LIST OF FIGURES

Figure	Page
2.1 The volume-temperature diagram	5
2.2 A two-dimensional representation of A_2O_3 : (a) crystal and (b) glass	8
2.3 A two-dimensional representation of a sodium silicate glass	8
2.4 Alpha decay	13
2.5 Beta decay	14
2.6 Gamma decay	14
2.7 The Photoelectric effect [20]	15
2.8 Dependence of the photoelectric cross section on (a) photon energy and (b) atomic number of the material [20]	16
2.9 The Compton effect [20].	18
2.10 Dependence of the Compton cross section on (a) photon energy (b) atomic number of the materials [20]	19
2.11 Pair production. The gamma disappears and a positron-electron pair is created. Two 0.511 MeV photons are produced when the positron annihilates [20]	20
 2.12 Dependence of the pair-production cross section on (a) photon energy and (b) atomic number of the material [20] 	21
2.13 The relative importance of the three major gamma interactions [20]	22
2.14 Mass attenuation coefficients for lead (Z=82, $\rho = 11.35 \times 10^3 \text{ kg/m}^3$) [20]	23
2.15 The intensity of the transmitted beam (only particles that did not interact) decreases exponentially with material thickness [20]	23
2.16 The half value layer	24
2.17 X-ray generation	26
2.18 WDX and EDX types	27
2.19 X-ray tube bulb	27
2.20 Si(Li) device structure	28
2.21 As and Pb Spectrum	29
2.22 Pb KLM marker	29
3.1 Energy dispersive x-ray fluorescence (Panalytical, Minipal 4 spectrometer: PW 4030/45B)	31
3.2 The samples are prepared	32
3.3 The diagram shows the steps of preparation and characterization of glasses sample	32
3.4 Experimental setup of transmission method	34
3.5 High temperature electrical furnaces for glass melting	34
3.6 High temperature electrical furnace for glass annealed	35
3.7 The sensitive microbalance for density determination	35
3.8 The Abbe refractometer (ATAGO)	36
3.9 UV-Visible spectrophotometer (Cary UV-50 model)	36
3.10 Gamma ray spectrometer	37
3.11 NaI(Tl) scintillation detector (TELEDYNE BROWN)	37

LIST OF FIGURES (cont.)

Figure	
4.1 Dependence of the density of glass samples as a function of BaO content	39
4.2 Dependence of the molar volume of glass samples as a function of BaO content	39
4.3 Refractive index of barium-borate-RHA glass system	40
4.4 UV-VIS transmission spectra of barium-borate-RHA glass system	41
4.5 Typical 662 keV γ -rays spectra from a ¹³⁷ Cs source measured with and without glass sample	42
4.6 Variation of mass attenuation coefficient as a function of wt% of BaO at $662 \text{ keV } \gamma$ -rays. The line is theoretical value and points are experimental values	44
4.7Effective atomic number at 662 keV γ -rays of barium-borate-RHA glass system. The line is theoretical value and points are experimental values.	44
4.8 Variation of half value layer (HVL) as a function of BaO concentration at photon energy 662 keV compared with some conventional radiation shielding concretes and commercial window	46