

THESIS APPROVAL

GRADUATE SCHOOL, KASETSART UNIVERSITY

DEGREE

FIELD DEPARTMENT

TITLE: Dynamical Simulation of Electron Hoping in Double Quantum Rings

NAME: Mr. Chonlathep Kitsinthopchai

THIS THESIS HAS BEEN ACCEPTED BY

 THESIS ADVISOR

()

 DEPARTMENT HEAD

()

APPROVED BY THE GRADUATE SCHOOL ON

 DEAN

(Associate Professor Gunjana Theeragool, D.Agr.)

Master of Science (Physics)

Assistant Professor Sutee Boonchui, Ph.D.

Mr. Wiwat Wongkokua, Ph.D.

Physics Physics

THESIS

DYNAMICAL SIMULATION OF ELECTRON HOPING IN DOUBLE

QUANTUM RINGS

CHONLATHEP KITSINTHOPCHAI

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of
Master of Science (Physics)

Graduate School, Kasetsart University
2013

 Chonlathep Kitsinthopchai 2013: Dynamical Simulation of Electron Hoping

in Double Quantum Rings. Master of Science (Physics), Major Field:

Physics, Department of Physics. Thesis Advisor: Assistant Professor

Sutee Boonchui, Ph.D. 43 pages.

In this Thesis, we study effects of The wave packet of electron is hoping

through quantum rings under the static magnetic field, can be solved by

transformation to the canonical form of certain system of differential equation. The

Lorentz force leads to electron asymmetry which enhances the electron passing

through a quantum ring while the Aharanov-Bohm effect (AB effect) reduces the

probability of transmission by phase shifted interference. For zero or similar

magnetic field of both rings, the wave packet can pass both quantum rings to the exit

quantum wire while different magnetic field of both rings prevent the second ring’s

injection of electron.

/ /

Student’s signature Thesis Advisor’s signature

ACKNOWLEDGEMENT

I wish to grateful thank and deeply indebted to my advisor Asst. Prof. Dr.

Sutee Boonchui, who has provided me with continuous encouragement and support,

as well as meticulous criticism of this work. Without him this thesis would not have

been possible.

Also, I would like to thank the Graduate School, Kasetsart university and the

Development and Promotion of the gifted in science and technology project (DPST)

for partial supported.

Chonlathep Kitsinthopchai

May 2013

i

TABLE OF CONTENTS

Page

TABLE OF CONTENTS i

LIST OF FIGURES ii

INTRODUCTION 1

OBJECTIVES 4

LITERATURE REVIEW 5

MATERIALS AND METHODS 9

 Materials 9

 Methods 9

RESULTS AND DISCUSSION 17

 Results 17

 Discussion 20

CONCLUSION 21

LITERATURE CITED 22

APPENDIX 23

CURRICULUM VITAE 43

ii

LIST OF FIGURES

Figure Page

1 Measured magnetoconductance of the device 6

2 The transmission probability of the wave packet in differ pattern 8

3 Stated diagram of program 14

4 Sequence of script files 16

5 Probability for a Gaussian wave packet for zero magnetic field 17

6 Probability for a Gaussian wave packet for magnetic field = 0.454T 17

7 Probability for a Gaussian wave packet for magnetic field = 0.0378T 17

8 Transmission probability by time-evolution of the wave packet 18

9 In the case of magnetic field of first ring = 0.454T and

second ring = 0.398T 19

 10 Transmission probability of the wave packet vary by different

 magnetic field between second and first rings with magnetic field

 of first ring = 0, 0.454T, -0454T 19

1

DYNAMICAL SIMULATION OF ELECTRON HOPING IN

DOUBLE QUANTUM RINGS

INTRODUCTION

The quantum dot is a portion of matter that confined electron in spatial three

dimensions in 1-20 nanometer scale of diameter. Consequently, giving optical and

electronic properties intermediate between semiconductors and discrete molecules.

Sorting of many quantum dots give new material structure such as quantum wire,

quantum rings. The quantum dot research and development are going to explore

innovation of material property.

The quantum rings is produced by quantum dots in two dimensions plane

circular pattern. The electrons are hopping through between quantum dots that

generate the current in system. The wave function of an electron passing the quantum

rings under magnetic field can be controlled the arms of passing or denied it by

interference. In addition the Aharonov-Bohm effect give the explanation of occurring

interference by phase shift of both arm. Moreover the effect of Lorentz force, which

bend electron to aside, is involved. Transport properties of quantum wires, dots, and

wells attract much attention because of rapid development of nanotechnology. In

these structures the magnetic field can tune the phase of the electronic wave function.

The system of quantum rings can be solved by numerical method. Applied

magnetic field strict the wave packet to arbitrary condition. The study will perform

advantage of controlling electron by magnetic field such as transistor. For this reason

the simulating of double quantum rings is remarkable.

In the reality, in experiments on very small rings of gold with circumference

about 100-500 nm and width about 40 nm no strictly periodic behavior of any kind

was observed. Basically magnetoresistance reveals the contribution of the aperiodic

fluctuations. The detailed structure of the peak in the power spectrum is, as it was

suggested by Stone in 1985, the result of mixing of the field scales corresponding to

2

the area of the hole in the ring and the area of the arms of the ring. Actually, with

decreasing of the aspect ratio d/L, where d is a width of the arms and L is a size of the

ring, the contribution of the aperiodic fluctuations increases. The first numerical

analysis of quantum fluctuations of the magnetoresistence of the two-dimensional

strip in the frame work of the hopping model with random site energies was

performed by Stone. It was shown that the stationary fluctuations of the

magnetotransport of electrons are a direct consequence of the microscopic quantum

states in specific samples. These fluctuations enhance much if the states become

localized (Webb et al, 1985).

In 1997, Pichugin and Sadreev solve the Schrodinger equation numerically in

the framework of the two-dimensional tight-binding model to find the Aharanov-

Bohm Oscillations of the conductance and detailed current flow distributions.

However, they are restricted by the field region where one flux quantum per lattice

plaquette is much less than unity, which makes the continual Schrodinger equation

certainly applicable. The current flow patterns display rich vortex structures and

show that the formation of the convectional vortex flow patterns is directly related to

the complexity in flux dependence of the transmission. They show that the laminar

flow of the electron takes place only in the very restricted case of the rings with small

and moderate aspect ratios, with the single-channel transport, and with zero flux.

Application of the flux gives rise to the current vortex near the entrance of the ring.

This vortex mixes inner and outer paths of the electron transport in such a way that

phase shifts induced by different fluxes enclosed by different trajectories of the

electron in the ring become equaled. As a result they can observe the quasiregular

Aharanov-Bohm Oscillations of the transmission in rings with small aspect ratios.

With an increasing in the aspect ratio and the number of channels the Aharanov-

Bohm Oscillations of the transmission become irregular and, correspondingly, the

current flow patterns acquire a rather volatile form with complex distribution of

vortices (Pichugin and Sadreev, 1997).

In 2000, Pedersen et al published the observation of quantum asymmetry in

an Aharonov-Bohm ring. They have investigated the Aharonov-Bohm effect in a one-

3

dimensional GaAs/ Ga0.7Al0.3 as ring at low-magnetic fields. The oscillatory

magnetoconductance of these systems is systematically studied as a function of

density. They observe phase shifts in the magnetoconductance oscillations, and

halving of the fundamental h/e period, as the density is varied. Theoretically we find

agreement with the experiment, by introducing an asymmetry between the two arms

of the ring (Pedersen, 2000).

In 2005, Szafran and Peeters published the simulations of electron transport

through a quantum ring in the effect of the Lorentz force. The research describe the

effect of the Lorentz-force-related deformation of the electron trajectories on the

Aharonov-Bohm effect in a semiconductor quantum ring (Szafan and Peeters, 2005).

4

OBJECTIVES

1. To simulate flow characteristics of the electron wave packet through the

double quantum rings.

2. To study effect of static magnetic field to the electron in the double

quantum rings.

5

LITERATURE REVIEW

1. The Aharonov-Bohm Effect

 When the beam of electrons is split in two and passed either side of a long

solenoid before being recombined. The beams are kept well away from the solenoid

itself, so they encounter only regions where B = 0 but A is not zero. The two beams

arrive with different phases (Aharonov and Bohm, 1959).

g = q

A ⋅dr∫ = qΦ

2π
1
r
φ̂⎛

⎝⎜
⎞
⎠⎟∫ ⋅ rφ̂dφ() = ± qΦ

2
 (1)

The plus sign applies to the electrons traveling in the same direction as A . The

beams arrive out of phase by an amount proportional to the magnetic flux their paths

encircle.

phase difference = qΦ


 (2)

This phase shift leads to measurable interference and has been confirmed

experimentally (Chambers, 1960).

2. Observation Aharonov-Bohm ring

 Electron wave packets circling a magnetic flux should exhibit the phase shift

introduced by the magnetic vector potential (Aharonov and Bohm, 1959). In a

metallic ring, small enough so that the electron states are not randomized by magnetic

scattering during the traversal of the arm of the ring, an interference pattern should be

present in the magnetoresistance of the device.

6

Figure 1 Measured magnetoconductance of the device

 In Figure 1 presents a measurement of the magnetoconductance of the device

displayed in the left insert (Pedersen et al, 2000). The magnetoconductance show

large Aharonov-Bohm oscillations. Due to the long distance between the voltage

probes, the measurement is an effective two-terminal measurement; hence the

Aharonov-Bohm magnetoconductance is as observed forced to be symmetrical as a

consequence of the Onsager relations. While the right inset in Figure 1 displays the

conductance as function of gate voltage at T=4.2K.

3. Single quantum ring simulation

The time-dependent Schrodinger equation for an electron passing through a

semiconductor quantum ring is solved in the presence of a perpendicular

homogeneous magnetic field with the effects of the Lorentz force on the Aharonov-

Bohm oscillations (Szafran and Peeters, 2005).

7

The electron confined in the (x, y) plane with perpendicular magnetic field.

The Hamiltonian has the form

H = 1

2m
−i∇ + eA()2 (3)

where m stands for the electron effective mass (0.067m0) and A is the vector

potential (Pichugin and Sadreev, 1997). The wave function is expanded in a basis of

Gaussian functions centered on chosen point Rn = (Xn ,Yn)

 Ψ(x, y,t) = cn (t) fn (x, y)
n
∑ (4)

with

fn (x, y) =

1
λ π

exp (r

− R

n)2

2λ 2 + ieB(x − Xn)(y +Yn)
2

⎡

⎣
⎢

⎤

⎦
⎥ (5)

The studied magnetic field range the increase of the electron localization is

negligible. Substituting expansion Eq.(3) into the time-dependent Schrodinger

equation obtain a system of linear equations for the time derivative of coefficients

cn (t) ,

 Sc(t) = Hc(t) (6)

which solved by Sc(t + dt) = Sc(t − dt)− 2idtHc(t) /  , where the elements of overlap

and Hamiltonian matrices are given by Skn = fk fn and Hkn = fk H fn .

8

Figure 2 The transmission probability of the wave packet in differ pattern

 In Figure 2, the solid line shows the transmission probability of the wave

packet through the circular quantum ring (Szafran and Peeters, 2005). This quantity

was obtained by integrating the probability density leaving the ring through the upper

lead. The decreasing amplitude is due to the growing imbalance in the amount of

charge transferred through the left and right arms of the ring, which prevents the

interference from being completely destructive. The values of the transmission

probability maxima and minima are increasing functions of the magnetic field, which

is a consequence of the guiding behavior of the Lorentz force that eases the entrance

and exit of the wave packet. The envelope of the maxima is well approximated by the

packet transfer probability through a semicircular wire that is obtained when the right

arm of the circular ring is removed, plotted with the dashed line in Figure 2.

9

MATERIALS AND METHODS

Materials

1. Computer (Intel Core 2 Duo, Ram 4GB)

2. MATLAB (Software)

Methods

1. Theory

 1.1 Unitary Transformation

The solving Eq.(6) with iteration method had been taking for a long time.

However there is another way for solve this problem by transform the system of

equation to Canonical form which is faster than one. The Eq.(6) can be optimized by

 c(t) = Mc(t) (7)

where M = S−1H , because of S and H are Hermitian matrix and the inverse of an

invertible Hermitian matrix. Hence M is Hermitian matrix, which could be

diagonalized by a unitary transformation,

 D = T−1MT (8)

Here D is diagonal and T is transformation matrix which be found by solve

eigenvalues and eigenvector of M . Eq.(7) becomes

 T
−1c(t) = DT−1c(t) (9)

10

Since is a time-independent matrix, we can rewrite Eq.(9) in the form

C(t) = DC(t) (10)

The matrix Eq.(10) is a system of differential equation with the solution

 C(t) = C(0)exp(Dt) (11)

Now the probability amplitude c(t) is given by the transformation

 c(t) = TC(t) (12)

 1.2 Element of S-Matrix

From Skn = fk fn are the element of S-Matrix at row kth and column nth

defined by

 fk fn = fk
* fn dxdy∫∫ (13)

Since Eq.(5), These elements are

fk fn = 1
λ 2π

exp (r

− R

k)2

2λ 2 − ieB(x − Xk)(y +Yk)
2

⎡

⎣
⎢

⎤

⎦
⎥∫∫

×exp (r

− R

n)2

2λ 2 + ieB(x − Xn)(y +Yn)
2

⎡

⎣
⎢

⎤

⎦
⎥dxdy

 (14)

fk fn = 1
λ 2π

exp (x − Xn)
2 + (x −Yn)

2 + (x − Xk)
2 + (x −Yk)

2

2λ 2

⎡

⎣
⎢∫∫

+
ieB (x − Xn)(y +Yn)− (x − Xk)(y +Yk){ }

2
⎤

⎦
⎥dxdy

 (15)

11

1.3 Element of H-Matrix

FromHkn = fk H fn are the element of H-Matrix at row kth and column

nth defined by

fk H fn = 1

2m
fk
* −i∇ + eA()2 fn dxdy∫∫ (16)

where A = −Byi is the vector potential of magnetic field in z-direction. Then solve

operator to

−i∇ + eA()2 = −2∇2 + 2ieBy ∂

∂x
+ e2B2y2 (17)

Consider first term

−2∇2 fn =

−2

λ π
∂2

∂x2
+ ∂2

∂y2
⎛
⎝⎜

⎞
⎠⎟
exp (r


− R

n)2

2λ 2 + ieB(x − Xn)(y +Yn)
2

⎡

⎣
⎢

⎤

⎦
⎥ (18)

The 1st x-derivative of fn

∂
∂x

fn =
1

λ π
−
x − Xn()
λ 2 + ieB(y +Yn)

2
⎛
⎝⎜

⎞
⎠⎟
fn (19)

The 2nd x-derivative of fn

∂2

∂x2
fn =

1
λ π

− 1
λ 2 fn

⎛
⎝⎜

⎞
⎠⎟ + −

x − Xn()
λ 2 + ieB(y +Yn)

2
⎛
⎝⎜

⎞
⎠⎟
∂ fn
∂x

= 1
λ π

− 1
λ 2 + −

x − Xn()
λ 2 + ieB(y +Yn)

2
⎛
⎝⎜

⎞
⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
fn

 (20)

12

The 1st y-derivative of fn

∂
∂y

fn =
1

λ π
− y −Yn

λ 2 + ieB(x − Xn)
2

⎛
⎝⎜

⎞
⎠⎟ fn (21)

The 2nd y-derivative of fn

∂2

∂y2
= 1
λ π

− 1
λ 2 + − y −Yn

λ 2 + ieB(x − Xn)
2

⎛
⎝⎜

⎞
⎠⎟
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
fn (22)

Then Eq.(18) becomes

2

λ π
2
λ 2 +

x − Xn()
λ 2 − ieB(y +Yn)

2
⎛
⎝⎜

⎞
⎠⎟

2

+
y −Yn()
λ 2 − ieB(x − Xn)

2
⎛
⎝⎜

⎞
⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
fn (23)

Hence the second term of Eq.(17) becomes

2ieBy ∂

∂x
fn =

2ieBy
λ π

−
x − Xn()
λ 2 + ieB(y +Yn)

2
⎛
⎝⎜

⎞
⎠⎟
fn (24)

From Eq.(23) and Eq.(24), Then Eq. (17) becomes

−i∇ + eA()2 fn =
1

λ π
22

λ 2

⎧
⎨
⎩

+ e2B2y2

+2
x − Xn()
λ 2 − ieB(y +Yn)

2
⎛
⎝⎜

⎞
⎠⎟

2

+2
y −Yn()
λ 2 − ieB(x − Xn)

2
⎛
⎝⎜

⎞
⎠⎟

2

+2ieBy −
x − Xn()
λ 2 + ieB(y +Yn)

2
⎛
⎝⎜

⎞
⎠⎟
⎫
⎬
⎪

⎭⎪
fn

 (25)

13

The elements of H-Matrix are

fk H fn = 1
2mλ 2π

22

λ 2 + e2B2y2
⎧
⎨
⎩

∫∫

+2
x − Xn()
λ 2 − ieB(y +Yn)

2
⎛
⎝⎜

⎞
⎠⎟

2

+2
y −Yn()
λ 2 − ieB(x − Xn)

2
⎛
⎝⎜

⎞
⎠⎟

2

+2ieBy −
x − Xn()
λ 2 + ieB(y +Yn)

2
⎛
⎝⎜

⎞
⎠⎟
⎫
⎬
⎪

⎭⎪

×exp (x − Xn)
2 + (x −Yn)

2 + (x − Xk)
2 + (x −Yk)

2

2λ 2

⎡

⎣
⎢

+
ieB (x − Xn)(y +Yn)− (x − Xk)(y +Yk){ }

2
⎤

⎦
⎥dxdy

 (26)

 1.4 Initial condition

The initial condition is the incident wave packet at nth dot defined by

 Ψ(x, y,0) = fn (x, y)e
iqy (27)

where q is momentum 0.05/nm. The initial coefficient can be found by

Ψ(0) = eiqy fn
fk fk Ψ(0)

k
∑ = fk fk

k
∑ eiqy fn

fk Ψ(0) fk
k
∑ = fk e

iqy fn fk
k
∑

fk Ψ(0) = fk e
iqy fn

 (28)

Because ck (0) = fk Ψ(0) = fk e
iqy fn then the element kth of coefficient matrix are

 ck (0) = fk
* fne

iqy dxdy∫∫ (29)

14

2 Programming

 2.1 Introduction

The simulation was developed on MATLAB software. In the case of

1,000 quantum dots use time about 1-15 minutes for calculation all matrices upon

applied magnetic field. There are three main processes in the system “Setup

parameters”, “Build matrices” and “Get result”. All source code are showed in the

appendix.

Figure 3 Stated diagram of program

2.2 Setting parameters

All parameters, position of quantum dots and magnetic field can be setup

in three following script files.

2.2.1 Script file “parameter.m”

All constant parameter and main magnet field are setup in this file.

The main magnetic field is magnetic field of the system but still not present in the

quantum dots because the system needs to control magnetic field in every quantum

dots.

2.2.2 Script file “ position.m”

15

The properties of quantum dots are configure in this files such as

position of all quantum dots in the system which collected in array named

“positionQuantumDots”. The number of quantum dots and the momentum in the

Eq.(27) are parameter named “initialQuantumDots” and “initialMomentum”,

Consequently.

2.2.3 Script file “setMagneticField.m”

The magnetic field of every quantum dots, can be adjusted in this

files, are collected in array which index of array is the number of quantum dots.

2.3 Preparation matrices

The coefficient matrices need to calculate from S-Matrix, H-Matrix and

T-Matrix which is the longest time of this program. So after input all parameters the

program can be start calculate by script file name “start.m”. This one will run all

parameter script files and then start build all matrices.

S-Matrix is the first matrix which be calculated will take a time for 40%

of all running time same as the secondary calculated H-matrix. Then T-matrix which

is third calculation by a function of MATLAB called “eig” for solved eigenvalue and

eigenvector of matrix. The final is the “initialCoefficientMatrix” the coefficient list at

starting time.

2.4 Get results

This state is waiting state of the program for next order will have finished

then show the results and the program become back to waiting state. The result are

many type which upon a next step running script. This research present probability of

the wave packet through the ring in many cases.

16

Figure 4 Sequence of script files

17

RESULTS AND DISCUSSION

Results

Figure 5 Probability for a Gaussian wave packet for zero magnetic field

Figure 6 Probability for a Gaussian wave packet for magnetic field = 0.454T

Figure 7 Probability for a Gaussian wave packet for magnetic field = 0.0378T

18

Figure 4-6 show the time evolution of wave at 2, 4, 6, 8, 10 and 12 ps with the

same magnetic field in both rings. The contour plots show probability, which square

the coefficients of wave function. For the zero magnetic field the wave packet being

transferred through first ring and reduced in second ring. As the results apply the

rings with magnetic field in +z directions the wave packet tend to left arm of the rings

by the Lorentz force. However the packet can’t pass the first ring in case flux of

magnetic field Φ = 0.5Φ0 due to detruction interference of the wave packet between

the arms or Aharonov-Bohm effect.

Figure 8 Transmission probability by time-evolution of the wave packet

The transmission probability which, defined by overall probability of the exit

wire and is occasionally increasing. In Figure 7 the graph for B = 4.5Φ0 shows the

inference not affect wave packet to completely disappear as B = 0.5Φ0 . The tendency

of transmission rate by same magnetic field in both rings is enlarged in low magnetic

field.

19

Figure 9 In the case of magnetic field of first ring = 0.454T and the second ring =

0.398T

Figure 10 Transmission probability of the wave packet vary by different magnetic

field between second and first rings with magnetic field of first ring = 0,

0.454T, -0.454T

20

The case of different magnetic field between both rings is shown by Figure 8.

With B1 = 6Φ0 and B2 = B1 − 0.006 the wave packet is nearly can’t pass to second

ring and circulate back to the entrance. Thus we plot the transmission probabilitiy at

time t = 50ps by strict magnetic field of first ring B1 = 0 , 6Φ0 , −6Φ0 and vary

magnetic field of second ring . The result is shown in Figure 8, for zero magnetic

field the probability is symmetry both side, but asymmetry for exist of magnetic field.

The overlap of the magnet lines seems to be increased from the lower line.

Discussion

 The purpose of this research is optimistic calculation to be better than

calculate by iteration method and the result show in the same way. The transmission

probability is very similar to another research but still have some noise in the result.

21

CONCLUSION

The simulation have solved the double quantum rings in static magnetic field

with the system of differential equation by transformation to canonical form. The

initial Guassian wave packet can pass through the double quantum rings in condition

of applied magnetic field. The Aharonov-Bohm effect can reduce probability of

transmission to a exit wire because the interference of phase shift between both arms.

The different between magnetic field of both rings affect the transmission rate. If the

difference is intensive enough, the wave packet can’t pass the rings.

22

LITERATURE CITED

Szafan, B. and F. M. Peeters. 2005. Time-dependent simulations of electron transport

throught a quantum ring: Effect of the Lorentz force. Phys. Rev. B. 72:

165301-165309.

Aharonov, Y. and D. Bohm. 1959. Significance of Electromagnetic Potentials in the

Quantum Theory. Phys. Rev. 115: 485-491.

Pedersen, S., A. E. Hansen, C. B. Sorensen and P. E. Lindelof. 2000. Observation of

quantum asymmetry in an Aharonov-Borh ring. Phys. Rev. B. 61:5457-5460.

Webb, R. A., S. Washburn, C. P. Umbach and R. B. Laibowitz. 1985. Observation of

h/e Aharonov-Bohm Oscillations in Normal-Metal Rings. Phys. Rev. Lett.

54:2696-2699.

Pichugin, K. N. and A. F. Sadreev. 1997. Aharanov-Bohm oscillations of

conductance in two-dimensional rings. Phys Rev. B 56:9962-9673.

Chambers, R. G. 1960. Shift of an electron interference pattern by enclosed magnetic

flux. Phys. Rev. Lett. 5:3-5.

23

APPENDIX

24

Appendix Source Code

1. Programming code of “start.m”

parameter

position
setMagneticField

pathNextScript = fullfile('file','createSMatrix');

run(pathNextScript)

2. Programming code of “parameter.m”

%% Defined System Properties

magneticField = 0.756;

%% Defined Physics Constant

%Planck's Constant Divide by 2*PI

planckConstantReduced = 1.05457148e-34;

%% Defined Electron Properties

%Electron Effective Mass

massElectron = 0.067*9.10938188e-31;

%Parameter Lambda in Function
lambdaElectron = 19.8e-9;

%Electron Charge

chargeElectron = 1.60217646e-19;

3. Programming code of “position.m”

%% Defined Quantum Dot Properties
magnitude = 1e-9;

%Radius of Quantum Dots
radiusQuantumDots = 10*magnitude;

%Space between two closing Quantum Dots

25

spacingBetweenQuantumDots = 2*radiusQuantumDots;

%Effective Range of Quantum Dots
effectiveRangeQuantumDots = 14*2*radiusQuantumDots;

%% Create Position of All Quantum Dots

numberQuantumDots = 1000;
positionQuantumDots = zeros(numberQuantumDots, 2);

initialQuantumDots = 452;

initialMomentum = 0.053e9;

%Create Incoming Wire

for j = 1:460

 positionQuantumDots(j,1) = 0;

 positionQuantumDots(j,2) = spacingBetweenQuantumDots*j -2000e-9;

end

%Prepare position set of ring

radiusRing = 132e-9;

radiusX = radiusRing*cos(-pi/2:pi/20:3*pi/2); %Create X Position
Set of ring

radiusY = radiusRing*sin(-pi/2:pi/20:3*pi/2); %Create Y Position

Set of ring

radiusX(1) = 0;

%Create First Ring

for j = 461:500

 positionQuantumDots(j,1) = positionQuantumDots(460,1)+radiusX(j-
460);

 positionQuantumDots(j,2) =

positionQuantumDots(460,2)+spacingBetweenQuantumDots +

radiusRing+radiusY(j-460);
end

numMidLine = 3; %Number of dots between rings(not zero)

%Create Dots Between Rings

for j = 500+1:500+numMidLine

 positionQuantumDots(j,1) = 0;

26

 positionQuantumDots(j,2) =

positionQuantumDots(481,2)+spacingBetweenQuantumDots*(j-500);
end

%Create Second Ring

for j = 500+numMidLine+1:500+39+numMidLine+1
 positionQuantumDots(j,1) =

positionQuantumDots(500+numMidLine,1)+radiusX(j-(500+numMidLine));

 positionQuantumDots(j,2) =

positionQuantumDots(500+numMidLine,2)+spacingBetweenQuantumDots +
radiusRing+radiusY(j-(500+numMidLine));

end

%Create Outgoing Wire

for j = 500+39+numMidLine+2:numberQuantumDots
 positionQuantumDots(j,1) = 0; %Position x

 positionQuantumDots(j,2) =

positionQuantumDots(521+numMidLine,2)+spacingBetweenQuantumDots*(j-

(500+39+numMidLine+1));
end

4. Programming code of “setMagneticField.m”

%%Create Matrix for collect magnetic field each dots

dotMagnet = zeros(numberQuantumDots, 1);

dotMagnet(1:500) = magneticField;

dotMagnet(501:numberQuantumDots) = magneticField;

%% Create Signature For Naming Cache Files

signaturePosition = 0;

for j = 1:numberQuantumDots*2
signaturePosition = signaturePosition +

positionQuantumDots(j)*1e20*numberQuantumDots/j;

end

for j = 1:numberQuantumDots

27

signaturePosition = signaturePosition +

dotMagnet(j)*1e20*numberQuantumDots/j;
end

signaturePosition = round(signaturePosition);

4. Programming code of “getRateAtTime.m”

%Get Transmission Rate at timeToGetRate

timeToGetRate = 65e-12;

listOutputDot = 540:numberQuantumDots;

rateAtTime = lastRate

pathNextScript = fullfile('file', 'createRateAtTime');

run(pathNextScript);

5. Programming code of “plotRate.m”

%%Plot Transmission Rate

rateStartTime = 0;

rateEndTime = 65e-12;
timeStep = 0.175e-12;

listOutputDot = 540:numberQuantumDots; %Label outgoing Dots

pathNextScript = fullfile('file','createPlotRate');

run(pathNextScript)

6. Programming code of “plotRateByMagnetic.m”

startMagnetic = magneticField;
endMagnetic = 0.995*magneticField;

stepMagnetic = -0.00002*magneticField;

28

rateByMagneticX = startMagnetic:stepMagnetic:endMagnetic;

rateByMagneticY = zeros(size(rateByMagneticX,2),1);

rateByMagneticX = magneticField-rateByMagneticX;

fIndex = 1;

for index = 1:size(rateByMagneticX,2)

magneticIndex = startMagnetic + (index-1)*stepMagnetic;

dotMagnet = zeros(numberQuantumDots, 1);

dotMagnet(1:500) = startMagnetic;

dotMagnet(501:numberQuantumDots) = magneticIndex;

signaturePosition = 0;

for i = 1:numberQuantumDots*2

 signaturePosition = signaturePosition +
positionQuantumDots(i)*1e20*numberQuantumDots/i;

end

for i = 1:numberQuantumDots
 signaturePosition = signaturePosition +

dotMagnet(i)*1e20*numberQuantumDots/i;

end

signaturePosition = round(signaturePosition);

clear i;

nextStepScript = fullfile('file','createSMatrix');

run(nextStepScript)

getRateAtTime

rateByMagneticY(index) = lastRate;

29

end

plot(rateByMagneticX, rateByMagneticY);

7. Programming code of “plotContour.m”

startTime = 2e-12;%2.175e-12;
endTime = 8e-12;%8.8e-12;

timeStep = 0.5e-12;%0.175e-12;%0.5e-13;

%startDot = 1;
%endDot = 5;

numberEffectiveDots = 40;

topPlot = 7875e-9;
bottomPlot = 7175e-9;

leftPlot = -450e-9;

rightPlot = 450e-9;

resolutionPlot = 50; %Resolution of Plotting

resolutionProbBasis = 50; %Resolution of Probability Basis

%resolutionProbBasisX = resolutionProbBasis;

%resolutionProbBasisY = 3*resolutionProbBasisX;

widthPlot = rightPlot-leftPlot;

heightPlot = topPlot-bottomPlot;

spacingPlotX = widthPlot/(resolutionPlot-1);

spacingPlotY = heightPlot/(resolutionPlot-1);

plotX = leftPlot:spacingPlotX:rightPlot;
plotY = bottomPlot:spacingPlotY:topPlot;

plotX = plotX';

plotY = plotY';

pathNextScript = fullfile('file','createPlotContourBasis');

30

run(pathNextScript)

8. Programming code of “file/createSMatrix.m”

%Calculating S-Matrix

SMatrix = zeros(numberQuantumDots);

try

 %Try to get cache

 cacheName =

['cache/',num2str(signaturePosition),num2str(magneticField),'_SMatri
x.mat'];

 load(cacheName,'SMatrix');

catch

 %Start Calculation

 for n = 1:numberQuantumDots

 %Display progression

 clc
 disp(['Calculating SMatrix... ',num2str((n-

1)/numberQuantumDots*100),'%']);

 for k = 1:numberQuantumDots
 %Get center position of quantum dot

 Xn = positionQuantumDots(n,1);

 Yn = positionQuantumDots(n,2);

 Xk = positionQuantumDots(k,1);
 Yk = positionQuantumDots(k,2);

 %Find distance between dots

 diffX = Xk-Xn;
 diffY = Yk-Yn;

 %If distance is too far the integration is 0

 if sqrt(diffX^2 + diffY^2) >
10*spacingBetweenQuantumDots %about 10 dots;

 SMatrix(k,n) = 0;

 else

31

 %Calculate center between dots

 Xh = (Xn+Xk)/2;
 Yh = (Yn+Yk)/2;

 %Create x,y position for integration

 limitRange = 1e-7;
 stepSize = 1e-8;

 rangeX = Xh-limitRange:stepSize:Xh+limitRange;

 rangeY = Yh-limitRange:stepSize:Yh+limitRange;

 countRangeX = size(rangeX,2);

 %probInt is area for plot data for function waiting

to sum
 probInt = zeros(countRangeX);

 for w=1:countRangeX

 for v=1:countRangeX
 x = rangeX(v);

 y = rangeY(w);

 probInt(v,w) = exp((-((x-Xk).^2+(y-
Yk).^2+(x-Xn).^2+(y-Yn).^2)/(2*lambdaElectron.^2))-

(i*chargeElectron*((dotMagnet(k)*((x-Xk).*(y+Yk)))

 -(dotMagnet(n)*((x-Xn).*(y+Yn)))))

 /(2*planckConstantReduced))
 /(lambdaElectron.^2*pi);

 end

 end

 %Multiply result with area

 probInt = probInt*stepSize*stepSize;

 SMatrix(k,n) = sum(sum(probInt));

 end

 end

32

 end

 disp('Completed');

 save(cacheName, 'SMatrix');

end

createHMatrix;

9. Programming code of “file/createHMatrix.m”

HMatrix = zeros(numberQuantumDots);

try

 %Try to get cache

 cacheName = ['cache/',num2str(signaturePosition),

num2str(magneticField),'_HMatrix.mat'];
 load(cacheName,'HMatrix');

catch

 for n = 1:numberQuantumDots

 %Display progression
 clc

 disp(['Calculating HMatrix... ',num2str((n-

1)/numberQuantumDots*100),'%']);

 for k = 1:numberQuantumDots

 %Get center position of quantum dot

 Xn = positionQuantumDots(n,1);

 Yn = positionQuantumDots(n,2);
 Xk = positionQuantumDots(k,1);

 Yk = positionQuantumDots(k,2);

 %Find distance between dots
 diffX = Xk-Xn;

 diffY = Yk-Yn;

 %If distance is too far the integration is 0
 if sqrt(diffX^2 + diffY^2) >

10*spacingBetweenQuantumDots %about 10 dots;

33

 HMatrix(k,n) = 0;

 else
 %Calculate center between dots

 Xh = (Xn+Xk)/2;

 Yh = (Yn+Yk)/2;

 %Create x,y position for integration

 limitRange = 1e-7;

 stepSize = 1e-8;

 rangeX = Xh-limitRange:stepSize:Xh+limitRange;

 rangeY = Yh-limitRange:stepSize:Yh+limitRange;

 countRangeX = size(rangeX,2);

 probInt = zeros(countRangeX);

 for w=1:countRangeX

 for v=1:countRangeX
 x = rangeX(v);

 y = rangeY(w);

 probInt(v,w) =
((planckConstantReduced.^2*((2/lambdaElectron.^2)

 -(((y-Yn)./(lambdaElectron.^2))-

((i*chargeElectron*dotMagnet(n).*(x-Xn))

 /(2*planckConstantReduced))).^2-(((x-Xn)./(lambdaElectron.^2) -
((i*chargeElectron*dotMagnet(n).*(y+Yn))

/(2*planckConstantReduced))).^2))-

(2*i*chargeElectron*dotMagnet(n)*y*planckConstantReduced.* (((x-

Xn)/(lambdaElectron.^2))
i*chargeElectron*dotMagnet(n)*(y+Yn)) /(2*planckConstantReduced))))

+(chargeElectron.^2*dotMagnet(n).^2*y.^2)).*exp((-((x-Xk).^2+(y-

Yk).^2+(x-Xn).^2+(y-Yn).^2)/(2*lambdaElectron.^2))-

(i*chargeElectron*((dotMagnet(k)*((x-Xk).*(y+Yk)))-
(dotMagnet(n)*((x-Xn).*(y+Yn)))))

/(2*planckConstantReduced))/(2*massElectron*lambdaElectron.^2*pi);

34

 end

 end

 %Multiply result with area

 probInt = probInt*stepSize*stepSize;

 HMatrix(k,n) = sum(sum(probInt));

 end

 end
 end

 disp('Completed');

 save(cacheName,'HMatrix');

end

createTMatrix;

10. Programming code of “file/createTMatrix.m”

%Create Transformation Matrix

try
 cacheNameTMatrix = ['cache/',num2str(signaturePosition),

num2str(magneticField),'_TMatrix.mat'];

 cacheNameInvTMatrix = ['cache/',num2str(signaturePosition),

num2str(magneticField),'_invTMatrix.mat'];
 cacheNameDMatrix = ['cache/',num2str(signaturePosition),

num2str(magneticField),'_DMatrix.mat'];

 load(cacheNameTMatrix,'TMatrix');
 load(cacheNameInvTMatrix,'invTMatrix');

 load(cacheNameDMatrix,'DMatrix');

catch

 disp('Calculating... TMatrix');

 TMatrix = zeros(numberQuantumDots);

 invTMatrix = zeros(numberQuantumDots);

35

 AMatrix = zeros(numberQuantumDots);

 DMatrix = zeros(numberQuantumDots);

 AMatrix = inv(SMatrix)*HMatrix;

 [TMatrix, DMatrix] = eig(AMatrix, 'nobalance');

 %DMatrix collect eigenvalue and TMatrix collect eigenvector

 DMatrix = diag(DMatrix);

 invTMatrix = inv(TMatrix);

 save(cacheNameTMatrix,'TMatrix');

 save(cacheNameInvTMatrix,'invTMatrix');

 save(cacheNameDMatrix,'DMatrix');

 disp('Completed');

end

createInitialCoefficientMatrix;

11. Programming code of “file/createInitialCoefficientMatrix.m”

%Calculating Initial CofficientMatrix

clc

disp('Calculating... initialCofficientMatrix');

initialCoefficientMatrix = zeros(numberQuantumDots, 1);

for k = 1:numberQuantumDots

 Xn = positionQuantumDots(initialQuantumDots, 1);

 Yn = positionQuantumDots(initialQuantumDots, 2);

 Xk = positionQuantumDots(k,1);

 Yk = positionQuantumDots(k,2);

 Xh = (Xn+Xk)/2;

 Yh = (Yn+Yk)/2;

36

 %If y distance is in range of 10 quantum dots

 if abs(Yn-Yk) < 200e-9
 %Create x,y position for integration

 limitRange = 1e-7;

 stepSize = 1e-9;

 rangeX = Xh-limitRange:stepSize:Xh+limitRange;

 rangeY = Yh-limitRange:stepSize:Yh+limitRange;

 countRangeX = size(rangeX,2);

 probInt = zeros(countRangeX);

 for u=1:countRangeX

 for v=1:countRangeX
 x = rangeX(u);

 y = rangeY(v);

 probInt(u,v) = exp(-((x-Xk)^2+(y-Yk)^2+(x-Xn)^2+(y-
Yn)^2)/(2*lambdaElectron^2)...

 -

((i*chargeElectron*((dotMagnet(k)*(x-Xk)*(y+Yk))...

 -
(dotMagnet(initialQuantumDots)*(x-Xn)*(y+Yn))))...

/(2*planckConstantReduced))+(i*initialMomentum*y))...

 /(lambdaElectron^2*pi);
 end

 end

 %Multiply result with area
 probInt = probInt*stepSize*stepSize;

 initialCoefficientMatrix(k) = sum(sum(probInt));

 end

end

37

disp('Completed');

12. Programming code of “file/createCoefficientAtTime.m”

%Calculate Coefficient At Time

CoefficientMatrix = invTMatrix*initialCoefficientMatrix;
CoefficientMatrix = CoefficientMatrix.*exp(-

i*DMatrix*timeForCoefficient/planckConstantReduced);

CoefficientMatrix = TMatrix*CoefficientMatrix;

CoefficientMatrix =

CoefficientMatrix/sqrt(trace(CoefficientMatrix*CoefficientMatrix'));

13. Programming code of “file/createRateAtTime.m”

%Find Transmission Rate At Time

timeForCoefficient = timeToGetRate;

createCoefficientAtTime

probMatrix = real(CoefficientMatrix).^2;

lastRate = sum(probMatrix(listOutputDot));

14. Programming code of “file/createPlotRate.m”

%Plot Tranmission Rate from rateStartTime to rateEndTime

ratePlotX = rateStartTime:timeStep:rateEndTime;

ratePlotY = zeros(size(ratePlotX, 2),1);

for index = 1:size(ratePlotX, 2)

 time = rateStartTime + (index-1)*timeStep;

38

 timeForCoefficient = time;

 createCoefficientAtTime

 probMatrix = real(CoefficientMatrix).^2;

 %Sum Output Rate

 ratePlotY(index) = sum(probMatrix(listOutputDot));

end

plot(ratePlotX,ratePlotY);

15. Programming code of “file/createPlotContourBasis.m”

%% Find Quantum Dots in Plotting Area

disp('Check in range dots...');

%inRangeQuantumDots for collect index of dots in plot area
inRangeQuantumDots = zeros(1,1);

%Start checking all dots whether in range of contour plot

for n = 1:numberQuantumDots
 x = positionQuantumDots(n,1);

 y = positionQuantumDots(n,2);

 top = topPlot;
 left = leftPlot;

 right = rightPlot;

 bottom = bottomPlot;

 %If this dot in range of plot

 if ((x >= left) && (x <= right) && (y <= top) && (y >= bottom))

 inRangeQuantumDots(end+1,:) = n;

 end
end

inRangeQuantumDots(1,:) = []; %delete first row

39

%% Build Plotting Basis

disp('Calculating Plotting Basis...');

listEffectiveQuantumDots = zeros(1,2);

for k = 1:size(inRangeQuantumDots, 1)
 index = inRangeQuantumDots(k);

 if k > numberEffectiveDots

 lowEffectDots = 0;
 else

 if index > numberEffectiveDots

 lowEffectDots = -1*numberEffectiveDots;

 else

 lowEffectDots = -1*(index-1);
 end

 end

 for n = lowEffectDots:1:numberEffectiveDots
 if ((n >= 0) || (n <= -k)) %check for not

calculation low triangle of matrix

 index2 = index+n;

 Xk = positionQuantumDots(index,1);

 Yk = positionQuantumDots(index,2);

 Xn = positionQuantumDots(index2,1);

 Yn = positionQuantumDots(index2,2);
 diffX = Xk-Xn;

 diffY = Yk-Yn;

 if sqrt(diffX^2 + diffY^2) <
10*spacingBetweenQuantumDots

 listEffectiveQuantumDots(end+1,:) = [index,

index2];

 probBasis = zeros(resolutionPlot); %Basis of

Plotting

40

 for u = 1:resolutionPlot

 for v = 1:resolutionPlot
 x = plotX(u);

 y = plotY(v);

 F = exp((-((x-Xk).^2+(y-Yk).^2+(x-

Xn).^2+(y-Yn).^2)/(2*lambdaElectron.^2))-
(i*chargeElectron*((dotMagnet(index)*(x-Xk)*(y+Yk))-

(dotMagnet(index2)*(x-

Xn)*(y+Yn))))/(2*planckConstantReduced))/(lambdaElectron.^2*pi);

 probBasis(v,u) = F;

 end

 end

 cacheName =
['cache/basis/',num2str(size(listEffectiveQuantumDots,1)-

1),'_','probBasis.mat'];

 save(cacheName,'probBasis');

 end

 end

 end

end
listEffectiveQuantumDots(1,:) = []; %Delete first row that is 0,0

disp('Completed');

createPlotContourEachTime

16. Programming code of “file/createPlotContourEachTime.m”

%Run Time

disp('Plotting...');

%Setting color scale for contour plot
F = @(x,y,Xn,Yn,Xk,Yk)exp((-((x-Xk).^2+(y-Yk).^2+(x-Xn).^2+(y-

Yn).^2)/(2*lambdaElectron.^2))-(i*chargeElectron*magneticField*((x-

Xk)*(y+Yk)-(x-

41

Xn)*(y+Yn)))/(2*planckConstantReduced))/(lambdaElectron.^2*pi);

maxProbPlot = F(0,0,0,0,0,0);
maxProbPlot = maxProbPlot/4;

v = 0.2e13:maxProbPlot/75:maxProbPlot;

%fIndex for count frame
fIndex = 1;

for time = startTime:timeStep:endTime

 probPlot = zeros(resolutionPlot);

 timeForCoefficient = time;

 createCoefficientAtTime

 for index = 1:size(listEffectiveQuantumDots,1)
 k = listEffectiveQuantumDots(index,1);

 n = listEffectiveQuantumDots(index,2);

 cSquare = CoefficientMatrix(k)'*CoefficientMatrix(n);

 if n > k

 cSquare = 2*cSquare;

 end

 cacheName =

['cache/basis/',num2str(index),'_','probBasis.mat'];

 load(cacheName);

 probPlot = probPlot + real(cSquare*probBasis);

 end

scatter(positionQuantumDots(:,1),positionQuantumDots(:,2),'x','Marke

rEdgeColor', [.9 .9 .9]);

 hold on
 contour(plotX, plotY, probPlot,v);

 hold off

 str = ['time = ',num2str(time*1e12, '%2.3f'),' ps'];

42

 delete(findall(gcf,'Tag','somethingUnique'))

 hAnnotation = annotation('textbox', [.15 .8, .1, .1], 'String',
str, 'Tag' , 'somethingUnique');

 axis([leftPlot rightPlot, bottomPlot topPlot]);

 frame(fIndex) = getframe;
 fIndex = fIndex+1;

end

disp('Completed');

43

CURRICULUM VITAE

NAME : Mr. Chonlathep Kitsinthopchai

BIRTH DATE : Sep 13, 1987

BIRTH PLACE : Bangkok, Thailand

EDUCATION :YEAR INSTITUTE DEGREE/DIPLOMA

 2009 Kasetsart Univ. B.S.(Physics)

SCHOLARSHIP/AWARDS : Development and Promotion of the gifted in Science

 and Technology Project (DPST)

