
 

Figure 4.1   Optimum combining receivers with N interferers 

 
 
In Figure 4.1, the system is dominated by the main effect of CCI.  The received signal at 

the output OC receivers is then given by   

                              ( ) 0 0 0
1

( ) ( )
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=⎝ ⎠

+= Ω Ω∑�
N

H
jOC j j

j
y t W s t s tX X ,                                            (4.1)     

                                          
                                                          

where 0X  and 0Ω  are the complex fading gain and power for desired signal 0( )s t , and  

( )js t is the jth co-channel  interference signal at the output with complex channel gain 

jX and power Ωj . The OC weighted vector gain is denoted by  OCW  and a superscript H 

is the Hermitian transpose.   

User 1st receiver 
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Also assuming that the complex fading gains 0X  and jX  follow the spherically invariant 

random process (SIRP) so-called the spherically invariant random vector (SIRV) [24], 

[64], [86].  Therefore, they can be characterized by the product of a non-negative 

random vector ( )u  and a Gaussian random vector ( ) ,Z as 0 0 0uX = Z
 and  j j juX = Z

[92].  It is noted that the pdf of u which is used to classify the types of the SIRP is called 

the characteristic pdf (Cpdf) of an SIRP [86].    

The weight vector OCW  that maximizes the output signal-to-interference ratio (SIR) is 

given by  [89]                                           

                                   

1
1

0 0
1

,
−

−

=

⎡ ⎤= = Ω⎢ ⎥⎣ ⎦
∑�

N
H

OC i i i
i

W R X X X X                                                 (4.2) 

where �R  is the interference covariance matrix given by [72], [73]. 

Noting that all interference signals have equal power 1 ,...,Ω=Ω = ΩN and are modulated 

by the same independent positive random variable �u, which is independent of 0u  that 

modulates the desired signal [24].    Therefore, the interference covariance matrix �R 

may be expressed as      

                                  2

1 1

N N
H H

i i i i
i i

u
= =

⎡ ⎤ ⎡ ⎤= = Ω⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑� �R X X Z Z .                                             (4.3) 

Substituting (4.2) and (4.3) in (4.1), the output SIRγ  of OC combiners can be written as 

                                          1
0 0γ −= �HX R X , 

                                            ( )
1

20
 0 0 0

1

 /
N

H H
i i

i

u u
−

=

Ω ⎡ ⎤= ⎢ ⎥Ω ⎣ ⎦
∑� Z Z Z Z .                               (4.4)                    

Conditioning on the positive random variable 0u and �u, the random variable γ  has the 

Hotelling 2T statistic and can be written as the ratio of two independent central Chi-

square random variables [72], i.e, 
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( )

2

2 1

χγ χ − +

= �
L

N L
,                                                           (4.5)                    

where 2χ L  and ( )2 1χ − +
� N L  are the central Chi-square random variables with degree of 

freedom  (DOF) =2L and 2(N-L+1), respectively.  Therefore, the pdf of SIRγ , 

conditioned on 2
0u and 2�u , ( )2 2

0 , γγ �f u u  can be expressed as      

( ) ( ) ( )
1 1

2 2
0 2 2 2 2

0 0 0 00

1 1 1 , exp1

L N L L
Nf u u dL N Lu u u u

γ γγ χ χ χγ
− + ∞−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤

⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎝ ⎠
− +Γ Γ − +Ω Ω Ω Ω∫ � � �� � .   (4.6)                    

Using [38, eq.(3.3814)] and [8], the integral term in  (4.6) may be expressed as 

                             
( ) ( )

( ) ( )
1

1,1
1,1

  1 11
γ

γγ γ

− −Λ ⎛ ⎞Λ
= ⎜ ⎟+Γ Γ − + ⎝ ⎠

L Ls sf s G NL N L
,                                    (4.7)             

where ( ).G is the Meijer-G function [38], [53],  0/ Λ=Ω Ω is the average SIR  and 

2 2
0 / = �s u u  is  the random variable that depends on the chosen Cpdfs of SIRP.  Therefore 

the pdf of the output SIRγ  for OC receivers in an SIRP fading channel can be obtained 

by  

                
 

( ) ( ) ( ) ( )
1

1,1
1,1

0

   1 .11
L L

L sf s G f s dssNL N L
γγγ γ

∞− −
− ⎛ ⎞

⎜ ⎟
⎝ ⎠

Λ Λ= +Γ Γ − + ∫
                                       

(4.8) 

4.2.1 The Characteristic pdf (Cpdf) of SIRP Envelope Distribution 

The envelope of SIRV can be given by  =X ZR uR  where  1/ 22 2⎡ ⎤= +⎣ ⎦Z c sR Z Z  is the 

envelope component of zero-mean Gaussian vector.   

The pdf of  XR  is given by [64], [86] 

                               ( ) ( )
2

2
2

0

exp
2

∞
− ⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠

= −∫XR
rf r r u f u duuu ,                                              (4.9) 

where ( )f uu is the Cpdf of SIRP envelope distribution.   

On the other hand, the pdf of the non-negative random, u may be expressed as 
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                                ( ) ( ) ( )
0

Z R Z Z R Z ZX Zuf u r f ur r f r dr
∞

= ∫ .                                                   (4.10) 

Note that (4.10) requires the knowledge of ( )XRX
f r  and ( )ZRZ

f r .  For the case of  

( )XRX
f r  being the Generalized Gamma distribution which includes many useful 

distributions for modeling wireless fading channels such as Rayleigh, Nakagami, 

Weibull and lognormal distribution as shown in Chapter 2.  Moreover in the case of no 

direct LOS path, ( )ZRZ
f r  is modeled by Rayleigh distribution. 

Therefore substituting (2.3) and (2.16) in (4.10) and using [8, eq.(11)], yields 

                  ( ) ( )
2/ 1

1,0 1,01
0,1 0,1

0

( ) 00/ 2

a c a
ca rk cuf u r G G kur dru a c

− ∞
+ ⎛ ⎞

⎜ ⎟
⎝ ⎠

⎛ ⎞− −= ⎜ ⎟Γ ⎝ ⎠
∫ ,                               (4.11)

      

where the fading parameters a, c, and k are given in Table 2.1.                       
 

Next using the identity in [30] and some mathematical manipulations, the closed-form 

Cpdf expression for Generalized Gamma distribution can be expressed as

  

               

( )( )

( ) ( )( ) ( )
/ 2 1 / 2/ 1 / 2

1,0 / 2
/ 2,11 / 2

2 2 ( /2,1 /2)( )          0/ /2
π −−

−

⎛ ⎞Δ −= ⎜ ⎟
⎝ ⎠Γ

ca c a a
c c

ca

k cu c af u G ku cu a c c
,                         (4.12)          

 

where 1 1( , ) , ,...,+ + −Δ = h h h tt h t t t ,  and c is a non-negative even number due to the 

integer term of  c/2 in the Meijer-G function.    

4.2.2 Generalized Gamma Fading Channel 

Applying the Cpdf of Generalized Gamma envelope distribution in (4.12), ( )f ss , 

2 2
0 / = �s u u  can be given by  

          
( ) ( )

2
/ /2 1 /2 1 1,1 /2

1, 1
2 2

21 , ,12 2( ) 2 2/ 0, 1 ,12 2

a c a c a c
c c

a c a
k a cf s s G ss a c aa c c

c
π

⎛ ⎞
⎜ ⎟− ⎜ ⎟− − ⎝ ⎠

⎛ ⎞+ +
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞− Δ −⎜ ⎟= ⎜ ⎟Γ − −Δ −⎜ ⎟
⎝ ⎠

.               (4.13)                      
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Note that the number of terms of 2
1 , 1

2 2

a c a
c

− − Δ −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is depended on the specific value of c/2  

(e.g., when a = 2 and c = 4, we find 
 

( ) { }2 0 11 , 1 0 2, 0 0 , 0, 0.5
2 2 2 2

a c a
c

⎛ ⎞− − Δ − = − Δ = − = −⎜ ⎟
⎝ ⎠

).                 

Thus, substituting (4.13) in (4.8),  the pdf of output SIRγ  of OC diversity in the GG 

fading channels can be expressed as                                          
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( )
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⎝ ⎠

.                                 (4.14)     

Note that replacing the parameters a=2, c=2 and k =1 in (4.14)  yields                
 

    
( ) ( ) ( )
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1
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1
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N

N
L N L

γ
γ

−
− +

+

Γ +
Λ

Γ Γ − + +Λ                                                              (4.15)                     

which is the Rayleigh fading channel agreed with the result in  [73, eq.(13)].   

 

4.3  Performance Analysis  

4.3.1 Outage Probability    

The outage probability is defined as the probability that the output SIR falls below a 

predetermined protection ratio (t).  

Substituting (4.14) in (3.3), we have  

                    ( )
( )
( ) ( )

2 / 2/ /2
1/

−−⎛ ⎞
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ck aP L N La c c   
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( )1, 1/2 1 2 2
1, 1
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20, , , 1 ,12 2 2 2

t c c
a

c c

a c a c ac N LcG dc a a c aL c

γγ γ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ + ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

+ + ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟⎛ ⎞⎜ ⎟× ⎜ ⎟⎜ ⎟⎝ ⎠
⎜ ⎟
⎝ ⎠

− Δ − − − + Δ −
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∫ .       (4.16)                     

Using the identity in [8, eq.(26)], the outage probability of output SIR in the 

Generalized Gamma fading channel can then be shown to be given by     
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 .                      (4.17)                       

Note that (4.17) can be accurately computed by the software program of Maple or 

Mathematica.  For the case of Rayleigh fading channel (a=2,c=2 and k=1), (4.17) 

reduces to                          

                       
( ) ( )
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( ) ( )
( )
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 ,                                         (4.18) 

 which agrees with the result in  [73, eq. (16)]. 

4.3.2 Moment Generating Function (MGF)   

Substituting (4.14) in (3.1), MGF ( )tγM  can be obtained as  
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           (4.19)                    
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4.3.3 Average Symbol Error Rate (ASER)  

Using the MGF-based approach, the ASER can be given by 

                                              
2

1 0
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P d
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λ φ θγ θ
=
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�

�
�

�

�
M ,                                         (4.20) 

where parameters �Z, λ �z
, φ �z

 and θ �z
  are given in Table 3.1.  

For the case of binary phase-shift keying (BPSK), we have 1=�Z ,
1 1θ = , 

1 1 /λ π= , and 

1 / 2φ π=   in (4.20); making a change variable 2s in ,t θ=  the integral in (4.20) may be 

evaluated as 
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                                         ( )
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0

1 112 X dss s sπ
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⎝ ⎠

−∫ M ,                                          (4.21) 

Substituting (4.19) in (4.21) and introducing a=c=2, k=1(Rayleigh fading channel), we 

have      

                     ( ) ( ) ( )
( )1,3

3,2

1/2, 1,0
,1, 1 2 1b

N L
P G LL N Lπ

⎛ ⎞− − − +Λ= Λ⎜ ⎟⎜ ⎟− −Γ Γ − + ⎝ ⎠
                         (4.22)    

 which agrees with the result in [73,eq.(21)].           

 

4.4  Numerical Results 

In this section, some numerical results for outage probability and ASER of OC receivers 

in Generalized Gamma fading channel have been present.  In Figure 4.2, outage 

probability in (4.17) is plotted when the threshold (t) is set at 7 dB, L= [1, 2, 3, 4] and 

N=8.  All interferers are assumed to have the equal power ( Ω =5 dB) and the GG fading 

parameters are set as follows 2.2=a , c =2 and 1.1=k .  As expected, increasing the 
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number of OC receivers decreases the outage probability. In Figure 4.3, the outage 

probability with fading parameters 2=a m, c =2 and  k = m (Nakagami-m fading as 

shown in Table 2.1) when  L=1 and N=8 is depicted.  It is shown that the Generalized 

Gamma fading channel represents a Rayleigh faded environment when fading 

parameters a=c=2 and k=1. In Figure 4.4, the performance of ASER for coherent 8-PSK 

for OC receivers (L=1, 2, 3, 4) with the presence of eight equal-power interferers ( Ω =5 

dB)  in Generalized Gamma fading channel is shown. Similar to the Figure 4.2,  the 

ASER is also decreased when the number of antenna array increases.  Finally in Figure 

4.5, the performance for BPSK in Generalized Gamma fading channel is provided.  The 

fading parameters are also set as 2=a m, c =2 and k = m. The result shows the GG 

fading channel reduces to a Rayleigh fading when a=c=2 and k=1. 
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Figure 4.2 The outage probability of OC receivers with 8 equal mean-power interferers 

in Generalized Gamma fading channel 
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Figure 4.3 The outage probability of an OC receiver (no diversity) with 8 equal mean-

power interferers in Generalized Gamma fading channel ( 2=a m, c =2 and k = m) 
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Figure 4.4 The ASER of 8-PSK for OC receivers with 8 equal mean-power interferers 

in Generalized Gamma fading channel. 
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Figure 4.5 The ABER of BPSK of an OC receiver (no diversity) with 8 equal mean-

power interferers in Generalized Gamma fading channel ( 2=a m, c =2 and k = m)
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CHAPTER 5 DUAL-HOP RELAY SYSTEMS IN RAYLEIGH  

                        FADING CHANNELS         

5.1 Introduction 

Signal transmission via intermediate relays has the potential of improving the 

performance and extending the coverage of many wireless communication systems. In 

particular, the dual hop relaying transmission has received considerable attention in the 

recent literature as it can provide increased link quality and reliability, and can mitigate 

channel impairments in next generation wireless systems [10], [21], [56]. Two relaying 

policies that have been widely investigated are the decode-and-forward and the amplify-

and-forward [65]. As mentioned in Chapter 1, DF relays are regenerative, i.e., the 

received signal is first decoded and then re-transmitted to the destination node, whereas 

in an AF relay system, the signal received at the relay node is simply amplified and 

forwarded to the destination node. The resulting end-to-end SNR of AF relays depends 

on the choice of the gain adopted at the relay node [40]. The performance of dual-hop 

relaying has been investigated in various wireless environments that include Rayleigh 

[40], Nakagami-m, Nakagami-n (Rice) and Nakagami-q (Hoyt) [46] channel fading 

models. 

Until recently, the performance of dual-hop relaying systems has been limited to 

systems that are noise-limited [40], [46]. However, since many practical wireless 

systems suffer from both interference and noise, attention has turned recently to dual-

hop relay transmission in the presence of co-channel interference, which in many cases 

may be more detrimental to system performance than thermal noise [20], [25], [45], 

[50], [55], [76], [80], [91], [94]. In [50], the performance of relay selection with AF 

relays having a single interferer at each relay was investigated. In [20] and [92], the 

outage probability of DF relaying was derived in the presence of multiple interferers at 
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the relays and the destination nodes. The outage probability for the DF protocol under 

the same interference model was also investigated in [76] for different combining 

methods at the destination. Furthermore, the outage performance of dual-hop AF 

(employing sub-optimum gain policy [40]) and DF relaying systems with multiple 

interferers at both the relay and the destination was obtained in [55]. For the case of AF 

relaying with optimum gain policy [4], Ikki and Aissa in [45] derived the outage and 

error probabilities assuming a tight upper bound for the end-to-end SINR. A lower 

bound and an asymptotic expression for the outage probability of the AF protocol were 

also derived in [25], assuming Rician fading for the desired signal and Rayleigh fading 

for the multiple interferers at both the relay and the destination. Moreover, special cases 

for the performance analysis in the presence of co-channel interference include the work 

of [94] on the outage performance of dual-hop systems in an interference-limited 

destination environment and [80] on the outage and ABER of AF dual-hop systems with 

interference at the relay only. To the best of our knowledge, the outage performance of 

dual-hop AF transmission with optimum gain in the presence of interference at both the 

relay and destination has been limited to lower bound and approximation expressions 

even for the Rayleigh fading channel. 

In this chapter, the presence of multiple Rayleigh faded interferers at both the relay and 

the destination are investigated.  Also the analytical expressions for the outage 

probability and ABER of binary modulations for AF dual-hop relay systems are 

considered. Specifically, an expression for the exact outage probability of dual-hop 

relay transmission system in Rayleigh fading is then derive in terms of the incomplete 

Weber integral which can be easily evaluated numerically by several computer 

programs such as MATLAB, MATHEMATICA, or MAPLE and the approximate 

closed-form expressions for the outage as well as the ABER are provided. The special 



34 
 

case of an interference-limited system is also considered. The analytical results are 

validated by Monte Carlo simulation.  

 

5.2 The Presence of CCI and Noise 
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Figure 5.1 The dual-hop systems with the presence of interference and noise 

 

5.2.1 System Model 

We consider a wireless communication system in which the source S  sends a message 

to a destination  D via a non-regenerative relay R that simply amplifies and forwards the 

received signal to the destination as shown in Figure 5.1.  In Figure 5.1, both the relay 

and destination nodes are assumed to operate in a Rayleigh-fading environment in the 

presence of co-channel interference and additive white Gaussian noise (AWGN). The 

received signal at the relay node is given by 

                            1
( ) ( )  ( ) ( )

R

i i i

N

R s SR s R R R R
i

y t P h x t P h s t n t
=

= + +∑ ,                            (5.1) 

where Ps is the transmitted  power of the desired signal ( )sx t , 
iRP  is the transmitted 

power of the ith co-channel interference signal ( )
iRs t  , SRh  is the complex fading gain 

S R D 
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for the desired signal on the link between the source and the relay,  NR is the number of 

interfering signals at the relay, and 
iRh  is the complex fading gain of the ith co-channel 

interference signal for i = 1,…, NR . The AWGN term, ( )Rn t , has zero mean and 

average power 2σR . The relay multiplies the received signal ( )Ry t  by a gain G and then 

re-transmits it to the destination D. The received signal is then given by 

1
( ) ( )  ( )

D

i i i

N

D RD R D D D D
i

y t G h y t P h s n t
=

= + +∑ , 

          
1 1

( )  ( )   ( )
R D

i i i i i i

N N

RD s SR s R R R R D D D D
i i

G h P h x t P h s n t P h s n t
= =

⎧ ⎫
= + + + +⎨ ⎬

⎩ ⎭
∑ ∑ ,          (5.2) 

where RDh  denotes the complex fading gain for the desired signal on the link between 

the relay and the destination,   ND  is the number of interfering signals present at the 

destination, each with power 
iDP  and fading amplitude ( 1,2,..., )

iD Dh i N=  and 2
Dσ  is the 

one-sided power spectral density of the noise at the destination node.  In general, the 

choice of the node gain,G , determines the end-to-end SINR.  The best choice of the 

node gains that maximizes the end-to-end SINR requires the knowledge of the channel-

state information, which includes the signal fading level as well as the noise power  S-R  

link.  In such CSI-based relays, the amplification gains at each relay are chosen, with 

the knowledge of the channel state information, to invert the fading state of the 

preceding link.  The corresponding relay gain is chosen as  

2

22 2

1

R

i i

R
N

S SR R R R
i

PG
P h P h σ

=

=
+ +∑

.                  (5.3) 
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The SINR at the destination node is given by 

                      
2 2 2

2 222 2 2

1 1

,

= =

=
⎛ ⎞

+ + +⎜ ⎟
⎝ ⎠
∑ ∑

R D

i i i i

s SR RD
eq N N

RD R R R D D D
i i

P h h G

G h P h P h
γ

σ σ
   

               
2 2

2 22 2 2 2

1 1

.
/

= =

=
⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑

R D

i i i i

s SR RD
N N

RD R R R D D D
i i

P h h

h P h P h Gσ σ
                 (5.4) 

Substitute (5.3) in (5.4) to get 

2 2

2 2 22 22 2 2

1 1 1

.
R D R

i i i i i i

s SR R RD
eq N N N

R RD R R R D D D S SR R R R
i i i

P h P h

P h P h P h P h P h
γ

σ σ σ
= = =

=
⎛ ⎞ ⎛ ⎞⎛ ⎞

+ + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑

  

                                                                                                                                 (5.5) 

Divide numerator and denominator of (5.5) by 2 2
R Dσ σ  gives 

2 2

2 2

2 2 22 2

2 2 2 2 2
1 1 1

,

1 1 1
R D R

i i i i i i

s SR R RD

R D
eq

N N N
R R D D R RR RD S SR

i i iD R D R R

P h P h

P h P h P hP h P h

σ σγ

σ σ σ σ σ= = =

=
⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟+ + + + +
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑

  

      ( ) ( )( )
,

1 1 1
SR RD

RD a b SR a

γ γ
γ γ γ γ γ

=
+ + + + +

                         (5.6) 

where 

2

2
s SR

SR
R

P h
γ

σ
=  , 

2

2 ,= R RD
RD

D

P h
γ

σ

2

2
1

R
i i

N
R R

a
i R

P h
γ

σ=

= ∑ , and 

2

2
1

.
=

= ∑
D

i i
N

D D
b

i D

P h
γ

σ
 

Next divide (5.6) by ( )( )1 1a bγ γ+ +  to give 

( ) ( )

( )
( )

( )

1 1
,

1
1 1

SR RD

a b
eq

SR aRD

b a

γ γ
γ γ

γ
γ γγ

γ γ

+ +
=

+ +
+

+ +
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      1 2

2 1

,
1

γ γ
γ γ

=
+ +

                                 (5.7) 

where now 
( )1 1

SR

a

γγ
γ

=
+   

and 
( )2 1

RD

b

γγ
γ

=
+

 are the instantaneous signal-to- interference 

-plus-noise ratio (SINR) at the relay and destination nodes, respectively.  For a Rayleigh 

fading channel 

/1( ) ( ),−= SR

SR
SR

f e uγ λ
γ γ γ

λ
                                                                         (5.8a) 

/1( ) ( ).−= RD

RD
RD

f e uγ λ
γ γ γ

λ
                                                                         (5.8b) 

In (5.8a) and (5.8b), ( )2 2/ ,
SR SR s Rh Pλ σ= E  and ( )2 2/

RD RD D Dh Pλ σ= E  are the average 

SNRs at the relay and the destination, respectively. To simplify the analysis, we further 

assume that the interferers at the relay and the destination have equal powers, i.e.,  

1 2
...= = =

NRR R RP P P  and 
1 2

...= = =
NDD D DP P P , respectively. Then the cdf of the 

instantaneous SINR at the relay is given by 

                    
( )

1 1( )
1

SR

a

F P Pγ
γγ γ γ γ

γ
⎛ ⎞

= ≤ = ≤⎜ ⎟+⎝ ⎠
, 

                              ( )( ) ( )
0

1
SR a aF f x dxγ γ γ

∞

= +∫ .                                                         (5.9) 

In (5.9), we have 

                            ( ) /1 SR

SR
F e γ λ

γ γ −= − ,                                                                     (5.10a) 

                        
( )

1

( ) exp
1 !

R

SR R

N

N
R R R

f
Nγ

γ γγ
− ⎛ ⎞

= −⎜ ⎟Ω − Ω⎝ ⎠
 .                                              (5.10b) 



38 
 

The term  
( )2

2  Ω = ∀
i iR R

R
R

h P
i

σ

E
 is the average interference-to-noise ratio (INR) at the 

relay for each interferer. Substituting (5.10a) and (5.10b) in (5.9) and simplifying gives 

[1], [45, eq. (17)],  

                    ( )1

/
1

0

1( ) 1 exp ,
1 !

− ∞ − ⎛ ⎞⎛ ⎞
= − − +⎜ ⎟⎜ ⎟⎜ ⎟Ω − Ω⎝ ⎠⎝ ⎠

∫
SR

R

R

N
N
R R SR R

eF x x dx
N

γ λ

γ
γγ

λ
 

                              1 exp
RN

R

R R

γ
γ

⎛ ⎞ ⎛ ⎞Λ −
= − ⎜ ⎟ ⎜ ⎟+ Λ Ω⎝ ⎠ ⎝ ⎠

,                                                         (5.11) 

where Λ =
Ω

SR
R

R

λ
 is the average SIR at the relay for each interferer. The corresponding 

pdf of the instantaneous SINR at the relay may be obtained by differentiating (5.11) to 

give 

 
1 1

1( ) exp
( )

R
R

R

NN
R R R

N
R R R R

Nfγ
γγ

γ γ+

⎡ ⎤⎛ ⎞ ⎛ ⎞Λ Λ −
⎢ ⎥= + ⎜ ⎟ ⎜ ⎟+ Λ Ω + Λ Ω⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

.                                      (5.12) 

In a manner similar to (5.9)-(5.12), the cdf and pdf of the SINR at the destination node 

may be shown to be given by 

                         
2
( ) 1 exp

DN

D

D D

Fγ
γγ

γ
⎛ ⎞ ⎛ ⎞Λ −

= − ⎜ ⎟ ⎜ ⎟+ Λ Ω⎝ ⎠ ⎝ ⎠
,                                                  (5.13) 

                          
2 1

1( ) exp ,
( ) +

⎡ ⎤⎛ ⎞ ⎛ ⎞Λ Λ −
⎢ ⎥= + ⎜ ⎟ ⎜ ⎟+ Λ Ω + Λ Ω⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

D
D

D

NN
D D D

N
D D D D

Nfγ
γγ

γ γ
                   (5.14) 

where ( )2 2/   
i iD D D Dh P iσΩ = ∀E  and

 
Λ =

Ω
RD

D
D

λ
 are the average INR and average SIR 

at the destination node for each interferer, respectively. 

5.2.1.1  CDF of End-to-End SINR System 

The cdf of instantaneous end-to-end SINR  1 2

2 1 1
=

+ +eq
γ γγ

γ γ
 is given by  
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( ) 1 2 2
1

2 1 2

Pr Pr
1eq

Fγ
γ γ γγ γγ γ γ

γ γ γ γ
⎛ ⎞ ⎛ ⎞+

= ≤ = ≤⎜ ⎟ ⎜ ⎟+ + −⎝ ⎠ ⎝ ⎠
.                                    (5.15) 

Conditioning on the random variables 2γ  , the ( )
eq

Fγ γ  becomes 

         ( )
2 2

2 2
1 2 2 1 2 2

2 20

Pr ( ) Pr ( )
eq

F f d f d
γ

γ γ γ
γ

γγ γ γγ γγ γ γ γ γ γ γ
γ γ γ γ

∞⎛ ⎞ ⎛ ⎞+ +
= > + ≤⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

∫ ∫ , 

                      
2 1 2

2
2 2 2 2

20

( ) ( )f d F f d
γ

γ γ γ
γ

γγ γγ γ γ γ
γ γ

∞ ⎛ ⎞+
= + ⎜ ⎟−⎝ ⎠

∫ ∫ .                                              (5.16) 

Using (5.11), the integral in (5.16) becomes 

( ) ( )
( )2 2 2

2
2 2 2 2 2 2

20 2

2

1
( ) ( ) exp ( )

1

R

eq R

N
R

N
SR

R

F f d f d f d
γ

γ γ γ γ
γ γ

γ γ
γ γ γ γ γ γ γ

γ λγγ γ
γ γ

∞ ∞ ⎛ ⎞+Λ
= + − −⎜ ⎟⎜ ⎟−⎛ ⎞+ ⎝ ⎠+ Λ⎜ ⎟−⎝ ⎠

∫ ∫ ∫ ,  

         

( )
( ) 2

2
2 2

22

2

1
1 exp ( )

1

R

R

R

N

N
SR

R

f dγ
γ

γ γ
γ γ

γ λγγ γ
γ γ

∞ Λ ⎛ ⎞+
= − −⎜ ⎟⎜ ⎟−⎛ ⎞+ ⎝ ⎠+ Λ⎜ ⎟−⎝ ⎠

∫ .                                    (5.17) 

Substituting (5.13) and (5.14) in (5.17) and making the change of variable 2x γ γ= −  

gives 

( ) 1 exp
⎛ ⎞⎛ ⎞⎛ ⎞ +Λ Λ

= − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+Λ⎝ ⎠ ⎝ ⎠⎝ ⎠

R
D

eq

N N
SR RDR D

R RD SR RD

Fγ
λ λγ γ

γ λ λ λ
( ) ( )

0

1
exp

SR RD

G x x dx
x x

γ γ
λ λ

∞ +⎛ ⎞
− −⎜ ⎟

⎝ ⎠
∫ , 

                                                                                                                           (5.18) 

where                           

       

( ) ( )

( )

1

1( 1)

R

R

D

N
D RD D

N
N

D
R

x x N
G x

x x

γ λ

γ γ γ
γ

+

+

+ + Λ +
=

⎛ ⎞+
+ + + Λ⎜ ⎟+ Λ⎝ ⎠

.                                       (5.19)

  
A partial-fraction expansion of ( )G x  is given by 

                         
        

( )
( )

2

1 1
,

= =

Ξ
=

+
∑ ∑

i
ik

k
i k i

G x
x

σ

ρ                                                            
(5.20) 
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where 1 RNσ = , 2 1DNσ = + , 1
( 1)

R

γ γρ
γ

+
=

+ Λ
, 2 Dρ γ= +Λ , and the coefficients ikΞ is 

given by 

                     
( ) ( )1 ( ) .

!

i
i

ii

k

ik i xk
i

d x G x
k dx

σ
σ

ρσ ρ
σ

−

=−−Ξ = +
−

                                  (5.21)  

It is shown in Appendix A that the coefficients in (5.21) may be expressed in closed 

form as 

( )
( ) ( )

( )( )
( ) ( )

( )

2
2 2

1 1
0 1 21 2

1 131
      ! 33

+ −

+
=
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j jk N k
D jRR

k N
jR j

NN kN
jN k kk

ρ ρ
ρ ρρ ρ
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1
2 2 2

1
0 1 21 2

1 12
      22
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D

j jk N k
D jRD RD D R

N
j j

NN kN N
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ρ λ ρ ρ
ρ ρρ ρ
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+
=

⎫− +−+ Λ + Γ + − ⎛ ⎞⎛ ⎞ ⎪+ ⎬⎜ ⎟⎜ ⎟ + −Γ + − ⎝ ⎠ ⎝ ⎠ ⎪⎭
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                                                                                                        (5.22a) 
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R jD

N
j R D j

NN k
j N N k
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− + + −
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⎫−+ −− ⎛ ⎞⎛ ⎞ ⎪× ⎬⎜ ⎟⎜ ⎟ − + + −− ⎝ ⎠ ⎝ ⎠ ⎪⎭
∑  ,                      (5.22b) 

where 
a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

is the Binomial coefficient. Using [38, 3.381.4], (5.20) can be rewritten as 

                                ( ) ( )
( )

2
1

1 1 0

e
i

it xkik

i k
G x t dt

k

σ
ρ

∞
− +−

= =

Ξ
=

Γ∑∑ ∫ .                           (5.23) 

Substituting (5.23) in (5.18) and using [38, eq. (3.3471.9)], yields   

( ) ( )
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1 1
1 2 exp

= =

⎛ ⎞⎛ ⎞⎛ ⎞ + ΞΛ Λ
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( )( )1
00

1 1/
e 2it RDk

SR

t
t K dtρ γ γ λ

λ
∞ −−

×

⎛ ⎞+ +
⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ ,                                                 (5.24)
 

where  ( )0 .K  is the modified Bessel function of the second kind and zero order [38]. 

After introducing ( )( )1 1 /
2 RD

SR

t
z

γ γ λ
λ

+ +
= , the integral term in (5.24) become
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1 1 e ,
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∫                       
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∑ ∫            (5.25)
 

where ( 1)2
SR RD

A γ γ
λ λ

+
=  and 

( )4 1
SR iB λ ρ

γ γ
=

+
. Finally, simplifying (5.25) and substituting in 

(5.24), the outage probability becomes 

( ) ( ) ( )
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1 1
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∑

                                                                                                                                    (5.26)                  

where   

               ( ) 1 1

0

1; ; (1 ) ,  Re 0
( )

xt u v uu v x e t t dt u
u

ψ
∞

− − − −= + >
Γ ∫    (5.27)           

is the confluent hypergeometric function of the second kind [38] and 

2

2
,

0

( , ) ( )−= ∫u v

x
u pt

ve
K p x t e K t dt                  (5.28) 

 is the incomplete Weber integral [9], [22], [60]. Note that some special cases of  

2
,
( , )

u ve
K p x  are shown in Appendix B.  
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In addition, using the identities in [38, eq.(8.436) and eq. (9.211.2)], and interchanging 

the order of integration, 2
,
( , )

u ve
K p x  can be numerically evaluated by  

                   
 

( )
( )

2
,

1 2
1 11

1

1 1 1 1( , ) ;1 ;
2 1 2 2 4u v

K
v

i ive
i i

v ux v u v uK p x w y F x p
v u y

− +
+

=

+ + ⎛ ⎞⎛ ⎞+ + + +
≅ + − +⎜ ⎟⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠

∑ ,   (5.29) 

where  ( )1 1 ; ;F a b x  is the confluent hypergeometric function [38], the weights iw  and the 

roots iy   are given in [7, (25.4.33)] and the value of K  is chosen to obtain a desired  

accuracy. 

 
5.2.1.2 Approximate CDF of End-to-End SINR System 

In order to obtain a simple approximation for the cdf of the end-to-end SINR, the  

expression of the integral in (5.18) can be written as 
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γ γ
γ

λ λ
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                              (5.30) 

The two terms in the denominator of (5.30) may be written as [38, eq. (3.381.4)] 
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Using (5.31) and (5.32) in (5.30), we have 1 2= +I I I  where 
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Next performing the inner integration in (5.33) via [38, eq. (3.471.9)] gives 
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                                                (5.34) 

However, the modified Bessel function may be approximated as [7, eq. (9.6.9)] 
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Thus, (5.34) becomes 
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Note that the approximation in (5.35) is valid when the argument of the modified Bessel 

function tends to zero; this is equivalent to assuming that the S - R link has a strong 

signal strength (i.e., for large SRλ  ). The term of I2  is given by 
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    (5.37) 

Following a similar analysis to the one leading to (5.36), it is straightforward to show 

that 
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Then, substituting (5.36) and (5.38) in (5.18), the cdf of end-to-end SINR may be 

approximated as 
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5.3 Interference-limited (CCI only)  

5.3.1 System Model 

In an interference-limited Rayleigh fading environment, the dual-hop system is 

dominated by co-channel interference. In this case the effect of thermal noise may be 

neglected. Therefore, 2 2 0σ =σ =R D  in (5.5), the end-to-end instantaneous SIR is then 

given by 
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where
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γ
 are the instantaneous SIRs at the relay and the 

destination, respectively. The pdfs for 1�γ  and 2�γ  are given, respectively, as [73, eq. 

(13)] 
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The corresponding cdfs for 1�γ  and 2�γ are given by (see Appendix C) 
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5.3.1.1  CDF of End-to-End SIR System 

Similar to (5.15) and (5.16), the cdf of the end-to-end SIR can be given by 
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Substituting (5.42b) and (5.43a) in (5.44) and making the change of variables 2x γ γ= −  

gives 
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Using the identity in [38, eq. (3.197.1)], the closed-form expression for the cdf of the 

end-to-end SIR is given by 
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where ( )2 1 , ; ;F a b c z  is  the Gauss hypergeometric function [38]. 

 

5.4 Performance Analysis  

5.4.1 Outage Probability 
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In a wireless communication system with co-channel interference and thermal noise, the 

outage probability is the probability that the instantaneous SINR exceeds a preset 

threshold thγ  and is given by ( )out Pr= ≤ thP γ γ . For the dual hop relay system, the exact 

and the approximate outage probabilities may be obtained from (5.26) and (5.39) as

( ) ( )out exact =
eq thP Fγ γ  and ( ) ( )out approx = approx

eq
thP F

γ
γ , respectively. Similarly, for an 

interference-limited system, the probability that the instantaneous SIR falls below a 

preset threshold thγ can be obtained from (5.46) by ( ) ( )out SIR = �eq thP Fγ γ . 

5.4.2 ABER of Binary Modulations  

The ABER is another useful performance measure that is usually used to characterize a 

wireless digital communication system. In the presence of AWGN, the conditional BER 

for binary phase shift keying (BPSK) and binary frequency shift keying (BFSK), with 

coherent (i.e., CPSK/CFSK) and non-coherent (i.e., NPSK/NFSK) detections, is given 

by
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γ
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where 1α =  for BPSK,
 

1 / 2α =  for BFSK, 1β =  for NPSK/DPSK, 1 / 2β =  for 

CFSK/CPSK [63] and ( ) 1,
∞ − −Γ = ∫ p t

x
p x t e dt  is the incomplete gamma function [38]. The 

ABER for binary modulations may then be obtained as 
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5.4.2.1 Approximate ABER Using Eq. (5.39) 

The ABER may be obtained by substituting (5.39) in (5.48) to give 
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The constant a in (5.50)-(5.52) is defined as
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 Since the integrals in 

(5.50)-(5.52) are in the form 
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where a, b, c, f, g, m, v ≥0 and ( 1, 0)i ∈ −  are the arbitrary constants, using a Taylor 

series expansion of the confluent hypergeometric function, yields [13] 
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where  for sufficiently small values of g .  Only the first two terms in the series may be 

considered.  Using (5.54), the integral in (5.53) becomes 
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           ( ) ( ) ( )}1; 1; 1; 2 ;c g b v c c i f v v m a bψ ψ− + + + + + − .     
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Using (5.55), the ABER in (5.49) becomes           
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5.4.2.2 Exact ABER for the Interference-limited Case 

The exact ABER for the end-to-end SIR may be obtained by substituting (5.46) in 

(5.48) as  
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Unfortuately, a closed-form solution for the integral in (5.60) cannot be obtained, 

however, the result can be accurately computed by using the numerical integration in                 

[7, (25.4.33)].                    

 

5.5 Numerical Results 

In this section, some numerical and simulation results to illustrate the performance 

analysis for a dual-hop AF relay system in a Rayleigh fading channel in the presence of 
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identically distributed co-channel interferers at the relay and destination nodes are  

illustrated.  Figure 5.2 shows a comparison of the approximate outage probability in 

(5.39) with the exact one given in (5.26), when the threshold thγ  is set at 3 dB.  

Assuming that there are the same number of co-channel interferers at R and D   

(i.e., 0,1,2,4)R DN N= =  with equal powers (all INRs are set equal to 5dB).  It is  

observed that as the number of interfering signals increases the outage probability 

increases, with the most dramatic performance deterioration occurring with the 

introduction of the first interferer. For example, when there is no interference in the 

system ( 0)R DN N= =  and equal desired signal powers along the S - R and R - D links 

(i.e., SR SDλ λ= ), in order the maintain the same outage performance of 10%, the 

transmission powers must be increased by approximately 6 dB to counter the effect of a 

single interferer and by 12dB for four interferers. In addition, it can be found that the 

numerical results based on the exact cdf of the end-to-end SINR match perfectly with 

computer simulation results, while the results of the approximate outage probability 

agrees with the simulation result when the link signals are strong (for ,SR SDλ λ ≥ 25 dB).   

Figure 5.3 shows the outage probability for a dual-hop relay system in the presence 

of high-power interferers at both the relay and destination terminals. Specifically, the 

parameters RΛ  and DΛ  are set at  30 dB and one can observe that at low and moderate 

SNRs ( ),SR SDλ λ , increasing the SNR improves the outage performance because 

AWGN is the dominate noise in this region.  On the other hand, at high SNRs, an 

outage floor results due to the fact that the effect of co-channel interferers is 

independent of the SNR [45].   
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In Figure 5.4, the ABER in (5.56) for the case of DPSK is plotted.  Similar to Figure 

5.2, the ABER performance deteriorates as the number of interferers increases; also the 

approximation agrees with the exact ABER result (obtained from computer simulation) 

when the link signals are strong, i.e., ,SR SDλ λ ≥ 20 dB. Moreover, in Figure 5.5,  the 

ABER of dual-hop relay system with the presence of strong SIR at both the relay and 

destination terminals (i.e., R DΛ =Λ =30 dB) are provided. Similar to Figure 5.3, it can 

be shown that at low and moderate values of SRλ and  SDλ , increasing the SNR 

improves the ABER performance because the dominate noise in this region is AWGN. 

On the other hand, at high SNRs, an ABER floor results as shown in [45].   

Finally, an interference-limited dual hop relay system is considered. Figure 5.5 plots 

the outage probability of such a system, using the closed-form expression in (5.46), 

whereas Figure 5.6 plots the ABER of DPSK using the expression in (5.59). As 

expected, numerical results match perfectly with the results of the simulation.  Both 

figures depict the performance deterioration that occurs as the number of interferers 

increases. 
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Figure 5.2  Outage probability of dual-hop relay system in the presence of equal-power 

interferers  at the relay and destination nodes. 
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Figure 5.3  Outage probability of dual-hop relay system with high SIR at the relay and 

destination nodes. 
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Figure 5.4  ABER of dual-hop relay system in the presence of equal-power interferers 

at the relay and destination nodes. 
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Figure 5.5  ABER of dual-hop relay system with high SIR at the relay and destination 

nodes. 
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Figure 5.6 Outage probability of interference-limited dual-hop relay system. 
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CHAPTER 6 MULTI-HOP RELAY SYSTEMS IN RAYLEIGH  

                        FADING CHANNELS 

6.1 Introduction 

Multihop relaying in which the transmitted signal propagates through cascaded 

nodes, with each node amplifying and forwarding the received signal from the previous 

node to the next, has been shown to improve the performance and extend the coverage 

of many communication systems [44], [65]. The performances of multihop AF and DF 

relaying systems in a thermal noise-limited environment have been studied extensively 

[40-41], [47]. In these systems, it is well known that the choice of the relay gain that 

maximizes the end-to-end SNR is to invert the combined instantaneous received power 

(i.e., sum of desired signal and noise power) at each relay node.  The exact closed-form 

analytical expression for the end-to-end SNR for an arbitrary N-hops transmission 

system is derived in [41]. However, the exact performances of such system appear to be 

intractable for 3N ≥  and are usually bounded or asymptotically approximated.  For 

example, upper bounds may be obtained for the end-to-end SNR by bounding the 

harmonic mean by geometric mean [47] or by bounding the end-to-end SNR by the 

minimum SNR of all the hops [41], [47]. It is well known that in a multihop relay 

network with multiple relays in series, the end-to-end SNR in an AF system in which 

the relay gains ignores noise is, indeed, proportional to the harmonic mean of all the 

per-hop SNRs.  In DF relaying, on the other hand, the end-to-end SNR is dominated by 

the SNR of the weakest link [41]. 

      A lot of the existing works on multihop relay transmission consider thermal noise-

limited conditions in systems with no interference.  However, in addition to thermal 

noise, many practical relay networks also encounter co-channel interference, which 

causes severe performance degradation. Co-channel interference is inherent in many 
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wireless networks due to frequency re-use that optimizes spectrum utilization in such 

system. Recently, considerable attention has been given to dual-hop AF relay 

transmission in the presence of thermal noise and co-channel interference [45], [47], 

[54], [76].  In most of these studies for the effect of Rayleigh interferers, the exact 

distribution of the end-to-end SNR has not been obtained and the analytical results are 

based on bounds or asymptotic approximations. However, the outage probability 

performance of dual-hop DF transmissions in a Rayleigh fading environment with 

interference has also been studied in [48], [55], [85]. 

In this chapter, the outage probability, the average symbol error rate and the average 

channel capacity performances of multi-hop relay systems with AF and DF relays are 

considered. Specifically, it can be shown that the well-known result of [41, eq. (2)] also 

holds in the presence of interference and Gaussian noise, where now, the SNR is 

replaced by SIR in an interference-limited system and SINR in the presence of 

interference and noise. This observation was also made by a number of investigators for 

the special case of dual-hop relaying [45], [54], [76]. Then following [41], [54], [55], 

two upper bounds for the end-to-end SINR; namely, the minimum SINR are 

investigeted along the hop links (which corresponds to DF relaying) and the harmonic 

mean of the per-hop SINR (which corresponds to AF relaying).  

 

6.2 System Model 

A wireless network, comprising a source S, several relays  ( , 1,2,.., 1nR n N= − )  in series 

and a destination ( ND R= ) is considered. It is assumed that the desired signal at the nth 

relay is interrupted by , 1,2,..,nL n N=  co-channel interferers and the additive white 

Gaussian noisewith power 2, 1,2,.., ,n n Nσ =  as shown in Figure 6.1.   
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Figure 6.1 The multi-hop systems with the presence of interference and noise 

 

In the figure, nα  is the fading amplitude of the desired signal on the communication link 

between relay nodes n-1 and n.  In the case of AF protocol, the received signal at the 

relay node n is amplified by the gain nG  and forwarded to the next relay node. The total 

power of the desired signal at the final node in the series chain is given by 

                                ( )( )2 2 2 2 2 2
1 2 1 2 1... ... .D N NP G G G −= α α α                                                      (6.1) 

The instantaneous power of the i-th  interferer at node n is denoted by , ,i nZ 1,2,..., ni L= . 

Therefore, the total interference power at the destination hop D is given by 

         
( )( ) ( )( )

1 2
2 2 2 2 2 2 2 2 2 2 2 2

,1 1 2 1 2 3 ,2 2 3 1 3 4
1 1

... ... ... ...− −
= =

= α α α + α α α∑ ∑
L L

D i N N i N N
i i

I Z G G G Z G G G  

                 
( )( )

3
2 2 2 2 2 2

,3 3 4 1 4 5 ,
1 1

... ... ...
NL L

i N N i N
i i

Z G G G Z−
= =

+ α α α + +∑ ∑ .                                               (6.2) 

The total noise power at the destination is  

( )( ) ( )( )2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 1 2 3 2 2 3 1 3 4... ... ... ...− −= σ α α α + σ α α αD N N N NN G G G G G G  

               ( )( )2 2 2 2 2 2 2 2
3 3 4 1 4 5... ... ... .N N NG G G −+σ α α α + + σ

             
                                              (6.3) 

S R1 R2 
RN =D 
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Consequently, the end-to-end instantaneous SINR is given by 

        
,D

eq
D D

P
I N

γ =
+

 

             

12 2
1 1

1 12 2 2 2 2
,1 1 11 1

,
n

N N
n nn n

N N N NN N L
n s s i n s sn n is n s n s n s n

G

a G b Z G

−

= =
− −

= = == + = = + =

α
=

σ α + α

∏ ∏
∑ ∑ ∑∏ ∏ ∏ ∏

 

                 ( )
12 2

1 1
12 2 2

,1 1 1

,
n

N N
n nn n

N NN L
n i n s sn i s n s n

G

a b Z G

−

= =
−

= = = + =

α
=

σ + α

∏ ∏
∑ ∑ ∏ ∏

                                                  

(6.4) 

where the parameters [ ], 0,1a b= are constants  introduced to account for the presence of 

co-channel interference and thermal noise at the relays.  For example, ( )1, 0a b= =

corresponds to the case of no interferers (noise-limited system) while ( )0, 1a b= =

implies that no noise is present (interference-limited system).   Next, dividing both 

nominator and denominator in (6.4)  by ( ) 12 2
,11 1

,NN NL
n i n nin n

a b Z G−

== =
σ + ∑∏ ∏  yeilds 

                           
( )

( )
( )

2

1 2
,1

2

1 2
,1

1 11 2 2
,11 1

 

     .
   

               

N

s

s

N n
Ln

n i ni
eq

N s
Ls n

s i sN i

n n Ln
s s i sis s

a b Z

a b Z

G a b Z

=

=

= +

=

− −=

== =

α

σ +
γ =

α

σ +

σ +

∏
∑

∏
∑

∑
∑∏ ∏

                     

(6.5) 

The AF gain employed at the n-th relay is chosen as  

                                      

2
2 2

,1

1 .
nn L

n n i ni

G
a b Z

=

=
α + σ + ∑

                                                       (6.6) 

Substituting (6.6) in (6.5) and simplifying, the equivalent end-to-end SINR is then given 

by 
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( )

( ) ( )
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1 2
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2 2
1

1 1 12 2
, ,1 1

    ,

1

N

N n

N n
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eq

N nN s s
L Ln s n s

s i s s i si i

a b Z

a b Z a b Z

=

=

−

= = + =

= =

α

σ +
γ =

⎛ ⎞
α α⎜ ⎟+⎜ ⎟σ + σ +⎜ ⎟

⎝ ⎠

∏
∑

∑ ∏ ∏
∑ ∑

 

                            

1
1

1 1

1 1  1 ,
nN

n sn s

−
−

= =

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟γ γ⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∏                                                                     

(6.7) 

which is the equivalent end-to-end SINR given in [41, eq.(3)], where now 

                           

2

2
,1

j

n
n L

n i ni
a b Z

=

α
γ =

σ + ∑
                                                                           (6.8) 

is the generalized SINR per hop.  The following special cases for the choice of the 

parameters and a bwill be considered in the rest of this paper: 

i) Noise-Limited Systems ( 1,  0a b= = ) 

               

2

2
n

n
n

α
γ =

σ
is the SNR per hop  [41, eq.(2)]. 

ii)  Interference-limited case ( 0,  1a b= = ) 

               

2

,1
n

n
n L

i ni
Z

=

α
γ =

∑
is the SIR per hop [54], [55]. 

iii) In general ( 1a b= = ) 

                   

2

2
,1

n

n
n L

n i ni
Z

=

α
γ =

σ + ∑
is the SINR per hop [45], [76]. 

Note that replacing N=2 in (6.7), then 1 2

1 2 1
γ γ

γ =
γ + γ +eq  which is the end-to-end SINR of 

the dual-hop relay system as shown in (5.7).   

 

6.3 Statistics of End-to-End SINR 
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To the best of our knowledge, the exact cdf of the end-to-end SINR in (6.7) is still 

unavailable due to its complicated mathematical form. Also the analytical results are 

usually based on obtaining bounds on the system performance.  In what follows two 

upper bounds on the end-to-end SINR that are frequently considered in the literature for 

evaluating the system performance, and correspond to the end-to-end SINR for DF and 

AF relaying are focused. The cdf of the SINR per hop given by 

                  ( ) ( )2 2Pr ,
n n n nF a bZγ

⎡ ⎤γ = α < γ σ +⎣ ⎦
�  

                             
( )20

,
n

n
x n nZn

n

ZF a b f Z dZ
∞ ⎡ ⎤⎛ ⎞

= γ +⎢ ⎥⎜ ⎟σ⎢ ⎥⎝ ⎠⎣ ⎦
∫ �

� � �                                                      (6.9) 

where 2 2/n n nx =α σ , ,1
nL

n i ni
Z Z

=
= ∑� and a, b are the arbitrary constants.  The additive white 

Gaussian noise at the n-th relay node has the average power 2
nσ . For Raleigh channel, 

the cdf of nx is given by 

                           
( )

,

1 exp
⎛ ⎞

= − −⎜ ⎟⎜ ⎟Ω⎝ ⎠
nx

s n

xF x ,                                                                   (6.10) 

where ,s nΩ is the average SNR of the desired signal at the n-th hop.  Substituting (6.10) 

in (6.9) gives                                     

( ) ( )20
,

1 exp ,
n n

n
n nZ

s n n

ZF a b f Z dZ
∞

γ

⎡ ⎤⎛ ⎞⎛ ⎞γ
γ = − − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟Ω σ⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∫ �

� � �  

           , ,

1 exp ,
nZ

s n s n

a bM
⎛ ⎞ ⎛ ⎞γ γ

= − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠
�  

            
,

1, ,

1 exp
n

i n

L

Z
is n s n

a bM
=

⎛ ⎞ ⎛ ⎞γ γ
= − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠

∏ .                                                                   (6.11) 

In the presence of Rayleigh-faded interferers, 
,

1

,

, ,

1
i n

i n
Z

s n s n

bbM
−

⎛ ⎞ ⎛ ⎞Ω γγ
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠

and (6.11) 

becomes 
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( ) ,

1, ,

1 exp
n

n

L
i n

is n i n

aF
bγ

=

⎧ ⎫⎛ ⎞ ⎛ ⎞Λγ ⎪ ⎪γ = − −⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟Ω γ + Λ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
∏ ,                                                               (6.12) 

where ,
,

,

Ω
Λ =

Ω
s n

i n
i n

 is the average signal-to-interference ratio per hop.  

6.3.1 DF Relaying 

Since in DF relying systems, the end-to-end performance is usually dominated by that 

of the weakest link, it follows that the end-to-end SINR for DF is given by [41], [76] 

                                            1min( ,..., ).eq DF Nγ ≤γ = γ γ
                                                  

(6.13) 

It is well known that, in this case, cdf of D Fγ  is given by  

     
( ) 1Pr min( ,..., )NDF

F γ γ γ γγ ⎡ ⎤= <⎣ ⎦ , 

                    [ ]11 Pr ,..., ,N= − γ >γ γ >γ  

                   
( )( )

1

1 1 .
n

N

n

Fγ
=

= − − γ∏                                                                                    (6.14) 

 Substituting (6.12) in (6.14), the cdf of D Fγ  is given by 

( ) ,

1 1, ,

1 exp ,
n

DF

LN
i n

n is n i n

aF
bγ

= =
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∏ ∏  

               
( ) ,

1 1 ,
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∏ ∏

nLN
i n

n i i n

a
b

,                                                            (6.15) 

where  
1 ,

1
=

ϖ =
Ω∑

N

n s n
. Note that replacing a=0 (no noise), (6.15) becomes  

               
( ) ,

1 ,

1 .γ
=

⎧ ⎫⎛ ⎞Λ⎪ ⎪γ = − ⎜ ⎟⎨ ⎬⎜ ⎟γ + Λ⎪ ⎪⎝ ⎠⎩ ⎭
∏

n

DF

L
i n

i i n

F
b

                                                                       (6.16) 

When b = 0 (no interferers), then (6.15) becomes  

                
( ) ( )1 expγ γ = − − γϖ

DF
F a .                                                                              (6.17) 
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In general, there are dL  distinct values of   , , 1,..., , 1,...,Λ = =i n ni L n N  which are denoted 

by  { } 1=
λ dL

r r  with multiplicity { } 1=
dL

r r
m  such that (6.15) can be expressed as  
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1 1,

1 exp ,
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mLN
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j is j r

aF
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1 1 11,
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∑ ∑∑∏                            (6.18) 

where the coefficient of the partial fraction expansion is given by 
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                                 (6.19) 

For the case of  MGF of D Fγ , it can be shown that  

                                         
( ) ( )

0
1 ,

DF DF

tM t t e F d
∞ − γ

γ γ= − γ γ∫                                             (6.20) 

where ( )
DF

Fγ γ  is the complementary cdf of SINR defined by ( ) ( )1
DF DF

F Fγ γγ = − γ . 

Substituting (6.18) in (6.20), thus the MGF for end-to-end SINR is given by   
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ϖ∑∑∏                                   (6.21) 

where ( ).ψ is the confluent hypergeometric function defined in [38, eq.(9.211-4)].  

 Note that replacing a= 0 ( no noise), (6.21)becomes 
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∑∑∏                                  (6.22) 

which is the MGF for end-to-end SIR for interference-limited case.  In addition, for b=0 

(no interferers), substituting (6.17) in (6.20) and using [38, eq.(3.381.4)], the MGF for 

end-to-end SNR can be given by 
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( ) 1 .

DF

t aM t
t a t aγ

ϖ
= − =

+ ϖ + ϖ                           
                                   (6.23) 

6.3.2 AF Relaying 

As stated earlier, in a multihop AF relay system, the end-to-end SINR is upper-bounded 

by the harmonic mean of the entire hop SINRs in the series chain. In fact, when the 

choice of the relay gain used in the AF protocol ignores the effect of noise and 

interference, i.e.,
 

2 21/= αn nG , the end-to-end SINR is proportional to the harmonic mean 

of the per-hop SINRs. 

Therefore, [41], [76]  

                                         

1
1

1
.

N

eq AF n
n

−
−

=

⎡ ⎤
γ ≤ γ = γ⎢ ⎥

⎣ ⎦
∑                                                      (6.24) 

The MGF of inverse end-to-end SINR per hop ( 1
n
−γ ) is provided by [14, eq.(7)] 

                
( ) ( ) ( )1

2
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1 2 2 ,
nn

M t t J x t M x dx−

∞

γγ
= − ∫                                                       (6.25) 

where ( )1 .J is the Bessel function of the first kind and first order [7], and ( )2
γn

M x is the 

MGF of SINR per hop given by  

                                
( ) ( )22 2

0
1 .

n n

xM x x e F d
∞ − γ

γ γ= − γ γ∫                                                   (6.26) 

When the interference powers at the nth node are all equal, i.e., 1, ,...Λ = =Λ =Λ
nn L n n , 

(6.12) becomes 
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Substituting (6.27) and (6.26) in (6.25), gives 
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Next using the identity in [20, eq.(9.1.69)], then 

                                     ( ) ( )2
1 0 12 ; 2; ,J x t x t F x t= − −

                                               
(6.29)

                  

where ( ).p qF  is the generalized hypergeometric function [38, eq. (9.14.1)]. 

Substituting (6.29) in (6.28) and introducing 2=y x  , yields [38, eq.(7.522.5)] 
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Using the identity in [38, eq.(3.381.4)], then  
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Substituting (6.31) in (6.30) and using [38, eq.(3.478.4)], it can be shown that 
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where ( )
1

.
+nLK is the modified Bessel function of the second kind and  1+nL  order [7]. 

Using [38, eq.(8.486.17)], the term ( )1nLK z+  can be written by 



66 
 

                         
( ) ( ){ }1 2 ( ) ( ) .

2 1n n nL L L
n

zK z K z K z
L+ += −

+
                                              (6.33) 

 Moreover, the modified Bessel function may be approximated as [7, eq.(9.6.9)] 
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Then substituting (6.34) and (6.33) in (6.32), gives  
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                         (6.35) 

Note that when a=0 (no noise), the second term vanishes and (6.35) becomes  

                            
( ) ( )1 1 ;0; ,

n
n n

n

tbM t L L−γ

⎛ ⎞
= Γ + ψ⎜ ⎟Λ⎝ ⎠

                                                     (6.36) 

which is the MGF of inverse SIR per hop for the interference-limited case.  Under the 

assumption that the hops are subject to independent fading, the MGF of 1
AF
−γ is given by  

                      
( ) ( )1 1

1

.
AF n

N

n

M t M t− −γ γ
=

= ∏                                                                            (6.37) 

Substituting (6.35) in (6.37) gives 
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∏                  (6.38) 

In addition, the following representation may be used for the product in (6.38), i.e., 
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B
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N N
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                                                 (6.39)
 

where { }1 2: ( , ,..., ) : {0,1}= κ = κ κ κ κ∈ N
N NP  with
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n

btA L L
⎛ ⎞
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          (6.40b) 

Therefore the cdf of AFγ  can be expressed as [41, eq.(7)] 
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where -1 (.)L  is the inverse Laplace transform operation. Substituting (6.39) in (6.41), the 

cdf can be shown to be given by  
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The inverse transform in (6.42) can be evaluated using the following Laplace inversion 

formula to obtain  
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The proof of (6.43) is provided in Appendix D. 

The term ( )N
BF  in (6.43) is the Lauricella multivariate hypergeometric function of the 

second kind [31]. Note that (6.43) generalizes [54, eq.(27)] and [31, eq.(3.24.6.3)] as the 
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inverse Laplace transform of an arbitrary number of the confluent hypergeometric 

function, each with arbitrary parameters. Using (6.43) and upon simplifying the 

resulting expression, the cdf of AFγ  becomes 
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where
0,        0
1,         1n

n

n
κ

κ =⎧
δ = ⎨ κ =⎩

. 

 

6.4 Performance Analysis 

6.4.1  Outage Probability    

The end-to-end outage probability is defined as the probability that the end-to-end SINR 

falls below a predetermined protection ratio thγ  and is given by ( )out .=
eq thP Fγ γ  

Therefore, for DF multihop relay system we can use ( )out =
DF thP Fγ γ in (6.15) and for 

AF, we use ( )out =
AF thP Fγ γ  in (6.44), respectively. 

6.4.2 Average SER 
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The average SER of multihop transmission over relay fading channels is an important 

performance metric and is defined as the averaging of the instantaneous (conditional) 

error probability over the pdf of the end-to-end SINR.  

 

6.4.2.1 DF Relaying 

Using the MGF-based approach, the average SER for several M-ary modulations can be 

given by  
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M                                                (6.45) 

where parameters Z�, zλ� , zφ�  and zθ �   given in table 3.1.  Moreover, for the special case 

of BPSK, making a change variable 2sin=s θ ,  the infinite integral in (6.45) may be 

evaluated in the closed form to give (see Appendix E) 
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∑∑∏    (6.46) 

6.4.2.1 AF Relaying 

An approach to evaluate the average SER of multihop AF transmission over a fading 

channel is given by [93, eq. (6)]
                     

 

                         
( ) ( ){ }1/

0

,
AFs

dP Z u M u du
du γ

∞

= −∫                                                        (6.47) 

where ( )Z u is the auxiliary function which represents the instantaneous  (conditional) 

SER and is given in [93] for a variety of M-ary modulation schemes. Specifically, for a 

given  conditional instantaneous SER ( )s eqP γ , the auxiliary function ( )Z u  is defined as 

                                  

( ) ( ) ( )-1 1 /
.sP t

Z u u
t

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
L                                                            (6.48) 

Substituting (6.38) in (6.47), the average SER is given by 
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(6.50) 

Note that the result in (6.49) can be easily evaluated numerically. In the numerical result 

section, to illustrate the numerical accuracy of (6.49), the average BER for the special 

case of binary modulations is depicted.
 
 In this case, the auxiliary function ( )Z u  is 

defined as 

                            
( ) ( )

2,0
1,3

11 ,
, 0, 02

Z u G uα
ββ

⎛ ⎞
= ⎜ ⎟Γ ⎝ ⎠

                                                 (6.51) 

where 
1,  BPSK

1/ 2,  BFSK
α =

⎧
⎨
⎩     

and
 

1,   NFSK / DPSK

1/ 2,   CFSK / CPSK
 .=

⎧
⎨
⎩

β  

 

6.4.3 Average Channel Capacity 

The average channel capacity provides an upper bound for the maximum transmission 

rate and was initially established for the Gaussian channel. In this section, novel 

expressions for this metric for DF and AF relay systems operating in Rayleigh fading 

with co-channel interference are derived. The expression for the DF relay protocol is 
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given by a closed-form expression in terms of the confluent hypergeometric function 

Ψ(.) , whereas the AF is given by a single integral which can be easily implemented in 

most popular computing software. 

 

 

 

6.4.3.1  DF Relaying 

The average channel capacity can be given by  
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where W  is the channel bandwidth.  Substituting (6.12) in (6.52) gives  
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Using the partial expansion, (6.53) becomes 
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Note that when we replace a = 0 in (6.54) and using [38, eq. (3.197.5)], (6.54) becomes  
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which is the average channel capacity for the interference-limited case.  

 Also for the case b=0 (no interferers), substituting (6.17) in (6.52), (6.52) becomes   
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(6.56) 

which is the average channel capacity for the noise-limited case.  

6.4.3.1  AF Relaying 

The average channel capacity for multihop AF relay systems can be given by [88, eq. 

(9)], [81]
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Substituting (6.38) in (6.57) yields 
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                                                                                                                                    (6.58) 

which can be easily and accurately computed numerically. 

 

6.5 Numerical Results 
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In this section, some numerical and simulation results to illustrate the performance 

analysis presented in the previous sections are presented. For illustration purposes 

multihop relay systems with N=2 and 3 hops and two equal-power interferers per hop 

with average INR equal to 5 dB are considered. Figure 6.2  plots the outage probability 

against the average SNR per hop with threshold γth=3 dB. The outage performance for 

the DF and AF multihop relay systems are evaluated using (6.15) and (6.44), 

respectively. The figure shows that the analytical results match perfectly the simulation 

results. It also shows that the outage probability decreases as the SNR per hop increases. 

Moreover, it is observed that DF relaying protocol provides a better performance than 

AF relaying with the performance gap between the two relaying schemes to increase at 

low and medium values of the average SNR as the number of hops N increases, but it 

diminishes at the high SNR per hop regime. 

In Figure 6.3, the average BER for DF and AF relaying are plotted with BPSK given by 

(6.46) and (6.49), respectively. The figure shows that the analytical results and the 

simulation results are in excellent agreement. Similar observations to those in Figure 6.2 

can be deduced from Figure 6.3, i.e., the DF relaying scheme outperforms the AF 

scheme, although the two performances converge at high SNRs. Finally, in Figure 6.4 

the average channel capacity per unit bandwidth (W=1) for both multihop relay systems 

are depicted. The numerical results obtained by (6.54) for DF relaying and (6.58) for AF 

relaying are shown to be in excellent agreement with the simulation results obtained 

using 
D Fγ in (6.13) and 

A Fγ  in (6.24), respectively. 
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Figure 6.2  Outage probability versus average SNR per hop for AF and DF relay 

systems with N=2, 3 hops and two equal-power interferers per hop with average 

INR equal to 5 dB. 
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Figure 6.3   Average BER versus average SNR per hop for AF and DF relay 

systems with N=2, 3 hops and two equal-power interferers per hop with average 

INR equal to 5 dB. 
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Figure 6.4  Average capacity versus average SNR per hop for AF and DF relay systems 

with N=2, 3 hops and two equal-power interferers per hop with average INR equal to 5 

dB. 
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CHAPTER 7 MULTI-HOP RELAY SYSTEMS IN  

                        INTERFERENCE-LIMITED NAKAGAMI  

                        FADING CHANNELS 

7.1 Introduction 

The main purpose of chapter is to derive the outage probability of channel-assisted AF 

and DF relaying for cascaded multihop relay systems in interference-limited Nakagami 

fading environments. The multiple Nakagami-faded interferers at the relay and the 

destination nodes are considered and the closed-form expressions for the outage 

probability of both AF and DF relay systems are then be studied. Specifically, the 

Nakagami-faded interferers at a particular relay node are identically distributed but the 

statistics of the interferers may differ from node to node.  Also the case of non-

identically distributed Rayleigh-faded interferers is investigated at the relay nodes.  The 

impact of interference on the outage performance of both DF and AF relay protocols is 

illustrated through analytical and simulation results.  

 

7.2 System Model 

A wireless network that comprises of a source (S), several AF relays ( , 1,..., 1nR n N= − ) 

and a destination ( NR D= ) is considered with the  nth ( 1,..., )n N=  relay interrupted by 

nL  co-channel interferers in a Nakagami fading environment. Throughout the chapter  

the interferers at each node are assumed to be independent. Although the interfering 

signals at different relay nodes may originate from the same source, the independence 

assumption is justified when the relays operate in different time slots and are spatially 

located sufficiently far from each other.  In an interference-limited wireless 

communication system, the effect of AWGN can usually be neglected.  Then the 
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equivalent end-to-end SIR in an AF multihop relay system may be tightly upper-

bounded by [41],[45], [54] 
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(7.1)                   

where the instantaneous SIR at the nth hop is given by 
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n ii
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with na  being the fading amplitude of the desired signal at the nth relay and ,n iZ ,                  

i = 1,…, Ln , n = 1,…,N,  being the instantaneous power of the ith interferer at the nth 

hop.  

7.2.1  Derivation of PDF  

The probability density function  of the inverse of the per hop SIR in (7.2) is given by 
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 is the total interference power at the nth relay.  For a Nakagami-m 

fading channel, the pdfs of 2
na  and nZ�  are provided as 
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(7.5)  

where ,s nm  and ,Ω s n  are the Nakagami fading parameter and the average power of the 

desired signal at the nth hop (n = 1, 2, …, N).  Similarly, ,I nm  and ,Ω I n  are the 

Nakagami fading parameter and the average power of the interfering signal at the nth 
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hop.  In (7.5), the interferers are assumed to be independent and identically distributed 

(i.i.d.) at the nth hop. Substituting (7.4) and (7.5) in (7.3), then [38] 
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where , ,/Λ = Ω Ωn s n I n  is average SIR at the nth hop.  Moreover, for the case of 

independent non-identically distributed (i.n.i.d.) Rayleigh interferers, the pdf can be 

written by 
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where  ,
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.
=
≠

Ω
=

Ω − Ω∏
nL
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i

k i n k n
k i

π     Substituting (7.4) and (7.7) in (7.3), it is easy to show that 

the pdf of the inverse SIR at the nth hop with i.n.i.d. Rayleigh interferers is given by 

[38]
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where , , ,/Λ = Ω Ωi n s n i n

 
is the average SIR of the ith interferer at the nth hop. Similarly, the 

pdf of instantaneous SIR at the nth hop is provided by  

                                        ( ) ( ) ( )2
0

.
∞

γ
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Substituting (7.4) and (7.5) in (7.9), yields  [38] 
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Similarly, for the case of i.n.i.d Rayleigh interference, the pdf can be obtained by     
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7.2.2 Derivation of MGF 

The MGF of the inverse instantaneous SIR per hop is given by  
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Substituting (7.6) in (7.12), (7.12) becomes   
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where ( ) 1 1

0

1; ; (1 )
( )

∞
− − − −ψ = +

Γ ∫ a b a xta b x t t e dt
a   is the confluent hypergeometric function of the 

second kind [7].  For the special case of a Rayleigh channel ( , , 1= =s n I nm m ), (7.13) 

becomes  
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Moreover, for the case of distinct Rayleigh interfering powers, substituting (7.8) in 

(7.12), the MGF of inverse instantaneous SIR per hop can be show to be given by  
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Thus the MGF of end-to-end per hop SIR is given by 
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Substituting (7.10) in (7.16) yields   
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Similarly, for i.n.i.d Rayleigh interference, the MGFof the SIR per hop is given by  
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7.3  Outage Performance 

7.3.1  AF Relaying System 

Under the assumption that the hops are subject to independent fading, the cumulative 

density function  of AF
eqγ  can be expressed as [41] 
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where -1 (.)L  is the inverse Laplace transform and ( )1 / .γ n
M  is the MGF of the inverse SIR 

per hop. The cdf in (7.19) may be found with the help of Appendix D. 

For the case of i.n.i.d. Nakagami desired signals and i.i.d. Nakagami interferers at each 

relay, the closed-form expression for the cdf of the end-to-end SIR of an N-hop AF 

relay network can be obtained as 
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Note that the Lauricella function ( )N
BF  may be written in integral form as [31, eq. 

(2.3.4)] 
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and can be accurately computed numerically with the software program Maple.  An 

upper bound on FB  may be obtained if the upper limits of the integrals in (7.21) are 

replaced by one:  



82 
 

( )
1 1 1

1

, , ; 1, , 1; 1; , ,
N

n
B n n i n

i

F a a a a a x x
=

⎛ ⎞
+ + +⎜ ⎟

⎝ ⎠
∑… … …   

( )( )1 1

11 .
1 1-= =

⎛ ⎞
≤ Γ +⎜ ⎟

Γ +⎝ ⎠
∑ ∏ i

nN

i a
i i i i

a
a x

       (7.22)
     

         
 

In the case of a Rayleigh fading environment, (7.20) reduces to
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where
1

N
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L L
=

=∑ .  Moreover, for i.n.i.d Rayleigh interferers, inserting (7.15) in (7.19), 

after some mathematical manipulations, the cdf can be given by
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Note that for the special case of N = 2 (dual-hop system), (7.23) reduces to 
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where ( )3 .F is the Appell’s double hypergeometric function of the third kind [18].  Also 

using [38, eq. (9.182.4)] and [38, eq. (9.131.1)], and after some algebra, we can show 

that  
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Substituting (7.26) in (7.23), then   
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which agrees with the cdf of the end-to-end SIR for the dual-hop relay system given in 

[54, eq. (11)].  It then follows that the outage probability for the N-hop AF relaying 

system with identical interferers at each relay is given by ( )th th( ) .
γ

γ = γAF
eq

AF
outP F

 

7.3.2 DF  Relaying System 

For the multihop DF relaying system, the cdf of the end-to-end SIR is given by      
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where ( )2 1 .F  is the Gauss hypergeometric function.  Substituting (7.29) in (7.28), (7.28) 
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For the case of the Rayleigh fading channel ( , , 1= =s n I nm m ), (7.30) reduces to 
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By using the fact that   ( ) ( ){ }2 1
11,1; 2; 1 1 vF x x
vx

ν −+ − = − + , (7.31) becomes                                        
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In addition, for the case of i.n.i.d Raleigh interference, the cdf can be written by   
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Finally, we observe that, in the case Rayleigh fading channel with identical interferers at 

the relay nodes, using the upper bound in (7.22) and comparing with (7.33), it is  

observed that the outage performance of DF relaying is better than that of AF relaying.  

 

7.4   Numerical Results  

In this section the numerical and simulation results to verify the derived results are 

presented.  In the figures, outage threshold γth  is set at 3 dB and the impact of varying 

the Nakagami parameters for the desired and interfering signals, the number of 

cooperating relay nodes, and the number of interferers are investigated. Figure 7.1 plots 

the outage probability against the average SIR per hop for N=3 and { } { }1
2,2,3N

n n
L

=
= , 

assuming i.i.d Nakagami fading with { }, 1
2.5

N
s n n

m
=

= , { }, 1
1.5

N
I n n

m
=

=  and i.n.i.d. Nakagami 

fading channels with { } { }, 1
2.5,3.5,2

N
s n n

m
=

=  { } { }, 1
1.5,2,1

N
I n n

m
=

= . This figure shows that the 

analytical results match the simulation results perfectly. It also shows the effect that 

Nakagami fading parameters have on the outage performance. Moreover, it is observed 

that the DF relaying protocol provides better performance than the AF method, with the 

performance gap between the two relaying schemes to increase at low and medium 

values of the average SIR, but it diminishes at the high SIR per hop regime. In Figure 
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7.2,  the outage probability versus the average SIR of the first interferer Λ1,1 for N=2 

and 3 hops are plotted by assuming identical Nakagami fading channels { }, 1
2

N
s n n

m
=

=  

and two i.n.i.d Rayleigh interferers per hop, with average SIRs in dB given by 

{ } { }, 1,1 1,1 1,1 1,1 1,1 1,11 1
, 3 , 2, 4 , 3, 6n

NL
i n i n= =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤Λ = Λ Λ + Λ + Λ + Λ + Λ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . The figure shows that the 

outage probability deteriorates as the number of hops N increases. Finally, Figure 7.3 

shows the outage probability for N=2 hops with AF and DF relaying schemes versus the 

number of identical interferers with { }, 1
2

N
s n n

m
=

= , { }, 1
1

N
I n n

m
=

=  and 

{ } 1
20, 25, and30N

n n=
Λ = dB. Again, the analytical results and the simulation results are in 

excellent agreement. From this figure we can quantify the performance degradation that 

occurs as the number of interferers increases. The DF relaying system outperforms the 

AF relaying system with the performance gap between the two schemes decreasing as 

the total SIR per hop increases.   
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Figure 7.1 Outage probability of 3-hop DF and AF relay systems in Nakagami-m 

fading channels. 
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Figure 7.2 Outage probability of DF and AF relay systems with N=2 and 3 hops in 

Rayleigh fading channels with distinct powers. 
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Figure 7.3 Outage probability of DF and AF for 2-hop relay systems with { }2
, 1

2s n n
m

=
=

and  Λ =20, 25, 30 dB per interferer in Rayleigh fading channels. 
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

The main contributions and conclusion remarks of this work are provided as follows:  

8.1.1 Optimum Combining 

• In this dissertation, the analytical performance of OC diversity system in the 

presence of multiple equal mean-power interferers has been investigated. Both 

the desired signal and interference experience a spherically invariant random 

process (SIRP) fading while the background noise is neglected. The important 

performance measures such as outage probability, MGF, and ASER are then 

derived in terms of the Meijer-G function which can be accurately computed by 

the software programs such as MAPLE or MATHEMATICA. 

8.1.2 Multihop Relay Systems 

• The performance of multi-hop relay transmission systems that operate in a 

Rayleigh fading environment in the presence of co-channel interference and 

thermal noise is studied. Both amplify-and-forward (AF) and decode-and-

forward (DF) relaying protocols are considered and analytical expressions for 

useful performance measures such as the outage probability, the average symbol 

error rate, and the average channel capacity are then obtained. The accuracy of 

the analytical results is verified by computer simulation. 

• In addition, the effect of co-channel interference on multihop AF and DF 

interference-limited relaying systems operating in Nakagami-m fading channels 

is also investigated.  For these transmission schemes, the case of interference-

limited relays with gains based on the inverse of the fading amplitude of the 

desired signal in the previous link.  For arbitrary but fixed number of Nakagami-

distributed interferers per hop,  A closed-form expression for the outage of  an 
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N-hop AF relay system is given in terms of the multivariate Lauricella function 

( )N
BF  that can be evaluated with commonly available computer software. 

Moreover, the outage performance of DF relay systems is also derived in closed 

form and their performance are compared. Simulation results are also provided 

to demonstrate the accuracy of the analytical expressions. 

 

8.2 Future Research Directions  

Extensions of this dissertation are possible in the following directions: 

• Until recently the performance for multihop relay nodes together with multiple 

antennas is limited to systems that are noise-limited (no interferers). Therefore, 

it would be interesting to extend the results in this dissertation to obtain the 

performance of the system with the presence of co-channel interference and 

noise.       

• In this dissertation, the assumption of independent interferers is justified when 

the relays operate in different time slots and are spatially located sufficiently far 

from each other at different relay. However since all the relays are forwarding 

information to the same destination, they may be operating at the same 

frequency and will suffer from the same interferers or at least correlated 

interferers in different time slots. In this case, some analytical results for 

correlated interferers would be also studied to make the results in this 

dissertation more generic.  

• The performance various cooperation protocols such as AF, DF, DAF, EF, and 

PF could be established based on different performance goals, such as 

minimization of the download time, spectral efficiency, minimization of 

interference, etc.   
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APPENDIX A. 

DERIVATION OF EQUATION (5.22) 
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In this section, we derive the closed form expressions for that the partial derivatives 

given in (5.22).  From basic calculus in [13, eq.(2.34)], it can be shown that 
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The coefficients in (5.22) are given, respectively, by 
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=− +Λ+ −

+ + Λ +
Ξ =

+ − ⎛ ⎞+
+⎜ ⎟+ Λ⎝ ⎠

 

                        
( )

2

( 1)1

R R

DR

R

N k N

NN k x
D

d x
dx x γ γ

γγ

− +

++− =−
+Λ

⎧⎪= ⎨
+ + Λ⎪⎩

 

                           ( )
( )

1

( 1)1

R R

DR

R

N k N

D RD D NN k x
D

d xN
dx x γ γ

γ

γ λ
γ

− +

++− =−
+Λ

⎫⎪+ + Λ + ⎬
+ + Λ ⎪⎭

                  (A-5) 

Finally, using (A-3) in (A-4) and (A-5) results in the closed-form expressions for 
1kΞ  

and 
2 kΞ  given in (5.22a) and (5.22b), respectively. 
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APPENDIX B. 

SPECIAL CASES OF INCOMPLETE WEBER INTEGRAL 
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In this appendix, we shown some special cases of the incomplete Weber integral given 

by   

                                        

2

2
,

0

( , ) ( ) .−= ∫u v

x
u pt

ve
K p x t e K t dt                                                (B-1) 

For the special cases of interest, it is shown that 2
,
( , )

u ve
K p x  may be written as the 

follows:  

(i) When x → ∞ , we have [38] 

 2

2
,

0

( , ) ( )
u v

u pt
ve

K p t e K t dt
∞

−∞ = ∫       

              ( 2) ( 1) / 2

1 1 1 1 1,1 2 ;
2 2 2 2 4v u v

u v u v u v v
p p

ψ+ + +

⎛ ⎞+ + − + + +⎛ ⎞ ⎛ ⎞= Γ Γ +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   (B-2) 

(ii) When 0p =  we have [59, eq.(2.1)] 

          
2

,
0

(0, ) ( )
u v

x
u

ve
K x t K t dt= ∫  

1 2 2
1

1 2 1 2
( )3 1 3 3( ) 1; , ;    1; , ;

( 1) 2 2 4 ( 1) 2 2 4

+
−

⎧ ⎫⎛ ⎞ ⎛ ⎞− + + + − + + +⎪ ⎪= +⎨ ⎬⎜ ⎟ ⎜ ⎟− + + +⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

u
v

v
xK xx u v u v x u v u v xK x F F

u v u v
                                                                                                                                     (B-3) 

(iii)  When 11  an d   ( 2 )u v p x −= + = , we have [18], [60]  

    ( ) ( )2
1,

11 (1/ 2)1(2 ) , ( 1) ! ,
2 2v v

v x v x
e

xK x x x e v e v
+

+− − ⎡ ⎛ ⎞= − − − Γ −⎜ ⎟⎢ ⎝ ⎠⎣
0

1

( )  2 ( 1) ( )
v

n
n

n

K x K x
=

⎤− − − ⎥⎦
∑  

                                                                                                                                     (B-4) 

where 0,1, 2,3,...v =  is an integer. 
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APPENDIX C. 

DERIVATION OF EQUATION (5.43) 
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In this appendix, we derive the closed form expression for cdf of 
1γ  and 2γ  given in 

(5.43). The cdf of 
1γ  is given by [73, eq.(16)] 

                   ( )
1

1 1
1 2 1 1,1; 2;R

R
R R

NF F Nγ
γ γγ

⎛ ⎞
= + −⎜ ⎟Λ Λ⎝ ⎠

�                                       (C-1)   

where the Gauss hypergeometric function is defined as 

                       ( ) ( ) ( )
( ) ( )2 1

0

1 1
1,1; 2;

2 !
nn n

n n

F x x
n

ν
ν

∞

=

+
+ − = −∑                                            (C-

2)   

with , 0v x ≠ , and  ( ) ( )
( )n

v nv
v

Γ +
=

Γ
.  Using the fact that ( )1 !

n
n=  and  ( ) ( )2 1 !

n
n= + , 

and introducing 1k n= + , (C-2) becomes                                                                                             

                              ( ) ( )
( ) ( )2 1

1

11,1; 2;
!

kk

k

F x x
x k

ν
ν

ν

∞

=

+ − = −
− ∑                       

                                                        
( ) ( )

0

1 1
!

kk

k

x
x k

ν
ν

∞

=

⎧ ⎫⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭

∑  

                                                         ( ){ }1 1 1 vx
vx

−= − +                                              (C-3) 

where we have used [38, eq.(9.121)].  Using (C-3), the closed-form expression for 

( )
1 1Fγ γ�  is given in (5.43a). Similar to ( )

1 1Fγ γ� , the closed-form expression for ( )
2 2Fγ γ�  

is given in (5.43b).  
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APPENDIX D. 

DERIVATION OF EQUATION (6.43) 
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In this section, we provide a proof for (6.43). The confluent hypergeometric function of 

the second kind may be written in contour integral form as [38, eq. (13.2.10)] 

         
( ) ( ) ( )1

, ; ,
2

( ) (1 )
( ) (1 )

j
a s

j

a b x
j

s a s a b s
x ds

a a bπ

∞
− +

− ∞

Ψ
Γ − Γ + Γ + − +

Γ Γ + −
= ∫    (D-1) 

where 1 ,j = −  and the contour must separate the poles of ( )sΓ −  from those 

( ) (1 )a s a b sΓ + Γ + − + .  Using (D-1), the left hand side of (6.43) becomes 

( )-1 1

1

 , ;−

=

⎧ ⎫
ψ σ⎨ ⎬

⎩ ⎭
∏

N
c

n n n
n

t a b tL

( )
1

1 ( )
1 ( )

1

1

(2 )

( ) (1 ) 
( ) (1 )

N

n n
n n n

j j c s a

j j

N
s a n n n n n n

n nN
n n n n

s
ds

j
t

a s a b s
a a bπ

σ=

∞ ∞ − − +
−

− ∞ − ∞

− +

=

Γ −∑⎧ ⎫ ⎡ ⎤Γ + Γ + − +⎪ ⎪= ⎨ ⎬ ⎢ ⎥Γ Γ + −⎣ ⎦⎪ ⎪⎩ ⎭
∫ ∫ ∏L" ,  

 

                                                                                                                                                                    

                       (D-2)

 where the nth contour in (D-2) is chosen to separate the poles of ( )nsΓ −  from those of 

( ) (1 )n na s a b sΓ + Γ + − + .   The inverse transform in the brackets may be obtained from 

[38, eq. (17.13.3)] as

  

                    

1

11 ( )
( )

-1

1
( ) 1

=

=− − +
+ −

=

∑
∑⎧ ⎫⎪ ⎪ =⎨ ⎬

⎛ ⎞⎪ ⎪⎩ ⎭ Γ + + −⎜ ⎟
⎝ ⎠
∑
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n n
n

N

n n
nc s a

s a c

N

n n
n

t
x

s a c
L .                         (D-3) 

Substituting (D-3) in (D-2), we have 
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1
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n nN
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a s a b s
a a bπ
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∞ ∞

− ∞ − ∞
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− +

=

Γ −
∑
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= ⎢ ⎥Γ Γ + −⎛ ⎞ ⎣ ⎦⎜ ⎟

⎝ ⎠
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N
j j

n n
n

s aN
n n n n n n
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n n n n n
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j
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a s a b sx
a a bπ σ

∞ ∞ −

− ∞ − ∞

=

+

=

Γ −

Γ + + −

⎡ ⎤⎛ ⎞ Γ + Γ + − +
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⎝ ⎠

∫ ∫
∑

∏"

           

(D-4) 



111 
 

Note that the contour integrals in (D-4) may be converted into infinite series as [38] 
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(D-5)

 

where 
1

N

T n
n

a a
=

=∑   and  
1

N

T n
n

i i
=

=∑ .  Finally, the multiple infinite series in (D-5) may be 

expressed in terms of the Lauricella function [31], to give the result in (6.43). 
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APPENDIX E. 

DERIVATION OF EQUATION (6.46) 
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Substituting (6.26) in (6.45), the ABER for multihop DF relay system can be given by                      

( )
1

1/ 21/ 2

0

1
1

2b s sP dsπ
−−= −∫

 

( ) ( )1 1/ 23/ 2
,1 00

1 1
1

1 exp( ) exp /
2

r d r
d

m jL m
L r r

j rn
r j

sa s s dsd
b b
λ λγ ϖ γ γ γ

π

−
∞ −−

=
= =

−
⎛ ⎞ ⎛ ⎞− Ξ − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑∏ ∫ ∫     

                                                                                                                                     (E-1)            

To obtain the result of (E-1), in this appendix we consider the integral term given by  

          ( ) ( ) ( )1 1 / 23 / 2
00

1exp( ) 1 exp /
∞ − −− −ℜ = − + −∫ ∫

C
sA B s s dsdγ γ γ γ                            (E-2) 

where , 0,  0≥ >A C B  are the arbitrary constants.  

Next, use the identity in [15] to give  

                      
( ) 1,0 0,1

0,1 1,0

1
exp /

0
⎛ − ⎞ ⎛ ⎞

− = =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

ss G G
s
γγ

γ
                                                 (E-

3) 

where ( ),
, .p q

m nG  is the Meijer-G function [38]. Substituting (E-3) in (E-2) and using [38, 

eq. (7.811.2), eq. (9.31.1) ],  yields  

      
( ) ( )

1 1/ 23/ 2 0,1
1,000

1
1

exp( ) 1
∞ − −− −

⎛ ⎞
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∫ ∫
C

s
sA B s G dsdγ γ γ
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⎝ ⎠
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3 / 211/ 2 exp( ) 1
∞ − ⎛ ⎞

= Γ − + ⎜ ⎟−⎝ ⎠
∫

CA B G dγ γ γ
γ

                                            (E-4) 

Next using the properties of Meijer-G function in [38, eq. (9.31.2), eq.(9.31.5)],  (E-4) 

may be shown to be given by 

( ) ( ) 1,0
0,10

1/ 2 exp( ) 1
1/ 2

∞ − ⎛ − ⎞
ℜ = Γ − + ⎜ ⎟−⎝ ⎠

∫
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( ) ( )1/ 2 1,0

0,10
1 / 2 exp( ) 1

0
∞ −− ⎛ − ⎞
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⎝ ⎠

∫
CA B G dγ γ γ γ γ  

      ( ) ( ) { }1 / 2

0
1 / 2 1 exp( 1 )

∞ −−= Γ + − +∫
CB A dγ γ γ γ  

      
( ) ( ) { }1/ 2 1
1/ 2 1/ 2 1/ 2;3 / 2 ; .ψ− +⎛ ⎞

= Γ Γ −⎜ ⎟
⎝ ⎠

A
B C

B
                                                  (E-5) 

Using (E-5), the ABER for multi-hop DF relay system is shown in (6.46). 
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