บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 งานวิจัยที่เกี่ยวข้อง

ท่อความร้อนเป็นอุปกรณ์แลกเปลี่ยนความร้อน ที่มีความสามารถในการถ่ายเทความร้อนได้อย่าง รวดเร็วและมีประสิทธิภาพ แม้ในสภาพอุณหภูมิเปลี่ยนแปลงเพียงเล็กน้อย และไม่มีการใช้พลังงาน ภายนอกมาเกี่ยวข้อง ทำให้ท่อความร้อนถูกนำมาประยุกต์ใช้ในงานหลายประเภท รวมไปถึงระบบ ปรับอากาส อย่างไรก็ตาม ได้มีการพัฒนาเทคนิกการเพิ่มสมรรถนะการถ่ายเทความร้อนของท่อความ ร้อนให้สูงขึ้นโดยการใช้ของไหลนาโนเป็นสารทำงาน ซึ่งมีส่วนประกอบของอนุภาคโลหะที่มีขนาด ระดับนาโนเมตรในของไหลพื้นฐาน (base fluid) อนุภาคนาโนนี้มีคุณสมบัติสำคัญในการเพิ่ม กวามสามารถในการถ่ายเทความร้อนของของไหลพื้นฐานเดิมให้สูงขึ้น จากการศึกษางานวิจัยที่ผ่าน มาพบว่า มีงานวิจัยจำนวนมากที่ทำการศึกษาการนำท่อความร้อนมาประยุกต์ใช้ในระบบปรับอากาส เพื่อการประหยัดพลังงาน รวมไปถึงอิทธิพลความเข้มข้นของไหลนาโนของท่อความร้อนในด้าน สมรรถนะทางกวามร้อน ซึ่งในแต่ละงานวิจัยจะมีวัตถุประสงก์หลักคล้ายกันคือ เพื่อการประหยัด พลังงานในระบบปรับอากาศและเพิ่มสมรรถนะทางความร้อนของท่อความร้อนเมื่อใช้ของไหลนาโน แทนสารทำงานเดิม งานวิจัยที่ทำการศึกษามีดังต่อไปนี้

Maezawa และคณะ [2] ใด้ทำการวิจัยโดยเปรียบเทียบการถ่ายเทความร้อนของท่อความร้อนแบบ เทอร์โมไซฟอนที่ระบายความร้อนจากอากาศสู่อากาศ โดยใช้ท่อทองแดงแบบไร้วิกก์ขนาดเส้นผ่าน ศูนย์กลางภายในท่อเท่ากับ 2 mm สารทำงานเป็นสารทำความเย็นชนิด R134b และท่อทองแดงขนาด เส้นผ่านศูนย์กลางภายในท่อ 5.34 mm สารทำงานเป็นน้ำ ค่าความร้อนที่ให้กับท่อทองแดงตั้งแต่ 0–1200 W จากการทดลองพบว่าการใช้สารทำความเย็นชนิด R134b จะมีความสามารถในการถ่ายเท ความร้อนดีกว่าการใช้น้ำเป็นสารทำงาน

Xiao และคณะ [3] ได้ทำการทคลองเพื่อควบคุมความชื้นสัมพัทธ์ ในระบบปรับอากาศให้มีค่าไม่เกิน กว่า 70% โดยทำการทคลองกับระบบปรับอากาศที่ไม่ได้ใช้ท่อความร้อนเปรียบเทียบกับระบบปรับ อากาศที่ใช้ท่อความร้อนแบบเทอร์โมไซฟอน โดยท่อความร้อนมีสารทำงานเป็นสารทำความเย็นชนิด R22 มีสัดส่วนการเติม 60% โดยปริมาตรของส่วนการระเหย จากผลการทคลองสรุปได้ว่า เมื่อใส่ท่อ กวามร้อนจะสามารถเพิ่มภาระการทำความเย็นของระบบปรับอากาศได้ถึง 20-32% และในส่วนการ ควบแน่นของท่อความร้อนสามารถทำความร้อนซ้ำ (reheat) ได้ ทำให้ความชื้นสัมพัทธ์ที่ผ่านท่อความ ร้อนส่วนการควบแน่นมีค่าลดลงอยู่ในช่วง 70-74% จาก 92-100% ดังแสดงในรูปที่ 2.1 ซึ่งการทำ ความร้อนซ้ำนี้สามารถนำมาแทนที่เครื่องทำความร้อน ดังนั้นเมื่อใส่ท่อความร้อนในระบบปรับ อากาศจะทำให้ประหยัดพลังงานได้ในส่วนการเพิ่มภาระการทำความเย็น และการทำความร้อนซ้ำโดย ไม่ต้องใช้พลังงานจากภายนอก

ร**ูปที่ 2.1** ความสัมพันธ์ระหว่างความชื[ื]้นสัมพัทธ์กับความเร็วของอากาศหน้าสัมพัทธ์ [3]

Naphon [4] ใด้ทำการทดลองการปรับปรุงประสิทธิภาพของระบบปรับอากาศโดยใช้ท่อความร้อน แบบเทอร์โมไซฟอนลดอุณหภูมิของอากาศก่อนเข้าสู่คอนเดนเซอร์ ท่อความร้อนที่ใช้ในการทดลอง ทำจากท่อทองแดงขนาดเส้นผ่านศูนย์กลาง 10 mm ยาว 600 mm ท่อความร้อนที่ใช้ทดลองจะ ประกอบไปด้วยแบบ 1 แถว, 2 แถว และ 3 แถว สารทำงานที่ใช้ในท่อความร้อนกือสารทำความเย็น ชนิด R134a บรรจุ 50% โดยปริมาตรของท่อความร้อน ตำแหน่งการติดตั้งของท่อความร้อนจะติด ตั้งอยู่ที่ด้านหน้าของกอนเดนเซอร์ ดังแสดงในรูปที่ 2.2 ในการทดลองจะทำการเปรียบเทียบกับระบบ ปรับอากาศแบบที่ไม่ใช้ท่อความร้อน, ใช้ท่อความร้อนแบบ 1 แถวกับระบบปรับอากาศ, ใช้ท่อความ ร้อนแบบ 2 แถวกับระบบปรับอากาศ และใช้ท่อความร้อนแบบ 3 แถวกับระบบปรับอากาศ ทำการ เก็บข้อมูลที่ช่วงเวลา 8.30–17.00 น. และ 20.30–05.00 น. จากผลการทดลองพบว่า ที่อุณหภูมิห้อง 25-26 °C ระบบปรับอากาศที่ใช้ท่อความร้อนแบบ 3 แถว จะมีค่า COP และค่า EER เพิ่มขึ้น 6.4% และ 17.5% ตามลำดับ ดังแสดงในรูปที่ 2.3

รูปที่ 2.2 การติดตั้งท่อความร้อนของ Naphon [4]

รูปที่ 2.3 การเปรียบเทียบค่า COP และค่า EER ในช่วงเวลา 8.30-16.00 น. และ 20.30 – 4.00 น. [4]

Cosgrove [5] ได้กล่าวถึงการปรับปรุงระบบปรับอากาศโดยใช้ท่อความร้อนแบบคอยล์ลูปที่มีสารทำ ความเย็นชนิด R22 เป็นสารทำงาน เพื่อปรับปรุงค่าสัดส่วนในการลดความชื้นให้มีค่าสูงขึ้น ซึ่งค่านี้จะ เป็นค่าที่มีความสัมพันธ์กับอุณหภูมิและความชื้นของอากาศก่อนเข้าคอยล์เย็น ซึ่งสรุปได้ว่าท่อความ ร้อนสามารถเพิ่มสัดส่วนการลดความชื้นได้ 48% และสามารถลดขนาดเครื่องปรับอากาศลงได้ 30% เมื่อเปรียบเทียบกับการใช้เครื่องลดความชื้นแบบอื่น ๆ ในเครื่องปรับอากาศ

สาโรช ใหวเคลื่อน [6] ได้ศึกษาการใช้เทอร์โมไซฟอนในระบบควบคุมสภาวะอากาศภายในห้อง โดย เทอร์โมไซฟอนที่ใช้มีลักษณะเป็นคอยล์ลูป (Coil-loop thermosyphon) โดยแบ่งเป็น 2 แบบ คือ แบบ 4 ลูป ซึ่งคอยล์แต่ละส่วนมีจำนวนแถว 1 แถว และแบบ 8 ลูป ซึ่งคอยล์แต่ละส่วนมีจำนวน 2 แถว สาร ทำงานที่ใช้คือสารทำความเย็นชนิด R134a อัตราส่วนการเติมของสารทำงานเท่ากับ 50% โดยปริมาตร ของส่วนการระเหยของท่อความร้อน ทำการทดสอบด้วยเครื่องปรับอากาศขนาด 1 ตันความเย็น และ เครื่องทำความร้อนขนาด 0.4 kW จากผลการทดลอง เทอร์ โมไซฟอนแบบ 4 ลูป สามารถประหยัด พลังงานไฟฟ้าเท่ากับ 0.76 kW-hr ต่อวัน หรือ 6.6% เมื่อเปรียบเทียบกับระบบที่ไม่ได้ติดตั้ง เทอร์ โมไซฟอน และมีค่าประสิทธิผล (effectiveness) ของเทอร์ โมไซฟอนแบบ 4 ลูป เท่ากับ 0.64 ขณะที่เทอร์ โมไซฟอนแบบ 8 ลูป สามารถประหยัดพลังงานไฟฟ้าได้เท่ากับ 0.62 kW-hr ต่อวัน หรือ 5.4% มีค่าประสิทธิผลของเทอร์ โมไซฟอนแบบ 8 ลูปเท่ากับ 0.48 ดังนั้นเทอร์ โมไซฟอนแบบ 4 ลูป สามารถประหยัดพลังงานไฟฟ้าของระบบปรับอากาศมากกว่าการใช้เทอร์ โมไซฟอนแบบ 8 ลูป

Wang และ Sun [7] ได้ทำการศึกษาแบบจำลองทางคอมพิวเตอร์เพื่อทำการลดความชื้นในระบบปรับ อากาศเพื่อประหยัดพลังงานในส่วนที่จะต้องเสียไปในการลดความชื้น โดยใช้เทอร์โมไซฟอนแบบ คอยล์ลูปเป็นอุปกรณ์แลกเปลี่ยนความร้อนระหว่างด้านลมจ่ายกับด้านลมกลับ ใช้สารทำงานคือสาร ทำความเย็นชนิด R22 ทดลองกับเครื่องปรับอากาศแบบระบายความร้อนด้วยน้ำขนาด 3 ตันความเย็น ซึ่งทำการทดลองโดยเปรียบเทียบการลดความชื้นโดยใช้เครื่องปรับอากาศอย่างเดียวและใช้ เทอร์โมไซฟอนร่วมกับเครื่องปรับอากาศ โดยทำการเปลี่ยนตัวแปรในการทดลองคือ อุณหภูมิ กระเปาะแห้ง อุณหภูมิกระเปาะเปียก ความชื้นสัมพัทธ์ อัตราการใหลของอากาศ อุณหภูมิและอัตรา การใหลของน้ำระบายความร้อนของเครื่องปรับอากาศ และทำการวัดค่าพลังงานที่ใช้ในระบบการทำ ความเย็นและพัดลมหมุนเวียนอากาศเพื่อที่จะนำไปหาค่าอัตราส่วนประสิทธิภาพพลังงาน (EER) ของ ระบบ ได้ผลการทดลองคือสามารถเพิ่มค่าสัดส่วนการลดความชื้น (DF) ประมาณ 10-15% โดยที่ ปริมาณความเย็นและอัตราส่วนประสิทธิภาพพลังงานของระบบจะลดลง 1-6% และแบบจำลองโดย โปรแกรมคอมพิวเตอร์สามารถทำนายก่าสัดส่วนการลดความชื้นที่เพิ่มขึ้นได้ใกล้เคียงกับการทดลอง จริง

Wan และคณะ [8] ได้ทำการศึกษาการประยุกต์ใช้ท่อความร้อนชนิดคอยล์ลูปในระบบปรับอากาศโดย ได้ทำการทดลองประยุกต์ใช้ท่อความร้อนกับอากาศนำกลับ (return air) สำหรับอาคารสำนักงาน ดัง แสดงในรูปที่ 2.4 โดยพบว่าท่อความร้อนสามารถประหยัดพลังงานในการทำความเย็นและทำความ ร้อนซ้ำได้ สำหรับช่วงอุณหภูมิ 22– 26 °C และความชื้นสัมพัทธ์ 50% อัตราการประหยัดพลังงาน (rate of energy saving) ซึ่งคำนวณจากระบบที่ทำการติดตั้งท่อความร้อนเปรียบเทียบกับระบบที่ไม่ติดตั้ง ท่อความร้อน มีค่าเท่ากับ 23.5–25.7% สำหรับภาระการทำความเย็น (cooling load) และ 38.1–40.9% สำหรับการใช้พลังงานโดยรวมของระบบ ดังแสดงในรูปที่ 2.5

ร**ูปที่ 2.4** การติดตั้งท่อความร้อนในระบบปรับอากาศของ Wan และคณะ [8]

ร**ูปที่ 2.5** อัตราการประหยัดพลังงานของการทำความเย็นและการใช้พลังงานทั้งหมด ที่ช่วงอุณหภูมิ 22– 26 °C [8]

Alklaibi [9] ใด้ทำการศึกษาการใช้ท่อความร้อนแบบคอยล์ลูปในระบบปรับอากาศ เพื่อช่วยใน กระบวนการอุ่นอากาศ โดยทำการเปรียบเทียบระหว่างระบบปรับอากาศที่ใช้ท่อความร้อนกับระบบ ปรับอากาศที่ใช้การอุ่นอากาศแบบธรรมดา ซึ่งการติดตั้งท่อความร้อนจะติดตั้ง 2 ลักษณะดังแสดงใน รูปที่ 2.6 คือแบบ LE และ LC จากผลการทดลองจะพบว่าค่า COP ของระบบปรับอากาศมีค่าเพิ่มขึ้น เมื่อเปรียบเทียบกับระบบปรับอากาศที่ใช้การอุ่นอากาศแบบธรรมดา ในขณะที่ค่ากำลังไฟฟ้าที่ คอมเพรสเซอร์ใช้มีค่าน้อยลง โดยทำการทดสอบที่ค่าความร้อนสัมผัสของห้อง (room sensible heat factor หรือ RSHF) ที่ 0.6 ดังตารางที่ 2.1 นอกจากนี้ยังทำการทดลองประสิทธิภาพของระบบปรับ อากาศประเภท air-handling unit โดยใช้ท่อความร้อนแบบคอยล์ลูปเปรียบเทียบกับการอุ่นอากาศแบบ ธรรมดา และทำการเปรียบเทียบตำแหน่งการติดตั้งของท่อความร้อนที่ตำแหน่งต่างๆ ดังรูปที่ 2.7 นอกจากนี้ยังควบคุมอัตราส่วนการผสมระหว่างอากาศภายนอกกับอากาศหมุนเวียนด้วยอัตราส่วน 1:4 และค่าความร้อนสัมผัสของห้องเท่ากับ 0.6 โดยจะพบว่าระบบปรับอากาศที่ใช้ท่อความร้อนจะมี ค่า COP ที่สูงกว่า และการติดตั้งแบบ LCC จะให้ค่า COP ที่สูงที่สุดและตามลงมาคือการติดตั้งแบบ LRA และ LOA ดังตารางที่ 2.2

รูปที่ 2.6 ลักษณะการติดตั้งท่อความร้อนที่ใช้ในการทดสอบกือ แบบ (a) LE และแบบ (b) LC [9]

ตารางที่ 2.1 การเปรียบเทียบอัตราการใหลเชิงมวล (m_f), กำลังไฟฟ้าคอมเพรสเซอร์ (W_c), กำลังไฟฟ้าที่ใช้ในระบบปรับอากาศทั้งหมด (E), ผลการทดลองที่ค่าความร้อนสัมผัส ของห้องเท่ากับ 0.6 และค่าสัมประสิทธิ์สมรรถนะ (COP) [9]

Configuration	\dot{m}_{f} (kg/s)	$\dot{W_c}$ (kW)	E (kW)	COP
Heating element	0.04691	1.334	3.048	2.126
LE	0.03663	1.041	1.63	3.975
LC	0.03663	1.041	1.63	3.975

ร**ูปที่ 2.7** ลักษณะการติดตั้งท่อความร้อนที่ใช้ในระบบปรับอากาศแบบ air-handling unit ทั้ง 3 แบบ คือ (a) LCC, (b) LRA, (c) LOA [9]

ตารางที่ 2.2 การเปรียบเทียบอัตราการใหลเชิงมวล (m_ั), กำลังไฟฟ้าคอมเพรสเซอร์ (W_ั), กำลังไฟฟ้าที่ใช้ในระบบปรับอากาศทั้งหมด (E), ผลการทดลองที่ค่าความร้อนสัมผัส ของห้องเท่ากับ 0.6 และค่าสัมประสิทธิ์สมรรถนะ (COP) [9]

Configuration	\dot{m}_{f} (kg/s)	$\dot{W_c}$ (kW)	E (kW)	COP
Heating element	0.07382	1.784	3.813	2.674
LCC	0.06353	1.536	2.395	4.257
LRA	0.06559	1.585	2.454	4.155
LOA	0.07176	1.734	2.629	3.878

Kang และคณะ [10] ได้ศึกษาการใช้ของไหลนาโนกับท่อความร้อนแบบมีร่องทั่วไป โดยใช้อนุภาค เงินขนาด 35 nm ที่ความเข้มข้น 1 mg/l ถึง 100 mg/l เติมเข้าไปในน้ำปราศจากอิออน โดยพบว่าค่า ความด้านทานทางความร้อน (thermal resistance) ลดลง 10-80% เมื่อเปรียบเทียบกับน้ำปราศจาก อิออน ที่อัตราการระบายความร้อน 30-60 W นอกจากนี้ยังพบว่าค่าความต้านทานทางความร้อนของ ท่อความร้อนลดลงเมื่อความเข้มข้นของของไหลนาโนเพิ่มขึ้น ดังแสดงในรูปที่ 2.8

ร**ูปที่ 2.8** การเปรียบเทียบค่าความต้านทานทางความร้อนของท่อความร้อนที่ใช้น้ำปราศจาก อิออนเป็นสารทำงานกับท่อความร้อนที่ใช้ของไหลนาโนเป็นสารทำงาน [10]

Jian และ Huiying [11] ทำการศึกษาสมรรถนะทางความร้อนของท่อความร้อนแบบ oscillating heat pipe โดยใช้สารทำงานเป็นของไหลนาโน SiO₂/Water และ Al₂O₃/Water เปรียบเทียบกับสารทำงานที่ เป็นน้ำบริสุทธิ์ ในการทดลองจะใช้ความเข้มข้นของของไหลนาโนที่แตกต่างกันคือ 0-0.6% โดยมวล สำหรับของไหลนาโน SiO₂/Water และ 0-1.2% โดยมวล สำหรับของไหลนาโน Al₂O₃/Water และใน การเดิมสารทำงานจะทำการเดิมที่ 50% โดยปริมาตรของส่วนการระเหยของท่อความร้อน จากผลการ ทดลองการใช้ของไหลนาโน Al₂O₃/Water แทนน้ำบริสุทธิ์จะเพิ่มสมรรถนะทางความร้อนให้แก่ท่อ ความร้อน โดยอุณหภูมิที่ส่วนการระเหยและค่าความด้านทานทางความร้อนจะมีค่าลดลงอยู่ที่ ประมาณ 5.6°C (หรือ 8.7%) และ 0.057 °C/W (หรือ 25.7%) ตามลำดับ ดังแสดงในรูปที่ 2.9 ในขณะที่ ของไหลนาโน SiO₂/Water จะทำให้สมรรถนะทางกวามร้อนของท่อความร้อนมีค่าน้อยลง โดย อุณหภูมิที่ส่วนการระเหยและค่าความด้านทานทางกวามร้อนจะมีค่าน้อยลง โดย อุณหภูมิที่ส่วนการระเหยและค่าความด้านทานทางกวามร้อนจะท่อความร้อนมีค่าน้อยลง โดย อุณหภูมิที่ส่วนการระเหยและค่าความด้านทานทางกวามร้อนจะท่อความร้อนมีค่าน้อยลง โดย อุณหภูมิที่ส่วนการระเหยานะก่าความร้อนจองท่อความร้อนมีอ่านี้อยู่ที่ 3.5 °C (หรือ 5.5%) และ 0.075 °C/W (หรือ 23.7%) ตามลำดับ ดังแสดงในรูปที่ 2.9 จะเห็นได้ว่าการ เปลี่ยนสารทำงานจากน้ำบริสุทธิ์มาเป็นของไหลนาโนมีผลต่อการเพิ่มหรือลดสมรรถนะทางกวาม ร้อนของท่อความร้อน

ร**ูปที่ 2.9** การเปรียบเทียบอุณหภูมิและค่าความด้านทานทางความร้อนของท่อความร้อนที่ใช้ น้ำบริสุทธิ์เป็นสารทำงานกับท่อความร้อนที่ใช้ของไหลนาโนเป็นสารทำงาน [11]

ชานนท์ สรสิทธิ์รุ่งสกุล [12] ได้ศึกษาเกี่ยวกับอิทธิพลของความเข้มข้นและชนิดของของไหลนาโน เพื่อเพิ่มสมรรถนะทางความร้อนของท่อความร้อนแบบแบน โดยของไหลนาโนที่ใช้ในการทคลองมี 2 ชนิด คือ ของไหลนาโนชนิดไทเทเนียมไดออกไซด์ (TiO₂) มีขนาดเส้นผ่านสูนย์กลางของอนุภาค เท่ากับ 21 nm ผสมอยู่ในน้ำปราสจากอิออน และของไหลนาโนชนิดเงิน (Ag) ขนาดเส้นผ่าน สูนย์กลางของอนุภาคของแข็งเท่ากับ 5-20 nm ผสมในน้ำปราสจากอิออน ที่ความเข้มข้นต่างๆ กัน คือ 1 ppm, 10 ppm, 50 ppm และ 100 ppm ตามลำดับ ซึ่งทำการทดสอบโดยการวัดการกระจายของ อุณหภูมิตามแนวแกนของท่อความร้อนและวัดก่าความด้านทานทางความร้อนของท่อความร้อนที่ใช้ ของไหลนาโนเป็นสารทำงานเพื่อเปรียบเทียบกับสารทำงานที่เป็นน้ำปราสจากอิออน ผลการทดลอง พบว่า อุณหภูมิที่ผิวของท่อความร้อนที่ใช้ของไหลนาโนเป็นสารทำงานมีก่าด่ำกว่าอุณหภูมิที่ผิวของ ท่อความร้อนที่ใช้น้ำปราสจากอิออนเป็นสารทำงาน และท่อความร้อนที่ใช้ของไหลนาโนชนิด ไทเทเนียมไดออกไซด์ที่มีความเข้มข้น 10 ppm สามารถลดค่าความด้านทานทางกวามร้อนได้ถึง ร้อยละ 53 และท่อความร้อนที่ใช้ของไหลนาโนชนิดเงินที่ความเข้มข้น 1 ppm สามารถลดก่าความ ด้านทานทางความร้อนได้ถึงร้อยละ 58 เมื่อเปรียบเทียบกับสารทำงานที่เป็นน้ำปราสจากอิออน จาก งานวิจัยนี้พบว่าอิทธิพลความเข้มข้นของของไหลนาโนมีผลด่อก่าความด้านทานทางความร้อน ด้า งานวิจัยนี้ขบใดออกไซด์ที่มีจางเข้มข้นของของไหลนาโนมีผลด่อองกุมาที่นทานทางกวามร้อน ด้ง แสดงในรูปที่ 2.10

ร**ูปที่ 2.10** ค่าความค้านทานทางความร้อนของท่อความร้อน เมื่อความเข้มข้นและชนิดของของไหล นาโนต่างกัน [12]

ดิฐพงส์ ทองกำ [13] ได้ทำการศึกษาการเพิ่มประสิทธิภาพเชิงความร้อนของท่อความร้อนโดยการผสม อนุภาคนาโนของไทเทเนียมไดออกไซด์ลงในสารทำความเย็นชนิด R11 โดยท่อความร้อนสร้างจาก ทองแดงปลายปิดขนาดเส้นผ่านศูนย์กลาง 15 mm ยาว 600 mm ในการทดลองจะทำการเปรียบเทียบ สารทำงานที่เป็นสารทำความเย็นชนิด R11 เพียงอย่างเดียวกับสารทำงานที่เกิดจากการผสมกัน ระหว่างสารทำความเย็นชนิด R11 กับอนุภาคนาโนของไทเทเนียมไดออกไซด์และปรับกำลังไฟฟ้า ในช่วง 30-70 W จากผลการทดลองพบว่าที่สารทำงาน 50% โดยปริมาตรท่อความร้อน สารทำความ เย็นชนิด R11 จะให้ประสิทธิภาพเชิงความร้อนสูงสุดที่ 71.2% แต่เมื่อเปลี่ยนสารทำงานเป็นของไหล นาโน ที่อัตราส่วนผสมอนุภาคนาโน 0.1% โดยปริมาตรของสารทำความเย็น บรรจุโดย 50% ของ ปริมาตรท่อความร้อน จะพบว่าให้ประสิทธิภาพเชิงความร้อนของท่อความร้อนสูงสุด ดังแสดงในรูป 2.11

ร**ูปที่ 2.11** สัดส่วนผสมของอนุภาคนาโนที่ทำให้ท่อความร้อนมีประสิทธิภาพ เชิงความร้อนสูงสุด [13]

สธนพงส์ จันทนาคม [14] ได้ศึกษาการเพิ่มสมรรถนะทางความร้อนของท่อความร้อนแบบเทอร์ โมไซ ฟอนที่มีสารทำงานเป็นของไหลนาโน ซึ่งผลิตมาจากสารทำความเย็นชนิด R22 ที่มีการเติมอนุภาค ของไทเทเนียมไดออกไซด์ (TiO₂) ขนาดเส้นผ่านศูนย์กลาง 21 นาโนเมตร ลงไปในสารทำความเย็น โดยศึกษาเปรียบเทียบสมรรถนะของท่อความร้อนที่ใช้สารทำความเย็นชนิด R22 เพียงอย่างเดียว กับใช้สารทำความเย็นชนิด R22 ผสมอนุภาคนาโนไทเทเนียมไดออกไซด์ที่มีความเข้มข้น 10 ppm, 50 ppm และ 400 ppm ซึ่งได้ทดสอบกับระบบปรับอากาศจำลอง โดยวางส่วนระเหยของท่อความร้อนไว้ ด้านหน้าอีวาพอเรเตอร์ของระบบปรับอากาศ และวางส่วนควบแน่นของท่อความร้อนไว้ ด้านหน้าอีวาพอเรเตอร์ของระบบปรับอากาศ และวางส่วนควบแน่นของท่อความร้อนไว้ ห้านหน้าอีวาพอเรเตอร์ของระบบปรับอากาศ และวางส่วนควบแน่นของท่อความร้อนไว้ ด้านหน้าอีวาพอเรเตอร์ของระบบปรับอากาศ จากผลการทดลองพบว่าเมื่อได้ติดตั้งท่อความร้อนที่ใช้สารทำ ความเย็นชนิด R22 อย่างเดียวจะช่วยประหยัดพลังงานของภาระการทำความแย็นในระบบปรับอากาศ ลงได้ 15.61% อย่างไรก็ตามเมื่อมีการเติมอนุภาคนาโนไทเทเนียมไดออกไซด์ลงไปในสารทำความ เย็นชนิด R22 ที่ความเข้มข้น 10 ppm, 50 ppm และ 400 ppm จะช่วยประหยัดพลังงานของภาระการทำ ความเย็นลงได้ 19.54%, 23.1% และ 18.88% ดังแสดงในรูปที่ 2.12 ดังนั้นการเติมอนุภาคงองนาโน ไทเทเนียมไดออกไซด์ช่วยเพิ่มสมรรถนะของท่อความร้อนแบบเทอร์โมไซฟอนขึ้น 32.85%, 49.72% และ 28.86% ดังแสดงในรูปที่ 2.13

ร**ูปที่ 2.12** อัตราการถ่ายเทความร้อนในขบวนการต่างๆ ของระบบปรับอากาศที่ไม่มีและมีการติคตั้ง ท่อความร้อน [14]

ร**ูปที่ 2.13** ค่าความต้านทานทางความร้อนของท่อความร้อนที่ผสมอนุภาคนาโน ที่ความเข้มข้นต่างๆ [14]

2.2 ท่อความร้อน

ท่อความร้อนเป็นอุปกรณ์ถ่ายเทความร้อนแบบใหม่ ที่มีอัตราการนำความร้อนสูงและสามารถถ่ายเท ความร้อนได้ในสภาวะที่มีผลต่างของอุณหภูมิไม่มาก ผู้ที่เสนอความคิดเกี่ยวกับท่อความร้อนเป็นคน แรกคือ อาร์ เอส เกาก์เลอร์ (R.S GAUGLER, 1944) วิศวกรบริษัทเจเนอรัลมอเตอร์ ในสหรัฐอเมริกา ในปี คศ. 1942 ต่อมาในปี คศ. 1960 จี เอม โกรเวอร์ (G.M.GROVER, 1963) แห่งสถาบันวิทยาศาสตร์ ลอสอลามอส ก็ได้ประดิษฐ์ท่อความร้อนขึ้นเป็นคนแรก [15]

2.2.1 ประเภทของท่อความร้อน

ท่อความร้อนถูกแบ่งตามลักษณะวิธีการส่งกลับของของเหลวควบแน่นไปยังส่วนการระเหยในท่อ ความร้อนแบบต่างๆ ตามตารางที่ 2.3

ชื่ออุปกรณ์	ประเภทแรงส่งกลับ
เทอร์โมไซฟอน	แรงคึ่งคูคของโลก
(Thermosyphon)	(Gravity)
ท่อความร้อนแบบมาตรฐาน	แรงท่อรูเขี้ม
(Standard Heat Pipe)	(Capillary Force)
ท่อความร้อนแบบหมุน	แรงหนี่ศูนย์กลาง
(Rotary Heat Pipe)	(Centrifugal Force)
ท่อความร้อนแบบอิเลคโตรไฮโครไคนามิก	แรงเชิงไฟฟ้าสถิต
(Electrohydrodynamic Heat Pipe)	(Electrostatic Volume Force)
ท่อความร้อนแบบแมกเนโตไฮโครไคนามิก	แรงแม่เหล็ก
(Magnetohydrodynamic Heat Pipe)	(Megnetic Volume Force)
ท่อความร้อนแบบออส โมติก	แรงออสโมติก
(Osmotic Heat Pipe)	(Osmotic Force)

ตารางที่ 2.3 วิธีการส่งกลับของของเหลวควบแน่น [15]

2.2.1.1 ท่อความร้อนไร้วิกค์ หรือเทอร์โมไซฟอน (Thermosyphon)

ท่อความร้อนไร้วิกค์ หรือเทอร์โมไซฟอน ดังแสดงในรูปที่ 2.14 มีโครงสร้างโดยทั่วไปคล้ายคลึงกับ ท่อความร้อนแบบมาตรฐาน เพียงแตกต่างกันที่ท่อความร้อนแบบมาตรฐานจะใช้วิกค์เป็นตัวดูดส่ง ของเหลวควบแน่นกลับไปยังส่วนการระเหย ส่วนเทอร์โมไซฟอนจะไม่มีวิกค์ จะมีโครงสร้าง ประกอบด้วยภาชนะบรรจุ (container) และสารทำงาน (working fluid) ดังนั้นการทำงานของ เทอร์โมไซฟอน คือ เมื่อสารทำงานในส่วนการระเหยได้รับความร้อนจะเดือด และระเหยกลายเป็นไอ ไปปลดปล่อยความร้อนที่ส่วนการควบแน่นกลายเป็นของเหลวตกลงสู่ส่วนการระเหยอีกครั้ง ด้วยแรง โน้มถ่วงของโลก ข้อดีของเทอร์โมไซฟอน คือสร้างง่าย ต้นทุนการผลิตต่ำ

รูปที่ 2.14 ท่อความร้อนไร้วิกต์ หรือเทอร์ โมไซฟอน [15]

2.2.1.2 ท่อความร้อนแบบมาตรฐาน (Standard Heat Pipe)

ท่อความร้อนแบบมาตรฐาน เป็นท่อปิดผนึกภายในเป็นสุญญากาศ ในท่อบรรจุของใหลใช้งาน (working fluid) และบุวิกค์ (wick) ที่ผนังด้านในของท่อ ดังแสดงในรูปที่ 2.15 ที่ส่วนการระเหย (evaporator section) ความร้อนจะถูกถ่ายเทจากแหล่งให้ความร้อน (heat source) ผ่านผนังท่อไปยัง วิกค์เพื่อระเหยของไหลใช้งานที่อยู่ในวิกค์ ไอที่เกิดขึ้นจะเคลื่อนที่ไปตามแนวกลางท่อไปยังส่วนของ การควบแน่น (condenser section) ซึ่งมีความดันไอต่ำกว่า ช่วงกั่นกลางของส่วนการระเหยกับส่วน การควบแน่น (condenser section) ซึ่งมีความดันไอต่ำกว่า ช่วงกั่นกลางของส่วนการระเหยกับส่วน การควบแน่น loจะความร้อนเป็นช่วงที่ไม่มีการแลกเปลี่ยนความร้อน (adiabatic section) ที่ส่วน การควบแน่น loจะควบแน่นและความร้อนแฝงของการควบแน่นจะถ่ายเทออกจากท่อความร้อนไปสู่ แหล่งรับความร้อน (heat sink) ของเหลวจากการควบแน่นจะไหลกลับไปยังส่วนการระเหยโดยแรง ท่อฐเข็ม (capillary force) ของวิกค์ซึ่งมีรูพรุนเล็กๆ กระบวนการนี้จะเกิดขึ้นเป็นวงจรอย่างต่อเนื่อง

ร**ูปที่ 2.15** ท่อความร้อนแบบมาตรฐาน [15]

2.2.1.3 ลูปเทอร์โมไซฟอน (Loop Thermosyphon)

ลูปเทอร์โมไซฟอนเป็นการพัฒนาสมรรถนะของเทอร์โมไซฟอนอีกรูปแบบหนึ่ง โดยออกแบบให้ การใหลของของไหลใช้งานเป็นไปในทิศทางเดียวกันตลอด ดังแสดงในรูปที่ 2.16 ข้อดีของเทอร์โม ไซฟอนแบบนี้คือ ของไหลใช้งานและไอของของไหลใช้งานจะไม่ไหลสวนทางกันทำให้ช่วยลด ปัญหาการหลุดติดของของเหลวไปกับไอ (entrainment) และเพิ่มความคล่องตัวในการวางตำแหน่ง ของส่วนการระเหยและส่วนการกวบแน่น

รูปที่ 2.16 ลูปเทอร์ โมไซฟอน [15]

2.2.1.4 ท่อความร้อนแบบหมุน (Rotary Heat Pipe)

โครงสร้างของท่อความร้อนแบบหมุน ดังแสดงในรูปที่ 2.17 หลักการทำงานคือ อาศัยแรงหนึ ศูนย์กลางที่เกิดจากการหมุนไปทำให้ของเหลวที่ควบแน่นกลับไปยังส่วนการระเหย ลักษณะการหมุน เป็นรูปบานออก (taper) ท่อความร้อนแบบนี้สามารถส่งถ่ายความร้อนได้ดี ซึ่งถูกนำมาใช้ในงานหล่อ เย็นอิเลกทริกมอเตอร์

ร**ูปที่ 2.17** ท่อความร้อนแบบหมุน [15]

2.2.1.5 ท่อความร้อนแบบอิเลคโตรไฮโดรไดนามิก (Electrohydrodynamic Heat Pipe) หลักการทำงานคือ เมื่อป้อนแรงดันไฟฟ้ากระแสตรงที่ขั้วอิเลคโตรด ทำด้วย ribbon แบบแถบ หรือ ลวดตัวนำแบบเส้นที่ผิวของท่อความร้อน จะทำให้ของไหลใช้งานไปรวมตัวกันที่ช่องว่างแคบ แล้ว ใหลไปตามแนวแกนกลับไปยังส่วนการระเหยเพื่อรับความร้อนอีกครั้ง ดังแสดงในรูปที่ 2.18

รูปที่ 2.18 ท่อความร้อนแบบอิเลคโตรไฮโครไคนามิก [15]

2.2.1.6 ท่อความร้อนแบบออสโมติก (Osmotic Heat Pipe)

ประกอบด้วยภาชนะบรรจุของไหลใช้งานที่เป็นสารละลาย และแผ่นเยื่อบาง (membrane) ดังแสดงใน รูปที่ 2.19 ท่อความร้อนแบบนี้มีหลักการทำงานคือ เมื่อให้ความร้อนแก่ส่วนการระเหยจะทำให้ตัวถูก ละลาย (liquid solvent) ในสารละลายเกิดการแยกตัวออกเนื่องจากการเดือด และระเหยกลายเป็น ไอ ผ่านแผ่นเยื่อบางแล้วเคลื่อนที่ไปตามแนวกลางท่อไปยังส่วนของการควบแน่น ของเหลวจากการ ควบแน่นจะไหลกลับไปยังส่วนการระเหยอีกครั้งโดยซึมผ่านแผ่นเยื่อบาง

ร**ูปที่ 2.19** ท่อความร้อนแบบออส โมติก [15]

2.2.2 ส่วนประกอบของท่อความร้อน

ส่วนประกอบพื้นฐานของท่อความร้อนประกอบไปด้วยส่วนหลักๆ 3 ส่วนคือ สารทำงาน (working fluid), ส่วนโครงสร้างวิกค์ (wick or capillary structure) และภาชนะบรรจุ (container) ซึ่งมี รายละเอียดดังต่อไปนี้

2.2.2.1 สารทำงาน (working fluid)

สิ่งที่พิจารณาเป็นอันดับแรก คือ คุณสมบัติของสารทำงาน ดังแสดงในตารางที่ 2.4 เพื่อให้การทำงาน ของท่อความร้อนมีประสิทธิภาพ ดังนั้นจึงต้องมีปัจจัยพื้นฐานที่นำมาประกอบการพิจารณาในการ เลือกสารทำงานดังนี้

- ความเหมาะสมกับวัสดุที่ใช้ทำท่อ สามารถใช้งานร่วมกันได้ ไม่ทำปฏิกิริยากันหรือกัดกร่อน กับวิกค์ และผนังภาชนะบรรจุ
- สามารถคงความร้อน ได้ดี การสถายตัวของของไหลใช้งานนั้นอาจเกิดขึ้น ได้เนื่องจากความ ร้อน โดยเฉพาะอย่างยิ่งพวกสารประกอบอินทรีย์ซึ่งจะต้องรักษาอุณหภูมิของการใช้งานให้ต่ำ

กว่าค่าที่กำหนด เพื่อป้องกันการแตกสลายตัวของของไหลใช้งานเป็นสารประกอบชนิดอื่น ดังนั้นจึงควรเลือกของไหลใช้งานที่มีเสถียรภาพต่อความร้อนสูงในช่วงอุณหภูมิใช้งาน

- ความคันใอไม่สูงหรือต่ำเกินไปในช่วงอุณหภูมิใช้งาน ความคันใอของของไหลใช้งานตลอด ช่วงของอุณหภูมิใช้งานจะต้องมีค่าสูงเพียงพอ ทั้งนี้เพื่อหลีกเลี่ยงไม่ให้ไอของของไหลใช้งาน ใหลช้าเกินไป ซึ่งจะทำให้เกิดความแตกต่างของอุณหภูมิตามแนวท่อความร้อนสูง อย่างไรก็ ตามความคันไอจะต้องไม่สูงเกินไป มิฉะนั้นจะทำให้ต้องใช้ท่อที่มีผนังหนามากอันเป็นการ เพิ่มค่าใช้จ่ายโดยไม่จำเป็น
- มีค่าความร้อนแฝงในการกลายเป็นใอสูง เพราะจะถ่ายเทปริมาณความร้อนได้สูงที่ปริมาณการ ใหลน้อย ด้วยเหตุนี้ทำให้แรงดันตกในท่อความร้อนมีค่าน้อย และความแตกต่างของอุณหภูมิ ภายในตลอดความยาวท่อความร้อนมีค่าไม่สูงมากนัก
- มีค่าการนำความร้อนสูง เพราะจะทำให้ผลต่างของอุณหภูมิในแนวรัศมีของท่อมีค่าต่ำ เพื่อลด การเดือดที่เกิดขึ้นกับวิกค์ และผนังภาชนะบรรจุ
- มีค่าความหนืดต่ำทั้งสภาวะที่เป็นของเหลวและใอ ของใหลใช้งานทั้งในสถานะของเหลว และ ไอควรมีค่าความหนืดต่ำเพราะจะทำให้ความด้านทานการ ใหลมีค่าต่ำ และเกิดการ ใหลเวียนอย่างสะควกและรวดเร็ว
- มีค่าแรงตึงผิวสูง เพราะจะทำให้ท่อความร้อนสามารถทำงานได้ โดยแรงโน้มถ่วงจะทำให้เกิด แรงงับไหลสูง ดังนั้นการเพิ่มค่าแรงตึงผิวของของไหลใช้งานมีความจำเป็นต่อการสัมผัสกัน กับวิกค์ และผนังภาชนะบรรจุ คือ มุมสัมผัสควรเป็นศูนย์หรือมีค่าน้อยที่สุด
- มีค่าจุดเยือกแข็ง และจุดหลอมเหลวที่เหมาะสม ของใหลใช้งานจะต้องมีสภาวะแข็งตัวห่าง จากช่วงของอุณหภูมิใช้งานมากพอ เพื่อให้ของเหลวที่ควบแน่นในส่วนการควบแน่นสามารถ ใหลกลับสู่ส่วนการระเหยได้ทัน

Medium	Melting point	Boiling point
	(°C)	at atmos. press. (°C)
Helium	-272	-269
Nitrogen	-210	-196
Ammonia	-78	-33
Freon 11	-111	24
Freon 12	-168	-30
Freon 113	-35	48
Freon 22	-160	-41
Pentane	-130	28
Acetone	-95	57
Methanol	-98	64
Ethanol	-112	78
Water	0	100

ตารางที่ 2.4 คุณสมบัติของสารทำงานที่เหมาะสมของของใหลใช้งานชนิดต่างๆ [15]

2.2.2.2 ภาชนะบรรจุ (container)

ท่อที่ใช้ทำท่อความร้อนจะต้องไม่มีการรั่วไหล สามารถทนต่อแรงคันแตกต่างระหว่างบรรยากาศ ภายนอกกับภายในท่อ และสามารถถ่ายเทความร้อนผ่านผนังท่อไปยังสารทำงานได้คี คุณสมบัติที่ใช้ ในการพิจารณาเลือกวัสดุทำท่อความร้อนขึ้นอยู่กับปัจจัยต่างๆ คังนี้

- ต้องมีคุณสมบัติที่เหมาะสมกันระหว่างวัสดุทำท่อและสารทำงานที่ใช้ภายในท่อ ให้มีความ สอดคล้องกัน
- วัสดุที่ใช้ทำท่อต้องมีค่าการนำความร้อนสูง
- 3. ความยากง่ายในการขึ้นรูป ได้แก่ การเชื่อม การกลึง และการหล่อชิ้นงาน
- 4. ความพรุนของวัสดุ (porosity) วัสดุต้องไม่มีความพรุนเพื่อป้องกันการระเหยของไอ

5. ความสามารถในการที่จะให้สารทำงานเกาะจับที่ผิวของวัสดุที่ใช้ทำท่อความร้อนได้ดี ปัจจัยต่างๆ เหล่านี้ เป็นตัวบ่งบอกถึงการเลือกวัสดุที่ใช้ทำท่อความร้อน ซึ่งจะต้องสอดคล้องกันตาม ปัจจัยที่กล่าวมาแล้วข้างต้น ผลกระทบอันเนื่องมาจากปฏิกิริยาที่เกิดขึ้นจากตัวสารทำงาน และการกัด กร่อนอาจจะเกิดขึ้นกับวัสดุทำท่อหรือวิกค์ ซึ่งถ้ามีปรากฏการณ์ใดเกิดขึ้น แสดงว่าวัสดุที่ใช้ทำท่อและ วิกค์ไม่เหมาะสมกับสารทำงาน มีผลทำให้สมรรถนะของท่อความร้อนต่ำลง

2.2.3 หลักการทำงานของท่อความร้อนแบบลูปเทอร์โมไซฟอน

ลักษณะของท่อความร้อนแบบลูปเทอร์โมไซฟอนในหนึ่งลูปจะประกอบด้วย ส่วนการระเหย และ ส่วนการควบแน่น ที่ส่วนการระเหยและส่วนการควบแน่นเชื่อมต่อกันด้วยท่อส่งไอระเหยและท่อส่ง ของเหลวควบแน่น ที่แสดงดังรูปที่ 2.16 ซึ่งหน้าที่ของแต่ละส่วนสามารถอธิบายได้ดังต่อไปนี้

- ส่วนการระเหย (evaporator section) ทำหน้าที่รับความร้อนเข้าสู่สารทำงาน เพื่อให้เกิดการ เดือดกลายเป็นไอ
- ส่วนการส่งใอและส่งของเหลวควบแน่น (adiabatic section) ทำหน้าที่รักษาสภาพไอเพื่อ ปลดปล่อยความร้อนในส่วนการควบแน่น และรักษาสภาพของเหลวเพื่อรับความร้อนใน ส่วนการระเหย
- ส่วนการควบแน่น (condenser section) ทำหน้าที่ดึงความร้อนออกจากสารทำงาน เพื่อ นำไปใช้งาน ดังนั้นเมื่อไอมากระทบความเย็นส่วนนี้ ก็จะกลายเป็นฟิล์มของเหลว

ตำแหน่งการวางส่วนการระเหยและส่วนการควบแน่นจะอยู่ในระดับแนวนอน โดยส่วนการระเหยจะ อยู่ต่ำกว่าส่วนการควบแน่น ซึ่งจะทำให้การไหลของสารทำงานเป็นไปในทิศทางเดียว ทำให้การไหล ของสารทำงานในสถานะของเหลวและในสถานะไอไม่ไหลสวนทางกัน ซึ่งจะเรียกว่าลูปเทอร์โมไซ ฟอนชนิดทางเดียว (Unidirectional coil-loop thermosyphon) คือสามารถถ่ายเทความร้อนได้เพียงทาง เดียวจากส่วนการระเหยไปยังส่วนการควบแน่น และจะหยุดการถ่ายเทความร้อนทันทีถ้าอุณหภูมิของ ส่วนการควบแน่นสูงกว่าส่วนการระเหย

2.2.3.1 การถ่ายเทความร้อนในส่วนการควบแน่น

การควบแน่นหรือการกลั่นตัวจะเกิดขึ้นได้ก็ต่อเมื่อ ไออิ่มตัว (saturated vapor) สัมผัสกับผิวที่มี อุณหภูมิต่ำ ในสภาวะดังกล่าวจะเกิดฟิล์มของเหลวหรือหยดน้ำ ไหลย้อยลงมาด้วยแรงดึงดูดของโลก ในที่นี้จะสมมุติว่าการไหลที่ผิวสัมผัสเป็นแบบชั้นๆ (laminar) และไม่คำนึงแรงเฉือน (viscous shear) ที่ผิวสัมผัสระหว่างไอที่มีความเร็วสูงกับฟิล์มของเหลว ฟิล์มของเหลวจะค่อยๆ เพิ่มความหนาจาก ส่วนบนลงสู่ส่วนล่าง เป็นลักษณะโปรไฟล์ของการไหลดังแสดงในรูปที่ 2.20

ร**ูปที่ 2.20** การควบแน่นของฟิล์มของเหลวบนผนังในแนวคิ่ง (Film condensation on a vertical surface) [15]

2.2.3.2 การถ่ายเทความร้อนในส่วนการระเหย

เมื่อป้อนฟลักซ์ความร้อนให้กับส่วนการระเหย ความร้อนส่วนหนึ่งจะใหลผ่านผนังท่อไปยังผิวอิสระ (ผิวส่วนบน) ของของเหลวโดยการนำความร้อน และอีกส่วนหนึ่งใหลผ่านชั้นของเหลวไปยังผิว อิสระ โดยการพาอย่างอิสระ (free convection) การระเหยทั้งหมดจะเกิดที่ผิวของของเหลว เมื่อป้อน ฟลักซ์ความร้อนสูงขึ้นจะเกิดมีฟองไอเล็กๆ เกิดขึ้นและหลุดลอยขึ้นมา และจะสลายตัวออกเพราะ ความหนาแน่นน้อยกว่าของเหลวที่อยู่โดยรอบ ของเหลวที่เย็นกว่าจะดูดพลังงานความร้อนบางส่วน จากฟองไอ จนกระทั่งมีอุณหภูมิสูงขึ้นและความหนาแน่นลดลง ดังนั้นฟองไอจะลอยมาที่ผิวแล้ว ระเหยกลายเป็นไอหนีออกจากผิวได้ ของเหลวที่อยู่ในภาชนะจะควบแน่นเป็นฟิล์มของเหลวเหนือบ่อ ของเหลว

2.2.4 ขอบเขตการทำงานของท่อความร้อน

การทำงานของท่อความร้อน (beat pipe) จะเกิดขึ้นอย่างต่อเนื่องและมีประสิทธิภาพก็ต่อเมื่อความดัน สูงสุดของท่อรูเข็ม (ΔP_c)_{max} สามารถเอาชนะผลลดของความดันทั้งหมดที่เกิดขึ้นในการไหลเวียน ของของไหลในท่อความร้อนซึ่งผลลดของความดันดังกล่าวนี้ จะประกอบไปด้วยผลลดความดัน 3 ชนิด คือ

- 1. ความคันตก (ΔP_l) เนื่องจากการใหลของของเหลวจากส่วนควบแน่นกลับสู่ส่วนการระเหย
- ความดันตก (\$\Delta P_\) เนื่องจากการใหลของใอสารทำงานจากส่วนการระเหยไปสู่ส่วนการ ควบแน่น
- 3. ความคัน ($\Delta P_{_{g}}$) เนื่องจากผลของแรงโน้มถ่วง จะมีเครื่องหมายเป็นศูนย์, บวก, หรือลบ นั้น ขึ้นอยู่กับมุมเอียงของท่อความร้อน

จะได้ความสัมพันธ์ดังสมการที่ (2.1)

$$\Delta P_{c,\max} \ge \Delta P_l + \Delta P_{\nu} + \Delta P_g \tag{2.1}$$

ถ้าสภาวะการทำงานของท่อความร้อนไม่เป็นไปตามนี้แล้ว ในส่วนการระเหยจะเกิดสภาวะแห้ง ซึ่งใน สภาวะนั้น ส่วนที่ระเหยจะไม่มีสารทำงานอยู่เลย หรือที่เรียกว่า สภาวะ dry out เป็นเหตุให้ท่อความ ร้อนไม่สามารถทำงานได้ การทำงานอย่างมีประสิทธิภาพของท่อความร้อนจำเป็นต้องมีการหมุนเวียน ของของไหลทำงานอย่างต่อเนื่อง อัตราการถ่ายเทความร้อนสูงสุด (Maximum heat transfer rate) ของ ท่อความร้อน ย่อมอยู่ภายใต้ขีดจำกัดการถ่ายเทความร้อน ดังรูปที่ 2.21

รูปที่ 2.21 ขีดจำกัดการถ่ายเทความร้อนที่ช่วงอุณหภูมิใช้งานต่างๆ [15]

2.2.4.1 ขีดจำกัดการถ่ายเทความร้อนเนื่องจากความหนืด (Viscous limit)

ขีดจำกัดเนื่องจากความหนืดหรือขีดจำกัดความดันไอ (viscous limit or vapor pressure limit) เกิดขึ้น เมื่อท่อความร้อนทำงานในสภาวะที่มีอุณหภูมิต่ำ โดยที่อุณหภูมิต่ำความดันตกคร่อมในการไหล เนื่องจากความหนืดของไอเป็นสาเหตุทำให้ไอไม่สามารถไหลได้ เพราะความดันไอในส่วนการระเหย น้อยกว่าความดันตกคร่อมทำให้การไหลเวียนของสารทำงานไม่เกิดขึ้น และการส่งผ่านความร้อนไม่ สามารถเกิดขึ้นได้ด้วย การทำนายค่าขีดจำกัดเนื่องจากความหนืดสามารถหาจากสมการ (2.2)

$$q'' = \frac{r_v^2 h_{fg} \rho_v P_v}{16 \mu_v l_{eff}}$$
(2.2)

โดยที่

 q'' คือ
 ฟลักซ์ความร้อน (W/m^2)
 r_v คือ
 รัศมีของไอ (m)

 h_{fg} คือ
 ความร้อนแฝงไอ-ของเหลว (J/kg)

 ρ_v คือ
 ความหนาแน่นของไอ (kg/m^3)

 P_v คือความดันของไอ (Pa) μ_v คือความหนืดสัมบูรณ์ของไอ ($N \cdot s / m^2$) l_{eff} คือความยาวของท่อความร้อน (m)

2.2.4.2 ขีดจำกัดการถ่ายเทความร้อนเนื่องจากความเร็วเสียง (Sonic limit)

ขีดจำกัดเนื่องจากความเร็วเสียง (sonic limit) เกิดเมื่อท่อความร้อนมีอุณหภูมิการใช้งานสูง (high temperature heat pipe) ที่สภาวะการทำงานนี้สารทำงานจะกลายเป็นไอในส่วนการระเหยในอัตราที่ เร็วมาก ทำให้การไหลของไอไปยังส่วนการควบแน่นเกิดขึ้นอย่างรวดเร็ว และความเร็วไอจะมีค่าสูง มากเมื่อเปรียบเทียบความเร็วเสียงในไอ แต่ความเร็วไอสูงสุดที่เกิดขึ้นจะเร็วกว่าความเร็วเสียงไม่ได้ ปรากฏการณ์ที่เกิดขึ้นจะมีผลต่อการกระจายของอุณหภูมิตามแนวยาวของท่อความร้อน ดังแสดงใน รูปที่ 2.22 อย่างไรก็ตาม การส่งผ่านความร้อนจะไม่เพิ่มขึ้นตามอัตราการไหลเมื่อความเร็วไอมีก่าสูง กว่าความเร็วเสียงในไอ แต่ความร้อนจะไม่เพิ่มขึ้นตามอัตราการไหลเมื่อความร้อน ดังแสดงใน รูปที่ 2.22 อย่างไรก็ตาม การส่งผ่านความร้อนจะไม่เพิ่มขึ้นตามอัตราการไหลเมื่อความเร็วไอมีก่าสูง กว่าความเร็วเสียง ดังนั้นการส่งผ่านความร้อนจะใม่เพิ่มขึ้นตามอัตราการไหลเมื่อความเร็วไอมีก่าสูง เสียง ขึดจำกัดเนื่องจากความเร็วเสียงหาจากสมการ (2.3)

$$q'' = 0.474 h_{\ell a} \left(\rho_{v} P_{v} \right)^{1/2}$$
(2.3)

โดยที่

q'' คือ ฟลักซ์ความร้อน (W/m^2) h_{fg} คือ ความร้อนแฝงไอ-ของเหลว (J/kg) ρ_v คือ ความหนาแน่นของไอ (kg/m^3)

 $P_{_{\!\scriptscriptstyle V}}$ คือ ความคันของไอ (Pa)

รูปที่ 2.22 การกระจายของอุณหภูมิที่ผนังท่อความร้อนที่ขีดจำกัดความเร็วเสียง [15]

2.2.4.3 ขีดจำกัดการถ่ายเทความร้อนเนื่องจากของเหลวหลุดลอยตามไอ (Entrainment limit)

ในกรณีที่เพิ่มความร้อนเข้าไปในท่อความร้อนส่งผลให้ไอสารทำงานมีความเร็วสูงขึ้น เมื่อไอมี ความเร็วสูงขึ้นจะทำให้แรงเฉือน (shear force) ที่ผิวสัมผัสระหว่างไอกับของเหลวมีค่าสูงขึ้นค้วย ขีดจำกัดเนื่องจากของเหลวหลุดลอยตามไอหรือขีดจำกัดเนื่องจากการท่วม (entrainment limit or flooding limit) เกิดขึ้นเมื่อไอมีความเร็วสูงขึ้นจนกระทั่งแรงเฉือนที่ผิวสัมผัสระหว่างไอกับของเหลว มีค่าเพียงพอในการต้านการไหลกลับของของเหลว กรณีที่เป็นท่อความร้อนที่มีวัสดุพรุน แรงเฉือนจะ เกิดขึ้นที่บริเวณผิวของโครงสร้างวัสดุพรุน ทำให้ของเหลวไม่สามารถไหลกลับไปยังส่วนทำระเหย ได้และส่งผลให้เกิดสภาวะการแห้งขึ้น (dry out) ในที่สุดการส่งผ่านความร้อนก็ไม่สามารถทำได้อีก ต่อไป ขีดจำกัดเนื่องจากของเหลวหลุดลอยตามไอสามารถหาได้จากสมการ (2.4)

$$\dot{Q}_{ent} = A_v h_{fg} \sqrt{\frac{\rho_v \sigma_l}{d}}$$
(2.4)

โดยที่

$\dot{Q}_{\scriptscriptstyle ent}$	คือ	อัตราการถ่ายเทความร้อนเนื่องจากของเหลวหลุคลอยตามไอ (
A_{v}	คือ	พื้นที่การถ่ายเทความร้อนของไอ (m²)
h_{fg}	คือ	ความร้อนแฝงไอ-ของเหลว (J/kg)
$ ho_v$	คือ	ความหนาแน่นของใอ (kg/m³)
σ_l	คือ	แรงตึงผิวของของเหลว (N/m)
d	คือ	เส้นผ่านศูนย์กลางภายในท่อความร้อน (m)

2.2.4.4 ขีดจำกัดการถ่ายเทความร้อนเนื่องจากท่อรูเข็ม (Capillary limit)

ขีดจำกัดเนื่องจากท่อรูเข็มหรือขีดจำกัดเนื่องจากวัสดุพรุน (capillary limit or wick limit) เกิดขึ้นเมื่อ แรงคันท่อรูเข็ม (capillary force) มีไม่เพียงพอในการผลักคันให้ของเหลวในส่วนการควบแน่นไหล กลับมายังส่วนการระเหย ทำให้ปริมาณของเหลวที่ส่วนการระเหยไม่เพียงพอในการระเหยส่งผลให้ เกิดสภาวะการแห้ง (dry out) ที่ส่วนการระเหย ดังนั้นอุณหภูมิที่ผิวท่อความร้อนในส่วนการระเหยจึง สูงขึ้นจนเข้าใกล้อุณหภูมิของแหล่งความร้อน ขีดจำกัดเนื่องจากท่อรูเข็มสามารถหาได้จากสมการ (2.5)

$$\dot{Q}_{wick} = \left(\frac{\rho_{l}\sigma_{l}h_{fg}}{\mu_{l}}\right) \left(\frac{KA}{l}\right) \left(\frac{2}{r_{e}} - \frac{\rho_{l}gl}{\sigma_{l}}\sin\varphi\right)$$
(2.5)

W)

อัตราการถ่ายเทความร้อนเนื่องจากวัสดุพรุน (W) \dot{Q}_{wick} คือ ความหนาแน่นของของเหลว (kg/m³) ρ_l คือ คือ แรงตึงผิวของของเหลว (N/m) σ_{i} ความร้อนแฝงใอ-ของเหลว (J/kg)คือ h_{fg} ความหนืดสัมบูรณ์ของของเหลว ($N \cdot s / m^2$) คือ μ_{i} ความสามารถในการซึมผ่านของวิกค์ (m^2) คือ K พื้นที่ถ่ายเทความร้อน (m²) คือ A ความยาวของท่อความร้อน (m) คือ 1 มุมเอียงของท่อความร้อน คือ φ ความเร่งเนื่องจากแรงโน้มถ่วง (m/s^2) คือ g คือ รัศมีของส่วนการระเหยของท่อความร้อน (m) r

โดยที่

2.2.4.5 ขีดจำกัดการถ่ายเทความร้อนเนื่องจากการเดือด (Boiling limit)

ขีดจำกัดนี้เกิดขึ้นเมื่อ ฟลักซ์ความร้อน (heat flux) ในแนวรัศมีของท่อมีค่าสูงมาก ทำให้เกิดการเดือด ในชั้นของวิกค์ (wick) และฟองของไอที่เกิดขึ้นไปกีดขวางการไหลของของเหลวในชั้นของวิกค์ ทำ ให้ส่วนการระเหยเกิดสภาวะแห้ง (dry out) ซึ่งขีดจำกัดการถ่ายเทความร้อนเนื่องจากการเดือดนี้จะ แตกต่างจากขีดจำกัดที่กล่าวมาแล้วข้างต้น คือ ขีดจำกัดการถ่ายเทความร้อนเนื่องจากการเดือด จะเกิด จากฟลักซ์ความร้อนในแนวรัศมีที่ให้แก่ส่วนการระเหย แต่ในขีดจำกัดที่กล่าวมาแล้วจะเกิดจาก ฟลักซ์ความร้อนในแนวแกน

2.2.4.6 ขีดจำกัดเนื่องจากการแห้งเหือด (Dry out limit)

้ขีดจำกัดนี้จะเกิดได้สองกรณี คือ เมื่อเติมปริมาณของไหลใช้งานน้อยเกินไป และมากเกินไป

- การเติมปริมาณของใหลใช้งานน้อยเกินไป หากมีการให้ความร้อนในส่วนการระเหยสูง จะทำ ให้ของเหลวส่วนล่างเริ่มแห้ง อุณหภูมิของผิวท่อจะค่อยๆ เพิ่มขึ้นดังแสดงในรูปที่ 2.23
- 2. การเติมปริมาณของไหลใช้งานมากเกินไป จะทำให้ของเหลวในส่วนการระเหยเกิดการ กลายเป็นไอมากขึ้น และระดับปริมาณของของเหลวลดลงอย่างช้าๆ ดังแสดงในรูปที่ 2.24 ผล ต่อมาจะมีแรงเฉือนระหว่างกวามเร็วของไอกับของเหลวที่กวบแน่นสูงขึ้น ซึ่งจะทำให้เกิดการ สะสมของของเหลวในส่วนการกวบแน่นมากขึ้น เป็นผลทำให้เกิดการเหือดแห้งเหนือบ่อ ของเหลว และอุณหภูมิของผิวท่อก็จะสูงขึ้น เมื่อน้ำหนักของเหลวในส่วนการกวบแน่น มากกว่าแรงของไอ ของเหลวจะตกลงสู่ส่วนการระเหยจึงทำให้อุณหภูมิที่ผิวท่อมีก่าไม่คงที่

รูปที่ 2.23 การแห้งเหือดเมื่อเติมปริมาณของใหลใช้งานน้อยเกินไป [15]

รูปที่ 2.24 การแห้งเหือคเมื่อเติมปริมาณของใหลใช้งานมากเกินไป [15]

2.3 รูปแบบการใหลของสารทำงานภายในท่อความร้อน

2.3.1 รูปแบบการไหลภายในท่อหน้าตัดกลมในแนวดิ่ง

จะมีรูปแบบการไหลทั้งก๊าซและของเหลวไหลขึ้นด้านบน ดังแสดงในรูปที่ 2.25 ซึ่งแบ่งได้ 5 รูปแบบ ดังนี้

- การ ใหลแบบเป็นฟอง (Bubble flow) รูปแบบการ ใหลที่มีทั้งฟองก๊าซเล็กๆ กระจายเป็นจุดๆ ใหลปะปนกับของเหลว และสถานะของเหลวจะต่อเนื่อง
- การใหลแบบเป็นก้อน (Slug flow or Plug flow) รูปแบบการใหลที่มีฟองก๊าซที่มีรูปร่างคล้าย กระสุนใหลขึ้นสู่ด้านบน โดยมีของเหลวคั่นกลางพร้อมกับมีก๊าซปะปนบ้าง โดย ขณะเดียวกันมีฟิล์มของเหลวล้อมรอบฟองก๊าซรูปกระสุน

- การไหลแบบเป็นโพรง (Churn flow) รูปแบบการไหลที่มีรูปร่างของฟองก๊าซบิดเบี้ยวไป เนื่องจากฟองก๊าซมีความเร็วในการไหลเพิ่มขึ้น โดยที่รูปแบบการไหลแบบนี้อาจจะไม่มีการ สั่นของของเหลวให้เห็นเมื่อท่อมีขนาดเส้นผ่านสูนย์กลางน้อยๆ
- การ ใหลแบบวงแหวน (Annular flow) รูปแบบการ ใหลที่มีการ ใหลของก๊าซอยู่ในแกนกลาง ท่อมีหยดของเหลวเล็กๆ ปะปนไปด้วย และขณะเดียวกันก็มีการ ใหลเป็นฟิล์มที่ผิวท่อ
- 5. การไหลแบบวงแหวนแทรก (Wispy annular flow) รูปแบบการไหลที่มีการไหลขึ้นของก๊าซ อยู่แกนกลางท่อ โดยที่หยดของเหลวได้ปะปนไปกับก๊าซนั้นได้รวมตัวกันเป็นริ้วปนกันไป ด้วยและขณะเดียวกันก็มีการไหลของของเหลวเป็นฟิล์มที่ผิวท่อ ซึ่งการเกิดการรวมตัวของ หยดของเหลวเล็กๆ เนื่องจากอัตราการไหลของฟิล์มของเหลวเพิ่มขึ้นทำให้ความหนาแน่น ของหยดของเหลวมากขึ้น

ร**ูปที่ 2.25** รูปแบบการใหลในท่อหน้าตัดกลมในแนวดิ่ง [16]

2.3.2 รูปแบบการใหลภายในท่อหน้าตัดกลมในแนวราบ

้สำหรับการใหลในท่อกลมตรงที่วางในแนวราบ สามารถจำแนกรูปแบบการไหลต่างๆ ได้ดังนี้

 Bubbly flow มีลักษณะเป็นฟองอากาศขนาดเล็กใหลอยู่ค่อนไปทางส่วนบนของท่อ เนื่องจาก ฟองอากาศมีความหนาแน่นน้อยกว่าของเหลวจึงลอยตัวขึ้น ดังแสดงในรูปที่ 2.26

ร**ูปที่ 2.26** รูปการใหลของ Bubbly flow [17]

Plug flow เกิดจากการรวมตัวกันของฟองอากาศขนาดเล็กหลายๆ ลูกของ Bubbly flow ทำให้
 เกิดเป็นฟองอากาศมีขนาดใหญ่และยาวขึ้น ดังแสดงในรูปที่ 2.27

ร**ูปที่ 2.27** รูปการใหลของ Plug flow [17]

 Stratified flow มีลักษณะของของเหลวและก๊าซแยกชั้นกัน โดยก๊าซจะอยู่บนและของเหลวจะ อยู่ล่าง โดยผิวสัมผัสของของใหลทั้งสองจะราบเรียบ ดังแสดงในรูปที่ 2.28

รูปที่ 2.28 รูปการ ใหลของ Stratified flow [17]

 Wavy flow มีลักษณะของของเหลวและก๊าซแยกชั้นกัน โดยก๊าซจะอยู่บนและของเหลวจะอยู่ ล่าง โดยผิวสัมผัสของของไหลทั้งสองจะเป็นคลื่น ดังแสดงในรูปที่ 2.29

รูปที่ 2.29 รูปการใหลของ Wavy flow [17]

5. Slug flow เกิดขึ้นเมื่อกลื่นบริเวณผิวสัมผัสระหว่างชั้นของก๊าซและของเหลวใน Wavy flow เกิดสูงขึ้นจนยอคกลื่นถึงผนังค้านบนของท่อกลื่น ดังแสคงในรูปที่ 2.30

ร**ูปที่ 2.30** รูปการใหลของ Slug flow [17]

 Annular flow เป็นลักษณะที่ของเหลวใหลเป็นชั้นฟิล์มวงแหวนรอบผนังท่อ โดยความหนา ของชั้นฟิล์มของของเหลวด้านล่างจะหนากว่าด้านบน และอาจมีละอองของของเหลว เคลื่อนที่กระจายอยู่ในก๊าซซึ่งเคลื่อนที่อยู่บริเวณแกนกลางของท่อ ดังแสดงในรูปที่ 2.31

ร**ูปที่ 2.31** รูปการใหลของ Annular flow [17]

2.4 ของใหลนาโน (Nanofluid)

2.4.1 การเพิ่มความสามารถในการถ่ายเทความร้อนด้วยของใหลนาโน (Nanofluids)

การที่สารทำงานในระบบมีค่าการนำความร้อนที่ต่ำจะไปขัดขวางเครื่องแลกเปลี่ยนความร้อน แม้ว่า จะมีการปรับปรุงเทคนิคมากมาย เพื่อเพิ่มการถ่ายเทความร้อนก็ตาม การพัฒนาคุณสมบัติทางความ ร้อนให้กับระบบ ทางเลือกหนึ่งของวิธีการเพิ่มค่าการนำความร้อนของของไหลนี้ คือการผสมอนุภาค ของแข็งเข้ากับของไหล เช่น โลหะ อโลหะ และสารโพลิเมอร์ ที่สามารถผสมกับของไหลเพื่อทำให้ ของไหลข้นขึ้นได้ ค่าการนำความร้อนของของไหลที่มีอนุภาคเหล่านี้แขวนลอยอยู่ถูกคาดว่าจะมีค่า เพิ่มสูงขึ้นกว่าของไหล ธรรมดา การประยุกต์ใช้อนุภาคนาโนทำให้เกิดหนทางที่มีประสิทธิภาพของ การปรับปรุงคุณภาพ การถ่ายเทความร้อนของของไหล อนุภาคที่มีเส้นผ่านสูนย์กลางน้อยกว่า 100 นาโนเมตร จะแสดงคุณสมบัติที่ต่างจากตอนที่อยู่ในสถานะของแข็งธรรมดา เมื่อเปรียบเทียบกัน อนุภาคขนาดนาโนนี้มีพื้นที่ผิวสัมพัทธ์สูงกว่า และมีประสิทธิภาพการถ่ายเทความร้อนสูงขึ้น ได้มี นักวิจัยมากมายพยายามผสมนุภาคนาโนของไหลต่างๆ เพื่อสร้างของไหลที่มีประสิทธิภาพในการ ถ่ายเทความร้อน นักวิจัยใช้กำว่า "Nanofluids" เพื่ออ้างอิงถึงของไหลที่มีอนุภาคนาโนแขวนลอยอยู่ ผลการทดลองเบื้องค้นส่วนหนึ่งแสดงให้เห็นค่าการนำความร้อนที่สามารถเพิ่มขึ้นประมาณ 60% ซึ่ง ได้จากของไหลนาโนที่ประกอบด้วยน้ำและอนุภาคนาโน 5 %โดยปริมาตรของ CuO ด้วยการผสม อนุภาคนาโนในสารทำงาน ในระบบทำความร้อน หรือระบบทำความเย็น คุณสมบัติการถ่ายเทความ ร้อนสามารถที่จะพัฒนาได้อย่างมากมาย เหตุผลสำคัญ ดังนี้

- 1. การผสมอนุภาคนาโน จะเพิ่มพื้นที่ผิวและความจุความร้อนของของใหล
- 2. การผสมอนุภาคนาโนจะเพิ่มประสิทธิภาพการนำความร้อนให้กับของไหล
- ปฏิกิริยาการชนกันท่ามกลางอนุภาคของใหลและการใหลผ่านผิวหน้าจะเกิดขึ้นรุนแรงและ หนาแน่นมากขึ้น
- 4. การเปลี่ยนแปลงการผสมกัน และความปั่นป่วนของของไหลจะรุนแรงมากขึ้น
- 5. การกระจายตัวของอนุภาคนาโนจะทำให้อุณหภูมิของของใหลเท่ากันทั่วทุกตำแหน่ง

2.4.2 หลักในการพิจารณาเลือกของใหลนาโน

- มีความเหมาะสมกับวัสดุที่ใช้ทำท่อ เนื่องจากจุดเดือดและจุดเยือกแข็งสามารถบ่งบอกถึง ขนาดของท่อ ที่สภาวะของการระเหยและการควบแน่นของของไหลใช้งาน
- 2. เป็นของใหลใช้งานที่หาได้ง่ายและให้ค่าความร้อนได้สูง เมื่ออยู่ในสภาวะของไอ
- 3. มีความกดดันไอและการควบแน่นของของไหลใช้งานไม่สูงหรือต่ำจนเกินไป
- 4. เมื่ออายุการใช้งานที่ยาวนานมีการเปลี่ยนแปลงสภาพตามคุณสมบัติเฉพาะน้อยมาก
- 5. มีค่าการนำความร้อนสูง
- ในสภาวะของเหลวและไอมีความหนืดต่ำ
- 7. เป็นสารที่มีจุดเยือกแข็งและจุดเดือดต่างจากอุณหภูมิใช้งานที่ยอมรับได้
- มีค่าความร้อนแฝงของการระเหยสูง

2.5 ข้อดีของท่อความร้อนแบบคอยล์ลูป

เนื่องจากในงานวิจัยนี้ได้ใช้ท่อความร้อนแบบคอยล์ลูป ดังนั้นลักษณะเด่นของท่อความร้อนแบบ คอยล์ลูป [18] ได้แก่

- มีอัตราการถ่ายเทความร้อนต่อพื้นที่หน้าตัดหนึ่งหน่วยของท่อความร้อนสูงกว่าอัตราการนำ ความร้อนของแท่งโลหะที่มีพื้นที่หน้าตัดเท่ากัน
- ไม่จำเป็นต้องใช้แรงภายนอกกระทำ
- อุณหภูมิใช้งานมีช่วงกว้าง สามารถทำงานได้แม้ผลต่างระหว่างแหล่งจ่ายความร้อนกับแหล่ง รับความร้อนมีค่าน้อย และใช้งานได้ทั้งที่อุณหภูมิสูงและอุณหภูมิต่ำ ถ้าเลือกสารทำงานให้ เหมาะสมกับช่วงอุณหภูมิใช้งาน
- 4. ปัญหาการบำรุงรักษามีน้อยและไม่มีเสียงดังเพราะไม่มีส่วนที่เคลื่อนไหว
- 5. ไม่มีปัญหาการปนเปื้อนกันระหว่างของไหลที่ต้องการจะแลกเปลี่ยนความร้อน

- สามารถแยกส่วนระเหยหรือส่วนรับความร้อน กับส่วนควบแน่นหรือส่วนคายความร้อนให้ ออกห่างจากกันได้ จึงสามารถประยุกต์ใช้งานได้อย่างกว้างขวาง และสะควกต่อการติดตั้ง
- การตอบสนองเชิงความร้อนเกิดขึ้นได้ดี เนื่องจากการถ่ายเทความร้อนเกิดขึ้นในรูปของความ ร้อนแฝง การตอบสนองเชิงความร้อนจึงรวดเร็ว และสามารถรับการเปลี่ยนแปลงของ แหล่งจ่ายความร้อนได้ดี

2.6 วัฏจักรการทำความเย็นแบบอัดไอ

วัฏจักรการทำความเย็นแบบอัคไอในอุคมคติ เป็นการพัฒนามาจากวัฏจักรคาร์โนต์ ให้เกิดการทำงาน ในทางปฏิบัติได้ใกล้เคียงความเป็นจริงมากที่สุด เป็นต้นแบบของเครื่องทำความเย็นและ เครื่องปรับอากาศที่ใช้กันทุกวันนี้

ร**ูปที่ 2.32** วัฏจักรการทำความเย็นแบบอัคไอ [19]

จากรูปที่ 2.32 การทำงานของวัฏจักรการทำความเย็นแบบอัดไอเบื้องต้น เริ่มจากคอมเพรสเซอร์ดูด สารทำความเย็นในสถานะไออิ่มตัว (Saturated vapor) ที่สภาวะ 1 และอัดตามกระบวนการ ไอเซนโทรปิค จนความคันสูงขึ้นเท่ากับความคันในคอนเดนเซอร์ ช่วงการอัดตัวแบบไอเซนโทรปิคนี้ อุณหภูมิของสารทำความเย็นจะสูงขึ้นกว่าอุณหภูมิสิ่งแวคล้อม จากนั้นสารทำความเย็นที่ความคันและ อุณหภูมิสูงนี้จะใหลเข้าสู่คอนเดนเซอร์ในสถานะไอร้อนยิ่งยวด (Superheated vapor) ที่สภาวะ 2 ที่ คอนเดนเซอร์นี้สารทำความเย็นจะกวบแน่นจนกลายเป็นของเหลวอิ่มตัว (Saturated liquid) โดยมีการ คายความร้อนให้กับสิ่งแวคล้อม และไหลออกจากคอนเดนเซอร์ที่สภาวะ 3 สารทำความเย็นใน สถานะของเหลวอิ่มตัว จะถูกส่งผ่านอุปกรณ์ลดความดัน เพื่อลดความดันลงจนเท่ากับความดันของ อีวาพอเรเตอร์ ช่วงของกระบวนการนี้ อุณหภูมิของสารทำความเย็นจะลดลงต่ำกว่าอุณหภูมิของ บริเวณทำความเย็น หลังจากนั้นสารทำความเย็นจะไหลเข้าอีวาพอเรเตอร์ที่สภาวะ 4 ในสถานะของ ผสมอิ่มตัว และไหลเข้าคอมเพรสเซอร์อีกครั้งหนึ่ง จนครบวัฏจักร

2.6.1 หลักการคำนวณด้านพลังงานของวัฏจักรการทำความเย็นแบบอัดไอ

อาศัยกฎข้อที่ 1 ทางเทอร์โมไดนามิกส์ สำหรับวัฎจักรทำความเย็นสามารถพิจารณาได้เป็น 2 แบบ คือ พิจารณาโดยรวมทั้งหมดในวัฏจักร และพิจาณากระบวนการที่อุปกรณ์แต่ละชุดดังนี้

2.6.1.1 พิจารณาแบบวัฏจักร

คือ การพิจารณาว่าสารทำความเย็นจากสภาวะที่ 1 เปลี่ยนเป็นสภาวะที่ 2 แล้วเปลี่ยนเป็นสภาวะที่ 3 และกลับมาเป็นสภาวะที่ 1 ตามกฎข้อที่ 1 ทางเทอร์ โมไคนามิกส์ จะได้ว่าผลรวมพลังงานเข้าต้อง เท่ากับผลรวมพลังงานออกเพราะไม่มีการเปลี่ยนแปลงใดๆ ของสารทำความเย็น ซึ่งพลังงานที่เข้าออก มี 2 แบบ คือ ความร้อนและงานหรือกำลัง โดยถ้าพลังงานที่เข้าออกนี้ ถ้าเกิดจากความแตกต่างของ อุณหภูมิเราเรียกว่า "ความร้อน" ถ้าไม่ใช่เรียกว่า "งานหรือกำลัง" เพื่อสะดวกในการเขียนเป็นสมการ เราจึงกำหนดเครื่องหมายบวกและลบแทนทิศทางเข้าออก โดยให้เครื่องหมายของความร้อนจะตรง ข้ามกับเครื่องหมายของงาน ดังนั้นตามวัฏจักรทำความเย็นแบบอัดไอสามารถเขียนเป็นสมการได้ดังนี้

$$\sum \dot{Q} = \sum \dot{W}$$
 หรือ $\dot{W}_{c} = \dot{Q}_{H} - \dot{Q}_{L}$ (2.6)

โดยที่	$\dot{\mathcal{Q}}_{\scriptscriptstyle L}$	คือ	อัตราการถ่ายเทความร้อนที่เข้าสู่วัฏจักรหรือขนาดทำความเย็นของ
			เครื่องปรับอากาศ (<i>kW</i>)
	$\dot{\mathcal{Q}}_{\scriptscriptstyle H}$	คือ	อัตราการถ่ายเทความร้อนที่ต้องระบายทิ้งที่คอนเดนเซอร์ (kW)
	$\dot{W_c}$	คือ	กำลังที่คอมเพรสเซอร์ต้องใช้ในการอัด (<i>kW</i>)

2.6.1.2 พิจารณากระบวนการที่อุปกรณ์แต่ละชุด

คือ การที่สารทำความเย็นใหลเข้าและออกนั่นเอง ตามกฎข้อที่ 1 ทางเทอร์โมไดนามิกส์ จะได้ว่า ผลรวมของงานหรือกำลังที่เข้าออก รวมกับการเปลี่ยนแปลงของพลังงานทั้งหมดของมวลที่ใหลเข้า และออก ซึ่งโดยทั่วไปการเปลี่ยนแปลงของพลังงานจลน์และพลังงานศักย์ของมวลดังกล่าวมักจะไม่มี ความหมายซึ่งเหลือเพียงพลังงานภายใน (*u*) รวมกับผลดูณของความดัน (*P*) และปริมาตรจำเพาะ (*v*) ซึ่งเรียกว่า เอนทัลปี (*h*) ดังนี้

$$q = h_{o} - h_{i} + w$$
 หรือ $\dot{Q} = \dot{m}(h_{o} - h_{i}) + \dot{W}$ (2.7)

โดยที่	q	คือ	ความร้อนต่อหน่วยมวล (<i>kJ / kg</i>)
	h _o	คือ	เอนทัลปีต่อหนึ่งหน่วยมวลของสารทำความเย็นที่ทางออก (kJ / kg)
	h_{i}	คือ	เอนทัลปีต่อหนึ่งหน่วยมวลของสารทำความเย็นที่ทางออก (kJ / kg)
	w	คือ	งานต่อหน่วยมวล (<i>kJ / kg</i>)
	ġ	คือ	อัตราการถ่ายเทความร้อนที่อุปกรณ์แต่ละชุด (<i>kW</i>)
	m	คือ	อัตราการไหลเชิงมวลของสารทำความเย็น (kg / s)
	Ŵ	คือ	กำลังงานที่อุปกรณ์แต่ละชด (kW)

ซึ่งค่าเอนทัลปีนี้สามารถหาได้จากตารางหรือแผนภูมิ (Chart / diagram) เพียงแต่ทราบค่าคุณสมบัติ ใดๆ 2 คุณสมบัติ เช่น ความคัน (P) และอุณหภูมิ (I) เป็นต้น สมการที่ (2.7) สามารถใช้กับอุปกรณ์ทุก อัน ที่แสดงในรูปที่ 2.32 ดังนี้ ที่คอมเพรสเซอร์หรือกระบวนการ 1–2 (กระบวนการไอเซนโทรปิค)

$$\dot{Q} = \dot{m}(h_{2} - h_{1}) + \dot{W}_{c}$$
(2.8)

หรือทฤษฎีที่สมบูรณ์มักสมมุติ ไม่มีอัตราการถ่ายเทความร้อน $\dot{Q}=0$ จะได้

$$-\dot{W}_{c} = \dot{m}(h_{2} - h_{1})$$
 (2.9)

โดยที่

ที่ *h*, คือ เอนทัลปีต่อหนึ่งหน่วยมวลของสารทำความเย็นที่ทางเข้า คอมเพรสเซอร์ (*kJ / kg*)

- h₂ คือ เอนทัลปีต่อหนึ่งหน่วยมวลของสารทำความเย็นที่ทางออก คอมเพรสเซอร์ (kJ / kg)
- *W*_c คือ กำลังที่คอมเพรสเซอร์ต้องใช้ในการอัด (*kW*)

ที่คอนเคนเซอร์หรือกระบวนการ 2–3 (กระบวนระบายความร้อนที่ความคันกงที่)

$$\dot{Q}_{_{H}} = \dot{m}(h_{_{3}} - h_{_{2}}) + \dot{W}$$
(2.10)

ซึ่งจะเห็นว่า ไม่มี \dot{w} มาเกี่ยวข้อง นั่นคือ

$$\dot{Q}_{_{H}} = \dot{m}(h_{_{3}} - h_{_{2}})$$
 (2.11)

โดยที่ h₂ คือ เอนทัลปีต่อหนึ่งหน่วยมวลของสารทำความเย็นที่ทางเข้า คอนเดนเซอร์ (kJ / kg)

 $\dot{Q}_{_{\!H}}$ คือ อัตราการถ่ายเทความร้อนที่ต้องระบายทิ้งที่คอนเคนเซอร์ (kW)

ที่อุปกรณ์ลดความดัน หรือกระบวนการ 3–4

$$\dot{Q} = \dot{m}(h_{4} - h_{3}) + \dot{W}$$
 (2.12)

ซึ่งจะเห็นว่า ไม่มี \dot{w} มาเกี่ยวข้อง ส่วน \dot{Q} มักจะน้อยมาก นั่นคือ

$$h_4 = h_3 \tag{2.13}$$

โดยที่ h₄ คือ เอนทัลปีต่อหนึ่งหน่วยมวลของสารทำความเย็นที่ทางออก จากอุปกรณ์ลดความดัน (kJ / kg)

ที่อีวาพอเรเตอร์หรือกระบวนการ 4–1 (กระบวนรับความร้อนที่ความคันคงที่)

$$\dot{Q}_{L} = \dot{m}(h_{1} - h_{4}) + \dot{W}$$
(2.14)

ซึ่งจะเห็นว่า ไม่มี 🗰 มาเกี่ยวข้อง นั่นคือ

$$\dot{Q}_{L} = \dot{m}(h_{1} - h_{4}) \tag{2.15}$$

โดยที่ $\dot{Q}_{_L}$ คือ อัตราการถ่ายเทความร้อนที่เข้าอีวาพอเรเตอร์ (kW)

2.7 ระบบปรับอากาศ

ระบบปรับอากาศคือ ระบบที่ทำหน้าที่ปรับสภาพของอากาศให้เหมาะกับสภาวะที่ผู้ใช้ต้องการ อาจจะ เป็นการปรับอากาศเพื่อการเก็บรักษาอาหาร หรือสิ่งของ รวมถึงการปรับอากาศเพื่อการอยู่อาศัยใน อาการด้วย โดยอาจจะเป็นการปรับให้อุณหภูมิสูงขึ้นหรือต่ำลงก็ได้ และยังต้องมีการควบคุมปริมาณ กวามชื้นสัมพัทธ์ในอากาศ ความเร็วลม กลิ่นและสิ่งเจือปนในอากาศด้วย การรักษาบริเวณที่อยู่อาศัย และสิ่งอำนวยความสะดวกในอุตสาหกรรมให้มีอุณหภูมิและความชื้นตามต้องการนั้น กระบวนการ ปรับอากาศ สามารถอธิบายอย่างง่ายโดยใช้แผนภูมิ Psychometric chart ดังแสดงในรูปที่ 2.33 ซึ่ง วิเคราะห์กระบวนการเหล่านี้โดยใช้กฎอนุรักษ์มวลสารในลักษณะการไหลดงตัว และกฎอนุรักษ์ พลังงานดังสมการที่ (2.16), (2.17) และ (2.18)

รูป 2.33 กระบวนการปรับอากาศ [20]

มวลอากาศแห้ง

$$\sum_{in} \dot{m}_a = \sum_{out} \dot{m}_a \tag{2.16}$$

มวลของน้ำ

$$\sum_{in} \dot{m}_{w} = \sum_{out} \dot{m}_{w} \text{ หรือ } \sum_{in} \dot{m}_{a} \omega = \sum_{out} \dot{m}_{a} \omega \qquad (2.17)$$

พลังงาน

$$\dot{Q}_{in} + \dot{W}_{in} + \sum \dot{m}_i h_i = \dot{Q}_{out} + \dot{W}_{out} + \sum \dot{m}_o h_o$$
 (2.18)

โดยที่

- คือ อัตราการไหลเชิงมวลของไอน้ำในอากาศ (kg / s)
- \dot{m}_{a} คือ อัตราการใหลเชิงมวลของอากาศแห้ง (kg/s)
- *Q* คือ อัตราการถ่ายเทพลังงานความร้อน (*kW*)
- \dot{W} คือ กำลังงานของระบบที่ต้องการ (kW)
- $\dot{m}_{_i}$ คือ อัตราการใหลเชิงมวลที่เข้าระบบ (kg / s)
- \dot{m}_{a} คือ อัตราการใหลเชิงมวลที่ออกจากในระบบ (kg / s)
- h_o คือ เอนทัลปีต่อหนึ่งหน่วยมวลของอากาศแห้งที่ทางออกของ ส่วนที่ให้ความเย็น (*kJ / kg*)
- h_i คือ เอนทัลปีต่อหนึ่งหน่วยมวลของอากาศแห้งที่ทางเข้าของส่วนที่ทำ
 ความเย็น (kJ / kg)

2.7.1 การทำความเย็นอย่างง่าย

 \dot{m}_{w}

ในกระบวนการทำความเย็นอย่างง่ายปริมาณความชื้นในอากาศจะมีก่าคงที่เพราะไม่มีการเพิ่ม ความชื้นหรือลดความชื้นออกจากอากาศ นั่นหมายความว่า ค่าความชื้นสัมบูรณ์ของอากาศจะมี ก่าคงที่ในระหว่างกระบวนการทำความเย็นที่ปราศจากการลดความชื้น กระบวนการจะดำเนินไป ในทางที่ลดอุณหภูมิกระเปาะแห้งตามแนวเส้นของก่าความชื้นสัมบูรณ์กงที่ แต่จะเห็นว่าก่าความชื้น สัมพัทธ์เพิ่มขึ้นเนื่องจากปริมาณความจุของไอน้ำมีก่าลดลงเมื่ออุณหภูมิลดลง กระบวนการทำความ เย็นสามารถทำได้ โดยสามารถปล่อยอากาศให้ผ่านท่อขดที่มีสารทำความเย็นหรือน้ำเย็นไหลอยู่ อธิบายจากแผนภูมิ Psychometric chart ดังแสดงในรูปที่ 2.34 ดังนั้นสมการของกฎอนุรักษ์มวลที่ไม่มี การเพิ่มความชื้นหรือลดความชิ้นจะพบว่าเมื่อ มวลของอากาศในตำแหน่งที่ 1 และตำแหน่งที่ 2 จะมี ก่าเท่ากัน และความชื้นสัมบูรณ์จะมีก่าเท่ากัน แต่ความชื้นสัมพัทธ์ในตำแหน่งที่ 2 จะมีก่าสูงกว่า เนื่องจาก ความชื้นสัมพัทธ์มวลไอน้ำ ในขณะนั้นต่อความจุมวลไอน้ำในอากาศ ณ อุณหภูมิ นั้นๆ เมื่อ อุณหภูมิลดลงจะมีผลต่อความจุมวลไอน้ำในอากาศจะมีก่าลดลง ทำให้ก่าความชื้นสัมพัทธ์จะมีก่า ลดลง จะสามารถคำนวณได้สมการดังนี้ โดยที่ _{ma1} คือ อัตราการใหลเชิงมวลอากาศ ณ ตำแหน่งที่ 1 (kg / s) m_{a2} คือ อัตราการใหลเชิงมวลอากาศ ณ ตำแหน่งที่ 2 (kg / s) m_a คือ อัตราการใหลเชิงมวลอากาศ (kg / s)

้ดังนั้นจากสมการอนุรักษ์พลังงานสมการ (2.18) จะลดเหลือดังสมการ (2.20)

$$\dot{Q} = \dot{m}_a (h_2 - h_1)$$
 (2.20)

หรือ $q = h_{_I} - h_{_2}$ ซึ่ง $h_{_2}$ คือ ค่าเอนทัลปีต่อหนึ่งหน่วยมวลของอากาศแห้งที่ทางออกของส่วนที่ให้ ความเย็น และ $h_{_I}$ คือ ค่าเอนทัลปีต่อหนึ่งหน่วยมวลของอากาศแห้งที่ทางเข้าของส่วนที่ทำความเย็น

2.7.2 การทำความเย็นพร้อมด้วยการลดความชื้น

กวามชื้นสัมบูรณ์ของอากาศจะคงที่ในระหว่างกระบวนการทำความเย็นอย่างง่าย แต่ความชื้นสัมพัทธ์ จะเพิ่มขึ้น ถ้าอากาศมีความชื้นสัมพัทธ์สูงมากเกินกว่าระดับที่ต้องการ ความชื้นบางส่วนจะถูกกำจัด ออกโดยทำให้อากาศนั้นเย็นตัวลงต่ำกว่าอุณหภูมิจุดน้ำค้าง เมื่ออากาศร้อนชื้นใหลเข้าสู่ส่วนที่มีการ ทำความเย็นที่สภาวะที่ 1 ขณะที่อากาศร้อนชื้นใหลผ่านท่อขดที่เย็น อุณหภูมิของอากาศจะลดลงแต่ ความชื้นสัมพัทธ์จะเพิ่มขึ้นโดยที่ความชื้นจำเพาะคงที่ ถ้าส่วนทำความเย็นมีความเย็นมากเกินพอ อากาศจะเข้าสู่จุดน้ำค้าง (สภาวะที่จุด X) ดังรูปที่ 2.35 เมื่อทำให้อากาศมีการเย็นตัวมากขึ้น ก็จะทำ ให้มีการควบแน่นของความชื้นส่วนหนึ่งในอากาศ อากาศจะอยู่ในสภาพอิ่มตัวตลอดทั้งกระบวนการ ควบแน่นและจะดำเนินไปตามแนวเส้นที่มีความชื้นสัมพัทธ์ 100% จนกระทั่งสภาวะสุดท้าย (สภาวะ ที่ 2) ดังแสดงในรูปที่ 2.35 ไอน้ำที่ควบแน่นออกจากอากาศระหว่างกระบวนการนี้จะถูกกำจัดออก จากส่วนทำความเย็น อากาศที่เย็นและอิ่มตัวที่สภาวะที่ 2 นี้มักจะใหลเข้าสู่ห้องโดยตรง และจะผสม กับอากาศภายในห้อง แต่ในบางกรณีอากาศที่สภาวะที่ 2 อาจจะอยู่ที่ความชื้นสัมบูรณ์ตามที่ต้องการ แต่มีอุณหภูมิต่ำมากเกินไป ถ้าเป็นเช่นนั้นอากาศจะต้องไหลผ่านส่วนให้ความร้อน (reheat) อีกครั้ง เพื่อเพิ่มอุณหภูมิของอากาศให้สูงขึ้น จนกระทั่งได้ระดับตามที่ต้องการเสียก่อนที่จะปล่อยเข้าสู่ห้อง

ร**ูป 2.35** กระบวนการลดอุณหภูมิและความชื้น [20]

2.7.3 ความชื้นจำเพาะและความชื้นสัมพัทธ์ของอากาศ

ปริมาณของไอน้ำในอากาศถูกกำหนดได้หลายวิธี วิธีที่นิยมใช้กันคือ การกำหนดมวลของไอน้ำที่มีอยู่ ในหนึ่งหน่วยมวลของอากาศแห้ง ซึ่งเราจะเรียกการกำหนดโดยวิธีนี้ว่า ความชื้นสัมบูรณ์หรือ ความชื้นจำเพาะ (Absolute หรือ Specific humidity) หรืออาจถูกเรียกว่า อัตราส่วนความชื้น (Humidity Ratio) และถูกกำหนด ด้วยสัญลักษณ์ ω ดังสมการที่ (2.21) และ (2.22)

$$\omega = \frac{m_{\nu}}{m_{a}} \tag{2.21}$$

$$\omega = \frac{0.622P_{\nu}}{P - P_{\nu}} \tag{2.22}$$

มวลของไอน้ำ (*kg*) โดยที่ คือ m_ มวลของอากาศแห้ง (kg) คือ m ความคันของไอน้ำในอากาศที่มีอยู่ในอากาศชื้น (kPa) คือ P_{v} ความคันบรรยากาศ (kPa) คือ Р คือ อัตราส่วนความชื้น (kg water vapor / kg dry air) ω

ความชื้นสัมพัทธ์ (Relative Humidity) เป็นอัตราส่วนระหว่างความคันของไอน้ำในขณะนั้นต่อความ คันไอน้ำสูงสุดที่จะมีได้ที่อุณหภูมิกระเปาะแห้งเดียวกันมีหน่วยเป็นเปอร์เซ็นต์ ส่วนความคันไอของ ไอน้ำในอากาศมีค่าต่ำ ไอน้ำในอากาศก็จะเข้าใกล้สภาวะก๊าซสมบูรณ์และมีคุณสมบัติเพียงพอที่จะ เป็นไปตามกฎของก๊าซสมบูรณ์ *PV = mRT* คังสมการที่ (2.23)

$$\phi = \frac{m_v}{m_g} = \frac{\frac{P_v V / R_v T}{P_g V / R_g T}}{\frac{P_v}{P_g}} = \frac{P_v}{\frac{P_g}{P_g}}$$
(2.23)

เมื่อรวมสมการ (2.22) และ (2.23)

$$\phi = \frac{\omega P}{(0.622 + \omega P_{g})} \quad \text{wfo} \quad \omega = \frac{0.622\phi P_{g}}{P - \phi P_{g}} \tag{2.24}$$

โดยที่ φ คือ ความชื้นสัมพัทธ์ของอากาศ (%RH) P_g คือ ความดันอิ่มตัวของไอน้ำที่อุณหภูมิเดียวกัน (kPa)

2.8 ค่าสมรรถนะต่างๆของระบบปรับอากาศ

2.8.1 อัตราการถ่ายเทความร้อน (Heat Transfer Rate)

เราสามารถแบ่งการคำนวณได้ 2 ระบบ คือ ระบบปรับอากาศที่ไม่มีการติดตั้งท่อความร้อนและระบบ ปรับอากาศที่มีการติดตั้งท่อความร้อน โดยใช้ Psychrometric chart อธิบายการทำงานของทั้ง 2 ระบบ ดังแสดงดังรูปที่ 2.36

ร**ูป 2.36** Psychometric chart ของ (a) ระบบปรับอากาศที่ไม่มีการติดตั้งท่อความร้อน [21] (b) ระบบปรับอากาศที่มีการติดตั้งท่อความร้อน [21]

ภาระการทำความเย็นของระบบปรับอากาศที่ไม่มีการติดตั้งท่อความร้อนดังแสดงในรูปที่ 2.36 (a) สามารถคำนวณได้จากสมการที่ (2.25)

$$\dot{Q}_{evap} = \dot{m}_a (h_1 - h_2)$$
 (2.25)

โดยที่ $\dot{Q}_{_{evap}}$ คือ ภาระการทำความเย็นที่อีวาพอเรเตอร์ (*kW*) $\dot{m}_{_a}$ คือ อัตราการใหลเชิงมวลของอากาศ (k_g / s) $h_{_I}$ คือ เอนทัลปีของอากาศก่อนผ่านอีวาพอเรเตอร์ (kJ / kg) $h_{,}$ คือ เอนทัลปีของอากาศหลังผ่านอีวาพอเรเตอร์ (kJ / kg)

ภาระการทำความเย็นของระบบปรับอากาศที่มีการติดตั้งท่อความร้อนดังแสดงในรูปที่ 2.36 (b) สามารถคำนวณได้จากผลรวมของ ขบวนการ 1'-2' และขบวนการ 2'-3' ซึ่ง ขบวนการ 1'-2' คือ กระบวนการ pre-cooling คำนวนได้จากสมการ ที่ (2.26)

$$\dot{Q}_{hpc} = \dot{m}_a (h_{1'} - h_{2'})$$
(2.26)

ขบวนการ 2'-3' คือ ภาระการทำความเย็นที่อีวาพอเรเตอร์ คำนวณได้จากสมการที่ (2.27)

$$\dot{Q}_{evap} = \dot{m}_{a}(h_{2'} - h_{3'})$$
(2.27)

ดังนั้นภาระการทำความเย็น โดยรวมของระบบปรับอากาศทั้งหมด คำนวณ ได้จากสมการที่ (2.28)

$$\dot{Q}_{hac} = \dot{m}_{a}(h_{1'} - h_{2'}) + \dot{m}_{a}(h_{2'} - h_{3'}) = \dot{m}_{a}(h_{1'} - h_{3'})$$
(2.28)

อัตราการถ่ายเทความร้อนของท่อความร้อนในขบวนการจาก 3'-4' คือ กระบวนการ reheat คำนวณ ได้จากสมการที่ (2.29)

$$\dot{Q}_{hpr} = \dot{m}_a (h_{3'} - h_{4'})$$
(2.29)

โดยที่	$\dot{\mathcal{Q}}_{_{hac}}$	คือ	ภาระการทำความเย็นของระบบปรับอากาศทั้งหมด (<i>kW</i>)
	$\dot{\mathcal{Q}}_{_{hpc}}$	คือ	อัตราการถ่ายเทความร้อนของท่อความร้อนในช่วง pre-cooling (kW)
	$\dot{\mathcal{Q}}_{_{hpr}}$	คือ	อัตราการถ่ายเทความร้อนของท่อความร้อนในช่วง reheat (kW)
	$h_{i'}$	คือ	เอนทัลปีของอากาศก่อนผ่านส่วนระเหยของท่อความร้อน (kJ / kg)
	$h_{2'}$	คือ	เอนทัลปีของอากาศหลังผ่านส่วนระเหยของท่อความร้อน (kJ / kg)
	$h_{_{3'}}$	คือ	เอนทัลปีของอากาศหลังผ่านอีวาพอเรเตอร์ (kJ / kg)
	$h_{_{4'}}$	คือ	เอนทัลปีของอากาศหลังผ่านส่วนการควบแน่นของท่อความร้อน
			(kJ / kg)

เมื่อพิจารณาภาระการทำความเย็นของระบบปรับอากาศ ระบบที่มีการติดตั้งท่อความร้อนจะสามารถ ประหยัดพลังงานในส่วนการทำความเย็นที่ได้จากท่อความร้อนส่วนการระเหย ซึ่งจะลดอุณหภูมิ อากาศก่อนเข้าอีวาพอเรเตอร์เรียกขบวนการนี้ว่า pre-cooling ทำให้ระบบปรับอากาศมีภาระการทำ ความเย็นโดยรวมเพิ่มขึ้นโดยไม่ใช้พลังงานจากภายนอก ดังนั้นสัดส่วนการประหยัดพลังงานสำหรับ ภาระการทำความเย็นของระบบปรับอากาศ (*E*₁) สามารถคำนวณได้จากสมการ (2.30) ที่แสดงถึง พลังงานที่ได้จากขบวนการ การทำความเย็น (pre-cooling) เปรียบเทียบกับภาระการทำความเย็น โดยรวมของระบบปรับอากาศ

$$E_{sI} = \frac{\dot{m}_{a}(h_{I'} - h_{2'})}{\dot{m}_{a}(h_{I'} - h_{2'}) + \dot{m}_{a}(h_{2'} - h_{3'})} \times 100\%$$
(2.30)

เมื่อพิจารณาการประหยัดพลังงานโดยรวมของระบบปรับอากาศที่ติดตั้งท่อความร้อน ระบบปรับ อากาศจะสามารถประหยัดพลังงานได้ 2 ส่วนคือ ส่วนการทำความเย็น (pre-cooling) และส่วนการทำ ความร้อนซ้ำ (reheat) ของท่อความร้อน ดังนั้นสัดส่วนการประหยัดพลังงานโดยรวมของระบบปรับ อากาศ (*E*,) คือ พลังงานที่ได้จากขบวนการการทำความเย็น (pre-cooling) และการทำความร้อนซ้ำ (reheat) เปรียบเทียบกับพลังงานทั้งหมดของระบบปรับอากาศสามารถกำนวณได้จากสมการ (2.31)

$$E_{s2} = \frac{\dot{m}_a(h_{1'} - h_{2'}) + \dot{m}_a(h_{3'} - h_{4'})}{\dot{m}_a(h_{1'} - h_{2'}) + \dot{m}_a(h_{2'} - h_{3'}) + \dot{m}_a(h_{3'} - h_{4'})} \times 100\% \quad (2.31)$$

โดยที่ E_{s1} คือ สัดส่วนการประหยัดพลังงานสำหรับภาระการทำความเย็นของระบบ ปรับอากาศ (%) [14]

E_{s2} คือ สัคส่วนการประหยัดพลังงานโดยรวมของระบบปรับอากาศ (%) [14]

2.8.2 ค่าสัมประสิทธิ์สมรรถนะ (Coefficient of Performance หรือ COP)

สัมประสิทธิ์สมรรถนะในการทำความเย็น (*COP_R*) จะอธิบายถึงอัตราการนำความร้อนออกจากพื้นที่ การทำความเย็น ($\dot{\mathcal{Q}}_{_{evap}}$) เปรียบเทียบกับกำลังงานทั้งหมดที่ระบบต้องการ ($\dot{W}_{_{net,in}}$) สามารถคำนวณได้ จากสมการ (2.32)

$$COP_{R} = \frac{\dot{Q}_{evap}}{\dot{W}_{net,in}}$$
(2.32)

สัมประสิทธิ์สมรรถนะในการทำความร้อน ($COP_{_H}$) จะอธิบายถึงอัตราความร้อนที่ได้ออกมา ($\dot{\mathbf{Q}}_{_{con}}$) เปรียบเทียบกับกำลังงานทั้งหมดที่ระบบต้องการ ($\dot{w}_{_{netin}}$) สามารถคำนวณได้จากสมการ (2.33)

$$COP_{H} = \frac{\dot{Q}_{con}}{\dot{W}_{net,in}}$$
(2.33)

โดยที่

$$\dot{Q}_{evap}$$
 คือ ภาระการทำความเย็นที่อีวาพอเรเตอร์ (*kW*)
 \dot{Q}_{con} คือ ภาระการทำความร้อนที่คอนเดนเซอร์ (*kW*)
 \dot{W}_{natin} คือ กำลังงานทั้งหมดที่ระบบต้องการ (*kW*)

สัมประสิทธิ์สมรรถนะในการทำความเข็นเมื่อทำการติดตั้งท่อความร้อน สามารถคำนวณได้จาก สมการ (2.34)

$$COP_{R} = \frac{\dot{Q}_{evap} + \dot{Q}_{hpc}}{\dot{W}_{netin}}$$
(2.34)

สัมประสิทธิ์สมรรถนะในการทำความร้อนเมื่อทำการติดตั้งท่อความร้อน สามารถคำนวณได้จาก สมการ (2.35)

$$COP_{H} = \frac{\dot{Q}_{con} + \dot{Q}_{hpr}}{\dot{W}_{net,in}}$$
(2.35)

2.8.3 ค่าสัดส่วนการลดความชื้น (DF %)

การบ่งบอกถึงการลดความชื้นสัมบูรณ์ของอากาศหลังผ่านอีวาพอเรเตอร์ จะบอกในเทอมของสัดส่วน การลดความชื้น สามารถหาได้จากสมการที่ (2.36)

$$DF = \frac{\omega_i - \omega_o}{\omega_i} \times 100\%$$
(2.36)

โดยที่

 DF คือ สัดส่วนการลดความชื้นสัมบูรณ์ (%)
 ω_i คือ ความชื้นสัมบูรณ์ของอากาศก่อนผ่านอีวาพอเรเตอร์ (kg water vapor / kg dry air)
 ω_o คือ ความชื้นสัมบูรณ์ของอากาศหลังผ่านอีวาพอเรเตอร์ (kg water vapor / kg dry air)

2.9 ค่าความต้านทานทางความร้อน (Thermal Resistance)

สำหรับสมรรถนะทางความร้อนของท่อความร้อนนั้นจะได้จากการคำนวณก่าความต้านทานทางความ ร้อนของท่อความร้อน ซึ่งกำนวณได้จากสมการ (2.37)

$$R = \frac{T_e - T_c}{\left(\dot{Q}_{hpc} + \dot{Q}_{hpr}\right) / 2}$$
(2.37)

โดยที่

R

- ก่ากวามต้านทานทางกวามร้อนของท่อกวามร้อน ([°]C /kW) คือ
- อุณหภูมิผิวของท่อความร้อนในส่วนการระเหย (°C) คือ T_{e}
- T_{c} \dot{Q}_{hpc} อุณหภูมิผิวของท่อความร้อนในส่วนการควบแน่น (°C) คือ
 - อัตราการถ่ายเทความร้อนที่ส่วนการระเหยของท่อความร้อน (kW) คือ

 \dot{Q}_{hpr} อัตราการถ่ายเทความร้อนที่ส่วนการควบแน่นของท่อความร้อน (kW) คือ