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Lorentz force leads to electron asymmetry which enhances the electron passing 

through a quantum ring while the Aharanov-Bohm effect (AB effect) reduces the 

probability of transmission by phase shifted interference. For zero or similar 

magnetic field of both rings, the wave packet can pass both quantum rings to the exit 

quantum wire while different magnetic field of both rings prevent the second ring’s 

injection of electron. 
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DYNAMICAL SIMULATION OF ELECTRON HOPING IN 

DOUBLE QUANTUM RINGS 

 

INTRODUCTION 

 
The quantum dot is a portion of matter that confined electron in spatial three 

dimensions in 1-20 nanometer scale of diameter. Consequently, giving optical and 

electronic properties intermediate between semiconductors and discrete molecules. 

Sorting of many quantum dots give new material structure such as quantum wire, 

quantum rings. The quantum dot research and development are going to explore 

innovation of material property. 

 

The quantum rings is produced by quantum dots in two dimensions plane 

circular pattern. The electrons are hopping through between quantum dots that 

generate the current in system. The wave function of an electron passing the quantum 

rings under magnetic field can be controlled the arms of passing or denied it by 

interference. In addition the Aharonov-Bohm effect give the explanation of occurring 

interference by phase shift of both arm. Moreover the effect of Lorentz force, which 

bend electron to aside, is involved. Transport properties of quantum wires, dots, and 

wells attract much attention because of rapid development of nanotechnology. In 

these structures the magnetic field can tune the phase of the electronic wave function. 

 

The system of quantum rings can be solved by numerical method. Applied 

magnetic field strict the wave packet to arbitrary condition. The study will perform 

advantage of controlling electron by magnetic field such as transistor. For this reason 

the simulating of double quantum rings is remarkable.  

 

In the reality, in experiments on very small rings of gold with circumference 

about 100-500 nm and width about 40 nm no strictly periodic behavior of any kind 

was observed. Basically magnetoresistance reveals the contribution of the aperiodic 

fluctuations. The detailed structure of the peak in the power spectrum is, as it was 

suggested by Stone in 1985, the result of mixing of the field scales corresponding to 
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the area of the hole in the ring and the area of the arms of the ring. Actually, with 

decreasing of the aspect ratio d/L, where d is a width of the arms and L is a size of the 

ring, the contribution of the aperiodic fluctuations increases. The first numerical 

analysis of quantum fluctuations of the magnetoresistence of the two-dimensional 

strip in the frame work of the hopping model with random site energies was 

performed by Stone. It was shown that the stationary fluctuations of the 

magnetotransport of electrons are a direct consequence of the microscopic quantum 

states in specific samples. These fluctuations enhance much if the states become 

localized (Webb et al, 1985). 

 

In 1997, Pichugin and Sadreev solve the Schrodinger equation numerically in 

the framework of the two-dimensional tight-binding model to find the Aharanov-

Bohm Oscillations of the conductance and detailed current flow distributions. 

However, they are restricted by the field region where one flux quantum per lattice 

plaquette is much less than unity, which makes the continual Schrodinger equation 

certainly applicable. The current flow patterns display rich vortex structures and 

show that the formation of the convectional vortex flow patterns is directly related to 

the complexity in flux dependence of the transmission. They show that the laminar 

flow of the electron takes place only in the very restricted case of the rings with small 

and moderate aspect ratios, with the single-channel transport, and with zero flux. 

Application of the flux gives rise to the current vortex near the entrance of the ring. 

This vortex mixes inner and outer paths of the electron transport in such a way that 

phase shifts induced by different fluxes enclosed by different trajectories of the 

electron in the ring become equaled. As a result they can observe the quasiregular 

Aharanov-Bohm Oscillations of the transmission in rings with small aspect ratios. 

With an increasing in the aspect ratio and the number of channels the Aharanov-

Bohm Oscillations of the transmission become irregular and, correspondingly, the 

current flow patterns acquire a rather volatile form with complex distribution of 

vortices (Pichugin and Sadreev, 1997). 

 

In 2000, Pedersen et al published the observation of quantum asymmetry in 

an Aharonov-Bohm ring. They have investigated the Aharonov-Bohm effect in a one-
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dimensional GaAs/ Ga0.7Al0.3 as ring at low-magnetic fields. The oscillatory 

magnetoconductance of these systems is systematically studied as a function of 

density. They observe phase shifts in the magnetoconductance oscillations, and 

halving of the fundamental h/e period, as the density is varied. Theoretically we find 

agreement with the experiment, by introducing an asymmetry between the two arms 

of the ring (Pedersen, 2000). 

 

In 2005, Szafran and Peeters published the simulations of electron transport 

through a quantum ring in the effect of the Lorentz force. The research describe the 

effect of the Lorentz-force-related deformation of the electron trajectories on the 

Aharonov-Bohm effect in a semiconductor quantum ring (Szafan and Peeters, 2005).   
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OBJECTIVES 
 

1. To simulate flow characteristics of the electron wave packet through the 

double quantum rings. 

 

2. To study effect of static magnetic field to the electron in the double 

quantum rings. 
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LITERATURE REVIEW 

 
1. The Aharonov-Bohm Effect 

  

 When the beam of electrons is split in two and passed either side of a long 

solenoid before being recombined. The beams are kept well away from the solenoid 

itself, so they encounter only regions where B = 0 but A  is not zero. The two beams 

arrive with different phases (Aharonov and Bohm, 1959). 

 

 
 
g = q

A ⋅dr∫ = qΦ

2π
1
r
φ̂⎛

⎝⎜
⎞
⎠⎟∫ ⋅ rφ̂dφ( ) = ± qΦ

2
 (1) 

 

The plus sign applies to the electrons traveling in the same direction as A . The 

beams arrive out of phase by an amount proportional to the magnetic flux their paths 

encircle. 

 
 
phase difference = qΦ


 (2) 

 

This phase shift leads to measurable interference and has been confirmed 

experimentally (Chambers, 1960). 

 

2. Observation Aharonov-Bohm ring 

 

 Electron wave packets circling a magnetic flux should exhibit the phase shift 

introduced by the magnetic vector potential (Aharonov and Bohm, 1959). In a 

metallic ring, small enough so that the electron states are not randomized by magnetic 

scattering during the traversal of the arm of the ring, an interference pattern should be 

present in the magnetoresistance of the device. 
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Figure 1  Measured magnetoconductance of the device 

 

 In Figure 1 presents a measurement of the magnetoconductance of the device 

displayed in the left insert (Pedersen et al, 2000). The magnetoconductance show 

large Aharonov-Bohm oscillations. Due to the long distance between the voltage 

probes, the measurement is an effective two-terminal measurement; hence the 

Aharonov-Bohm magnetoconductance is as observed forced to be symmetrical as a 

consequence of the Onsager relations. While the right inset in Figure 1 displays the 

conductance as function of gate voltage at T=4.2K.  

 

3. Single quantum ring simulation 

 

The time-dependent Schrodinger equation for an electron passing through a 

semiconductor quantum ring is solved in the presence of a perpendicular 

homogeneous magnetic field with the effects of the Lorentz force on the Aharonov-

Bohm oscillations (Szafran and Peeters, 2005).  
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The electron confined in the (x, y)  plane with perpendicular magnetic field. 

The Hamiltonian has the form 

 

 
 
H = 1

2m
−i∇ + eA( )2  (3) 

 

where m  stands for the electron effective mass (0.067m0 )  and A is the vector 

potential (Pichugin and Sadreev, 1997). The wave function is expanded in a basis of 

Gaussian functions centered on chosen point Rn = (Xn ,Yn )  

 

 Ψ(x, y,t) = cn (t) fn (x, y)
n
∑  (4)   

with 

 
 
fn (x, y) =

1
λ π

exp (r

− R

n )2

2λ 2 + ieB(x − Xn )(y +Yn )
2

⎡

⎣
⎢

⎤

⎦
⎥  (5) 

 

The studied magnetic field range the increase of the electron localization is 

negligible. Substituting expansion Eq.(3)  into the time-dependent Schrodinger 

equation obtain a system of linear equations for the time derivative of coefficients 

cn (t) , 

 

  Sc(t) = Hc(t)  (6) 

 

which solved by  Sc(t + dt) = Sc(t − dt)− 2idtHc(t) /  , where the elements of overlap 

and Hamiltonian matrices are given by Skn = fk fn  and Hkn = fk H fn . 
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Figure 2  The transmission probability of the wave packet  in differ pattern 

 

 In Figure 2, the solid line shows the transmission probability of the wave 

packet through the circular quantum ring (Szafran and Peeters, 2005). This quantity 

was obtained by integrating the probability density leaving the ring through the upper 

lead. The decreasing amplitude is due to the growing imbalance in the amount of 

charge transferred through the left and right arms of the ring, which prevents the 

interference from being completely destructive. The values of the transmission 

probability maxima and minima are increasing functions of the magnetic field, which 

is a consequence of the guiding behavior of the Lorentz force that eases the entrance 

and exit of the wave packet. The envelope of the maxima is well approximated by the 

packet transfer probability through a semicircular wire that is obtained when the right 

arm of the circular ring is removed, plotted with the dashed line in Figure 2.  
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MATERIALS AND METHODS 

 
Materials 

 

1. Computer (Intel Core 2 Duo, Ram 4GB) 

2. MATLAB (Software) 

 

Methods 

 

1. Theory 

 

 1.1 Unitary Transformation 

 

The solving Eq.(6) with iteration method had been taking for a long time. 

However there is another way for solve this problem by transform the system of 

equation to Canonical form which is faster than one. The Eq.(6) can be optimized by 

 

  c(t) = Mc(t)  (7) 

 

where M = S−1H , because of S  and H  are Hermitian matrix and the inverse of an 

invertible Hermitian matrix. Hence M  is Hermitian matrix, which could be 

diagonalized by a unitary transformation, 

 

 D = T−1MT  (8) 

 

Here D  is diagonal and T  is transformation matrix which be found by solve 

eigenvalues and eigenvector of M . Eq.(7) becomes 

 

  T
−1c(t) = DT−1c(t)  (9) 
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Since is a time-independent matrix, we can rewrite Eq.(9) in the form 

 

  
C(t) = DC(t)  (10) 

 

The matrix Eq.(10) is a system of differential equation with the solution 

 

 C(t) = C(0)exp(Dt)  (11) 

 

Now the probability amplitude c(t)  is given by the transformation 

 

 c(t) = TC(t)  (12) 

 

 1.2 Element of S-Matrix 

 

From Skn = fk fn  are the element of S-Matrix at row kth and column nth 

defined by 

 

 fk fn = fk
* fn dxdy∫∫  (13) 

 

Since Eq.(5), These elements are 

 

 

 

fk fn = 1
λ 2π

exp (r

− R

k )2

2λ 2 − ieB(x − Xk )(y +Yk )
2

⎡

⎣
⎢

⎤

⎦
⎥∫∫

×exp (r

− R

n )2

2λ 2 + ieB(x − Xn )(y +Yn )
2

⎡

⎣
⎢

⎤

⎦
⎥dxdy

 (14) 

 

 

 

fk fn = 1
λ 2π

exp (x − Xn )
2 + (x −Yn )

2 + (x − Xk )
2 + (x −Yk )

2

2λ 2

⎡

⎣
⎢∫∫

+
ieB (x − Xn )(y +Yn )− (x − Xk )(y +Yk ){ }

2
⎤

⎦
⎥dxdy

 (15) 
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1.3 Element of H-Matrix 

 

FromHkn = fk H fn  are the element of H-Matrix at row kth and column 

nth defined by 

 

 
 
fk H fn = 1

2m
fk
* −i∇ + eA( )2 fn dxdy∫∫  (16) 

 

where  A = −Byi is the vector potential of magnetic field in z-direction. Then solve 

operator to 

 

 
 
−i∇ + eA( )2 = −2∇2 + 2ieBy ∂

∂x
+ e2B2y2  (17) 

 

Consider first term 

 

 
 
−2∇2 fn =

−2

λ π
∂2

∂x2
+ ∂2

∂y2
⎛
⎝⎜

⎞
⎠⎟
exp (r


− R

n )2

2λ 2 + ieB(x − Xn )(y +Yn )
2

⎡

⎣
⎢

⎤

⎦
⎥  (18) 

 

The 1st x-derivative of fn  

 

 
 

∂
∂x

fn =
1

λ π
−
x − Xn( )
λ 2 + ieB(y +Yn )

2
⎛
⎝⎜

⎞
⎠⎟
fn  (19) 

 

The 2nd x-derivative of fn  

 

 

 

∂2

∂x2
fn =

1
λ π

− 1
λ 2 fn

⎛
⎝⎜

⎞
⎠⎟ + −

x − Xn( )
λ 2 + ieB(y +Yn )

2
⎛
⎝⎜

⎞
⎠⎟
∂ fn
∂x

= 1
λ π

− 1
λ 2 + −

x − Xn( )
λ 2 + ieB(y +Yn )

2
⎛
⎝⎜

⎞
⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
fn

 (20) 
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The 1st y-derivative of fn  

 

 
 

∂
∂y

fn =
1

λ π
− y −Yn

λ 2 + ieB(x − Xn )
2

⎛
⎝⎜

⎞
⎠⎟ fn  (21) 

 

The 2nd y-derivative of fn  

 

 
 

∂2

∂y2
= 1
λ π

− 1
λ 2 + − y −Yn

λ 2 + ieB(x − Xn )
2

⎛
⎝⎜

⎞
⎠⎟
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
fn  (22) 

 

Then Eq.(18) becomes 

 

 
 

2

λ π
2
λ 2 +

x − Xn( )
λ 2 − ieB(y +Yn )

2
⎛
⎝⎜

⎞
⎠⎟

2

+
y −Yn( )
λ 2 − ieB(x − Xn )

2
⎛
⎝⎜

⎞
⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
fn  (23) 

 

Hence the second term of Eq.(17) becomes 

 

 
 
2ieBy ∂

∂x
fn =

2ieBy
λ π

−
x − Xn( )
λ 2 + ieB(y +Yn )

2
⎛
⎝⎜

⎞
⎠⎟
fn  (24) 

 

From Eq.(23) and Eq.(24), Then Eq. (17) becomes 

 

 

 

−i∇ + eA( )2 fn =
1

λ π
22

λ 2

⎧
⎨
⎩

+ e2B2y2

+2
x − Xn( )
λ 2 − ieB(y +Yn )

2
⎛
⎝⎜

⎞
⎠⎟

2

+2
y −Yn( )
λ 2 − ieB(x − Xn )

2
⎛
⎝⎜

⎞
⎠⎟

2

+2ieBy −
x − Xn( )
λ 2 + ieB(y +Yn )

2
⎛
⎝⎜

⎞
⎠⎟
⎫
⎬
⎪

⎭⎪
fn

 (25) 
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The elements of H-Matrix are 

 

 

 

fk H fn = 1
2mλ 2π

22

λ 2 + e2B2y2
⎧
⎨
⎩

∫∫

+2
x − Xn( )
λ 2 − ieB(y +Yn )

2
⎛
⎝⎜

⎞
⎠⎟

2

+2
y −Yn( )
λ 2 − ieB(x − Xn )

2
⎛
⎝⎜

⎞
⎠⎟

2

+2ieBy −
x − Xn( )
λ 2 + ieB(y +Yn )

2
⎛
⎝⎜

⎞
⎠⎟
⎫
⎬
⎪

⎭⎪

×exp (x − Xn )
2 + (x −Yn )

2 + (x − Xk )
2 + (x −Yk )

2

2λ 2

⎡

⎣
⎢

+
ieB (x − Xn )(y +Yn )− (x − Xk )(y +Yk ){ }

2
⎤

⎦
⎥dxdy

 (26) 

 

 1.4 Initial condition 

 

The initial condition is the incident wave packet at nth dot defined by 

 

 Ψ(x, y,0) = fn (x, y)e
iqy  (27) 

 

where q is momentum 0.05/nm. The initial coefficient can be found by 

 

 

Ψ(0) = eiqy fn
fk fk Ψ(0)

k
∑ = fk fk

k
∑ eiqy fn

fk Ψ(0) fk
k
∑ = fk e

iqy fn fk
k
∑

fk Ψ(0) = fk e
iqy fn

 (28) 

 

Because ck (0) = fk Ψ(0) = fk e
iqy fn  then the element kth of coefficient matrix are 

 

 ck (0) = fk
* fne

iqy dxdy∫∫  (29) 
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2 Programming 

 

 2.1 Introduction 

 

The simulation was developed on MATLAB software. In the case of 

1,000 quantum dots use time about 1-15 minutes for calculation all matrices upon 

applied magnetic field. There are three main processes in the system “Setup 

parameters”, “Build matrices” and “Get result”. All source code are showed in the 

appendix. 

 
Figure 3  Stated diagram of program 

  

2.2 Setting parameters 

  

All parameters, position of quantum dots and magnetic field can be setup 

in three following script files.  

 

2.2.1 Script file “parameter.m”  

 

All constant parameter and main magnet field are setup in this file. 

The main magnetic field is magnetic field of the system but still not present in the 

quantum dots because the system needs to control magnetic field in every quantum 

dots. 

 

2.2.2 Script file “ position.m” 
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The properties of quantum dots are configure in this files such as 

position of all quantum dots in the system which collected in array named 

“positionQuantumDots”. The number of quantum dots and the momentum in the 

Eq.(27) are parameter named “initialQuantumDots” and “initialMomentum”, 

Consequently. 

 

2.2.3 Script file “setMagneticField.m” 

 

The magnetic field of every quantum dots, can be adjusted in this 

files, are collected in array which index of array is the number of quantum dots. 

 

2.3 Preparation matrices 

 

The coefficient matrices need to calculate from S-Matrix, H-Matrix and 

T-Matrix which is the longest time of this program. So after input all parameters the 

program can be start calculate by script file name “start.m”. This one will run all 

parameter script files and then start build all matrices. 

 

S-Matrix is the first matrix which be calculated will take a time for 40% 

of all running time same as the secondary calculated H-matrix. Then T-matrix which 

is third calculation by a function of MATLAB called “eig” for solved eigenvalue and 

eigenvector of matrix. The final is the “initialCoefficientMatrix” the coefficient list at 

starting time. 

 

2.4 Get results 

 

This state is waiting state of the program for next order will have finished 

then show the results and the program become back to waiting state. The result are 

many type which upon a next step running script. This research present probability of 

the wave packet through the ring in many cases. 
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Figure 4  Sequence of script files 
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RESULTS AND DISCUSSION 
 

Results 

 

 
Figure 5  Probability for a Gaussian wave packet for zero magnetic field 

 

 
Figure 6  Probability for a Gaussian wave packet for magnetic field = 0.454T 

 

 
Figure 7  Probability for a Gaussian wave packet for magnetic field = 0.0378T 
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Figure 4-6 show the time evolution of wave at 2, 4, 6, 8, 10 and 12 ps with the 

same magnetic field in both rings. The contour plots show probability, which square 

the coefficients of wave function. For the zero magnetic field the wave packet being 

transferred through first ring and reduced in second ring. As the results apply the 

rings with magnetic field in +z directions the wave packet tend to left arm of the rings 

by the Lorentz force. However the packet can’t pass the first ring in case flux of 

magnetic field Φ = 0.5Φ0  due to detruction interference of the wave packet between 

the arms or Aharonov-Bohm effect. 

 

 
Figure 8  Transmission probability by time-evolution of the wave packet 

 

The transmission probability which, defined by overall probability of the exit 

wire and is occasionally increasing. In Figure 7 the graph for B = 4.5Φ0  shows the 

inference not affect wave packet to completely disappear as B = 0.5Φ0 . The tendency 

of transmission rate by same magnetic field in both rings is enlarged in low magnetic 

field. 
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Figure 9  In the case of magnetic field of first ring = 0.454T and the second ring = 

0.398T 

 
Figure 10  Transmission probability of the wave packet vary by different magnetic 

field between second and first rings with magnetic field of first ring = 0, 

0.454T, -0.454T 
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The case of different magnetic field between both rings is shown by Figure 8. 

With B1 = 6Φ0  and B2 = B1 − 0.006  the wave packet is nearly can’t pass to second 

ring and circulate back to the entrance. Thus we plot the transmission probabilitiy at 

time t = 50ps  by strict magnetic field of first ring B1 = 0 , 6Φ0 , −6Φ0  and vary 

magnetic field of second ring . The result is shown in Figure 8, for zero magnetic 

field the probability is symmetry both side, but asymmetry for exist of magnetic field. 

The overlap of the magnet lines seems to be increased from the lower line. 

 

Discussion 

 

 The purpose of this research is optimistic calculation to be better than 

calculate by iteration method and the result show in the same way. The transmission 

probability is very similar to another research but still have some noise in the result. 
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CONCLUSION 

 
The simulation have solved the double quantum rings in static magnetic field 

with the system of differential equation by transformation to canonical form. The 

initial Guassian wave packet can pass through the double quantum rings in condition 

of applied magnetic field. The Aharonov-Bohm effect can reduce probability of 

transmission to a exit wire because the interference of phase shift between both arms. 

The different between magnetic field of both rings affect the transmission rate. If the 

difference is intensive enough, the wave packet can’t pass the rings. 
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Appendix Source Code 
 

1. Programming code of  “start.m” 
 

parameter 

position 
setMagneticField 

 

pathNextScript = fullfile('file','createSMatrix'); 

run(pathNextScript) 

 

2. Programming code of “parameter.m” 

 
%% Defined System Properties 

magneticField       = 0.756; 

 
%% Defined Physics Constant 

%Planck's Constant Divide by 2*PI 

planckConstantReduced = 1.05457148e-34;     

 
%% Defined Electron Properties 

%Electron Effective Mass 

massElectron        = 0.067*9.10938188e-31; 

%Parameter Lambda in Function 
lambdaElectron      = 19.8e-9; 

%Electron Charge               

chargeElectron      = 1.60217646e-19;        

 

3. Programming code of  “position.m” 
 
%% Defined Quantum Dot Properties 
magnitude = 1e-9; 

 

 

%Radius of Quantum Dots 
radiusQuantumDots            = 10*magnitude; 

%Space between two closing Quantum Dots 
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spacingBetweenQuantumDots   = 2*radiusQuantumDots; 

%Effective Range of Quantum Dots      
effectiveRangeQuantumDots   = 14*2*radiusQuantumDots;    

 

%% Create Position of All Quantum Dots 

numberQuantumDots   = 1000;                             
positionQuantumDots = zeros(numberQuantumDots, 2);     

initialQuantumDots  = 452; 

initialMomentum     = 0.053e9; 

 
%Create Incoming Wire 

for j = 1:460 

    positionQuantumDots(j,1) = 0; 

    positionQuantumDots(j,2) = spacingBetweenQuantumDots*j -2000e-9; 

end 
 

%Prepare position set of ring 

radiusRing = 132e-9; 

radiusX = radiusRing*cos(-pi/2:pi/20:3*pi/2);    %Create X Position 
Set of ring 

radiusY = radiusRing*sin(-pi/2:pi/20:3*pi/2);    %Create Y Position 

Set of ring 

radiusX(1) = 0; 
 

%Create First Ring 

for j = 461:500 

    positionQuantumDots(j,1) = positionQuantumDots(460,1)+radiusX(j-
460); 

    positionQuantumDots(j,2) = 

positionQuantumDots(460,2)+spacingBetweenQuantumDots + 

radiusRing+radiusY(j-460); 
end 

 

numMidLine = 3; %Number of dots between rings(not zero) 

 
%Create Dots Between Rings 

for j = 500+1:500+numMidLine 

    positionQuantumDots(j,1) = 0; 
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    positionQuantumDots(j,2) = 

positionQuantumDots(481,2)+spacingBetweenQuantumDots*(j-500); 
end 

 

%Create Second Ring 

for j = 500+numMidLine+1:500+39+numMidLine+1 
    positionQuantumDots(j,1) = 

positionQuantumDots(500+numMidLine,1)+radiusX(j-(500+numMidLine)); 

    positionQuantumDots(j,2) = 

positionQuantumDots(500+numMidLine,2)+spacingBetweenQuantumDots + 
radiusRing+radiusY(j-(500+numMidLine));  

end 

 

%Create Outgoing Wire 

for j = 500+39+numMidLine+2:numberQuantumDots 
    positionQuantumDots(j,1) = 0; %Position x 

    positionQuantumDots(j,2) = 

positionQuantumDots(521+numMidLine,2)+spacingBetweenQuantumDots*(j-

(500+39+numMidLine+1));  
end 

 

4. Programming code of  “setMagneticField.m” 

 
%%Create Matrix for collect magnetic field each dots 

dotMagnet = zeros(numberQuantumDots, 1); 
 

dotMagnet(1:500) = magneticField; 

dotMagnet(501:numberQuantumDots) = magneticField;    

 
%% Create Signature For Naming Cache Files 

signaturePosition = 0; 

 

for j = 1:numberQuantumDots*2 
signaturePosition = signaturePosition + 

positionQuantumDots(j)*1e20*numberQuantumDots/j; 

end 

 
for j = 1:numberQuantumDots 
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signaturePosition = signaturePosition + 

dotMagnet(j)*1e20*numberQuantumDots/j; 
end 

 

signaturePosition = round(signaturePosition); 

 

4. Programming code of  “getRateAtTime.m” 
 

%Get Transmission Rate at timeToGetRate 

timeToGetRate = 65e-12; 
 

listOutputDot = 540:numberQuantumDots; 

 

rateAtTime = lastRate 
 

pathNextScript = fullfile('file', 'createRateAtTime'); 

run(pathNextScript); 

 

5. Programming code of  “plotRate.m” 

 
%%Plot Transmission Rate 

 

rateStartTime = 0; 

rateEndTime = 65e-12; 
timeStep = 0.175e-12; 

 

listOutputDot = 540:numberQuantumDots;  %Label outgoing Dots 

 
pathNextScript = fullfile('file','createPlotRate'); 

run(pathNextScript) 

 

6. Programming code of “plotRateByMagnetic.m” 

 
startMagnetic = magneticField; 
endMagnetic = 0.995*magneticField; 

stepMagnetic = -0.00002*magneticField; 
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rateByMagneticX = startMagnetic:stepMagnetic:endMagnetic; 

rateByMagneticY = zeros(size(rateByMagneticX,2),1); 
 

rateByMagneticX = magneticField-rateByMagneticX; 

 

fIndex = 1; 
 

for index = 1:size(rateByMagneticX,2) 

    

magneticIndex = startMagnetic + (index-1)*stepMagnetic; 
     

dotMagnet = zeros(numberQuantumDots, 1); 

dotMagnet(1:500) = startMagnetic; 

dotMagnet(501:numberQuantumDots) = magneticIndex; 

 
signaturePosition = 0; 

 

for i = 1:numberQuantumDots*2 

    signaturePosition = signaturePosition + 
positionQuantumDots(i)*1e20*numberQuantumDots/i; 

end 

 

for i = 1:numberQuantumDots 
    signaturePosition = signaturePosition + 

dotMagnet(i)*1e20*numberQuantumDots/i; 

end 

     
signaturePosition = round(signaturePosition); 

 

clear i; 

 
nextStepScript = fullfile('file','createSMatrix'); 

 

run(nextStepScript) 

 
getRateAtTime 

 

rateByMagneticY(index) = lastRate; 
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end 
 

plot(rateByMagneticX, rateByMagneticY); 

 

7. Programming code of “plotContour.m” 

 
startTime = 2e-12;%2.175e-12; 
endTime = 8e-12;%8.8e-12; 

timeStep = 0.5e-12;%0.175e-12;%0.5e-13; 

 

%startDot = 1; 
%endDot = 5; 

numberEffectiveDots = 40; 

 

topPlot = 7875e-9; 
bottomPlot = 7175e-9; 

 

leftPlot = -450e-9; 

rightPlot = 450e-9; 

 
resolutionPlot = 50;        %Resolution of Plotting 

resolutionProbBasis = 50;      %Resolution of Probability Basis 

%resolutionProbBasisX = resolutionProbBasis; 

%resolutionProbBasisY = 3*resolutionProbBasisX;   
 

widthPlot = rightPlot-leftPlot; 

heightPlot = topPlot-bottomPlot; 

 
spacingPlotX = widthPlot/(resolutionPlot-1); 

spacingPlotY = heightPlot/(resolutionPlot-1); 

 

plotX = leftPlot:spacingPlotX:rightPlot; 
plotY = bottomPlot:spacingPlotY:topPlot; 

plotX = plotX'; 

plotY = plotY'; 

 
pathNextScript = fullfile('file','createPlotContourBasis'); 
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run(pathNextScript) 

 

8. Programming code of  “file/createSMatrix.m” 
 

%Calculating S-Matrix 

SMatrix = zeros(numberQuantumDots); 

 
try 

    %Try to get cache 

    cacheName = 

['cache/',num2str(signaturePosition),num2str(magneticField),'_SMatri
x.mat']; 

    load(cacheName,'SMatrix'); 

catch 

 
    %Start Calculation 

    for n = 1:numberQuantumDots 

        %Display progression 

        clc 
        disp(['Calculating SMatrix... ',num2str((n-

1)/numberQuantumDots*100),'%']); 

         

        for k = 1:numberQuantumDots 
            %Get center position of quantum dot 

            Xn = positionQuantumDots(n,1); 

            Yn = positionQuantumDots(n,2); 

            Xk = positionQuantumDots(k,1); 
            Yk = positionQuantumDots(k,2); 

             

            %Find distance between dots 

            diffX = Xk-Xn; 
            diffY = Yk-Yn; 

        

            %If distance is too far the integration is 0 

            if sqrt(diffX^2 + diffY^2) > 
10*spacingBetweenQuantumDots %about 10 dots; 

                SMatrix(k,n) = 0; 

            else 
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                %Calculate center between dots 

                Xh = (Xn+Xk)/2; 
                Yh = (Yn+Yk)/2; 

                 

                %Create x,y position for integration 

                limitRange = 1e-7; 
                stepSize = 1e-8; 

                 

                rangeX = Xh-limitRange:stepSize:Xh+limitRange; 

                rangeY = Yh-limitRange:stepSize:Yh+limitRange; 
                 

                countRangeX = size(rangeX,2); 

 

                %probInt is area for plot data for function waiting 

to sum 
                probInt = zeros(countRangeX); 

                 

                for w=1:countRangeX 

                    for v=1:countRangeX 
                        x = rangeX(v); 

                        y = rangeY(w); 

        

                        probInt(v,w) = exp((-((x-Xk).^2+(y-
Yk).^2+(x-Xn).^2+(y-Yn).^2)/(2*lambdaElectron.^2))-

(i*chargeElectron*((dotMagnet(k)*((x-Xk).*(y+Yk))) 

 -(dotMagnet(n)*((x-Xn).*(y+Yn))))) 

 /(2*planckConstantReduced)) 
 /(lambdaElectron.^2*pi); 

 

                    end 

                end 
                 

                %Multiply result with area 

                probInt = probInt*stepSize*stepSize; 

                 
                SMatrix(k,n) = sum(sum(probInt)); 

            end 

        end 
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    end 

 
    disp('Completed'); 

    save(cacheName, 'SMatrix'); 

end 

 
createHMatrix; 

 

9. Programming code of  “file/createHMatrix.m” 

 
HMatrix = zeros(numberQuantumDots); 

 
try 

    %Try to get cache 

    cacheName = ['cache/',num2str(signaturePosition), 

num2str(magneticField),'_HMatrix.mat']; 
    load(cacheName,'HMatrix'); 

catch 

    for n = 1:numberQuantumDots 

        %Display progression 
        clc 

        disp(['Calculating HMatrix... ',num2str((n-

1)/numberQuantumDots*100),'%']); 

 
        for k = 1:numberQuantumDots 

            %Get center position of quantum dot 

            Xn = positionQuantumDots(n,1); 

            Yn = positionQuantumDots(n,2); 
            Xk = positionQuantumDots(k,1); 

            Yk = positionQuantumDots(k,2); 

             

            %Find distance between dots 
            diffX = Xk-Xn; 

            diffY = Yk-Yn; 

        

            %If distance is too far the integration is 0 
            if sqrt(diffX^2 + diffY^2) > 

10*spacingBetweenQuantumDots %about 10 dots; 
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                HMatrix(k,n) = 0; 

            else 
                %Calculate center between dots 

                Xh = (Xn+Xk)/2; 

                Yh = (Yn+Yk)/2; 

                 
                %Create x,y position for integration 

                limitRange = 1e-7; 

                stepSize = 1e-8; 

                 
                rangeX = Xh-limitRange:stepSize:Xh+limitRange; 

                rangeY = Yh-limitRange:stepSize:Yh+limitRange; 

                 

                countRangeX = size(rangeX,2); 

             
                probInt = zeros(countRangeX); 

 

                for w=1:countRangeX 

                    for v=1:countRangeX 
                        x = rangeX(v); 

                        y = rangeY(w); 

        

                        probInt(v,w) = 
((planckConstantReduced.^2*((2/lambdaElectron.^2) 

 -(((y-Yn)./(lambdaElectron.^2))-

((i*chargeElectron*dotMagnet(n).*(x-Xn)) 

 /(2*planckConstantReduced))).^2-(((x-Xn)./(lambdaElectron.^2) -
((i*chargeElectron*dotMagnet(n).*(y+Yn)) 

/(2*planckConstantReduced))).^2))-

(2*i*chargeElectron*dotMagnet(n)*y*planckConstantReduced.* (((x-

Xn)/(lambdaElectron.^2))  
i*chargeElectron*dotMagnet(n)*(y+Yn)) /(2*planckConstantReduced)))) 

+(chargeElectron.^2*dotMagnet(n).^2*y.^2)).*exp((-((x-Xk).^2+(y-

Yk).^2+(x-Xn).^2+(y-Yn).^2)/(2*lambdaElectron.^2))-

(i*chargeElectron*((dotMagnet(k)*((x-Xk).*(y+Yk)))-
(dotMagnet(n)*((x-Xn).*(y+Yn))))) 

/(2*planckConstantReduced))/(2*massElectron*lambdaElectron.^2*pi);   
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                    end 

                end 
 

                %Multiply result with area 

                probInt = probInt*stepSize*stepSize; 

                 
                HMatrix(k,n) = sum(sum(probInt));       

            end 

        

        end 
    end 

 

    disp('Completed'); 

    save(cacheName,'HMatrix'); 

end 
 

createTMatrix; 

 

10. Programming code of  “file/createTMatrix.m” 
 

%Create Transformation Matrix 

 

try 
    cacheNameTMatrix = ['cache/',num2str(signaturePosition), 

num2str(magneticField),'_TMatrix.mat']; 

    cacheNameInvTMatrix = ['cache/',num2str(signaturePosition), 

num2str(magneticField),'_invTMatrix.mat']; 
    cacheNameDMatrix = ['cache/',num2str(signaturePosition), 

num2str(magneticField),'_DMatrix.mat']; 

 

    load(cacheNameTMatrix,'TMatrix'); 
    load(cacheNameInvTMatrix,'invTMatrix'); 

    load(cacheNameDMatrix,'DMatrix'); 

catch 

    disp('Calculating... TMatrix'); 
 

    TMatrix = zeros(numberQuantumDots); 

    invTMatrix = zeros(numberQuantumDots); 
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    AMatrix = zeros(numberQuantumDots); 

    DMatrix = zeros(numberQuantumDots); 
     

    AMatrix = inv(SMatrix)*HMatrix; 

    [TMatrix, DMatrix] = eig(AMatrix, 'nobalance'); 

     
    %DMatrix collect eigenvalue and TMatrix collect eigenvector 

    DMatrix = diag(DMatrix); 

 

    invTMatrix = inv(TMatrix); 
 

    save(cacheNameTMatrix,'TMatrix'); 

    save(cacheNameInvTMatrix,'invTMatrix'); 

    save(cacheNameDMatrix,'DMatrix'); 

 
    disp('Completed'); 

end 

 

createInitialCoefficientMatrix; 

 

11. Programming code of  “file/createInitialCoefficientMatrix.m” 
 

%Calculating Initial CofficientMatrix 

clc 

disp('Calculating... initialCofficientMatrix'); 

 
initialCoefficientMatrix = zeros(numberQuantumDots, 1); 

 

for k = 1:numberQuantumDots 

     
    Xn = positionQuantumDots(initialQuantumDots, 1); 

    Yn = positionQuantumDots(initialQuantumDots, 2); 

    Xk = positionQuantumDots(k,1); 

    Yk = positionQuantumDots(k,2); 
     

    Xh = (Xn+Xk)/2; 

    Yh = (Yn+Yk)/2; 
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    %If y distance is in range of 10 quantum dots 

    if abs(Yn-Yk) < 200e-9 
        %Create x,y position for integration 

        limitRange = 1e-7; 

        stepSize = 1e-9; 

         
        rangeX = Xh-limitRange:stepSize:Xh+limitRange; 

        rangeY = Yh-limitRange:stepSize:Yh+limitRange; 

         

        countRangeX = size(rangeX,2); 
 

        probInt = zeros(countRangeX); 

 

        for u=1:countRangeX 

            for v=1:countRangeX 
                 x = rangeX(u); 

                 y = rangeY(v); 

                 

                 probInt(u,v) = exp(-((x-Xk)^2+(y-Yk)^2+(x-Xn)^2+(y-
Yn)^2)/(2*lambdaElectron^2)... 

                                    -

((i*chargeElectron*((dotMagnet(k)*(x-Xk)*(y+Yk))... 

                                                        -
(dotMagnet(initialQuantumDots)*(x-Xn)*(y+Yn))))... 

                                     

/(2*planckConstantReduced))+(i*initialMomentum*y))... 

                                /(lambdaElectron^2*pi); 
            end 

        end  

         

        %Multiply result with area 
        probInt = probInt*stepSize*stepSize; 

         

        initialCoefficientMatrix(k) = sum(sum(probInt)); 

         
    end 

     

end 
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disp('Completed'); 

 

 

12. Programming code of  “file/createCoefficientAtTime.m” 
 

%Calculate Coefficient At Time 

 

CoefficientMatrix = invTMatrix*initialCoefficientMatrix; 
CoefficientMatrix = CoefficientMatrix.*exp(-

i*DMatrix*timeForCoefficient/planckConstantReduced); 

CoefficientMatrix = TMatrix*CoefficientMatrix; 

 
CoefficientMatrix = 

CoefficientMatrix/sqrt(trace(CoefficientMatrix*CoefficientMatrix')); 

 

13. Programming code of  “file/createRateAtTime.m” 
 

%Find Transmission Rate At Time 

 

timeForCoefficient = timeToGetRate; 
 

createCoefficientAtTime 

 

probMatrix = real(CoefficientMatrix).^2; 
 

lastRate = sum(probMatrix(listOutputDot)); 

 

14. Programming code of  “file/createPlotRate.m” 
 

%Plot Tranmission Rate from rateStartTime to rateEndTime 

 

ratePlotX = rateStartTime:timeStep:rateEndTime; 

ratePlotY = zeros(size(ratePlotX, 2),1); 
 

for index = 1:size(ratePlotX, 2) 

    time = rateStartTime + (index-1)*timeStep; 
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    timeForCoefficient = time; 
     

    createCoefficientAtTime 

 

    probMatrix = real(CoefficientMatrix).^2; 
     

    %Sum Output Rate 

    ratePlotY(index) = sum(probMatrix(listOutputDot)); 

end 
 

plot(ratePlotX,ratePlotY); 

 

15. Programming code of  “file/createPlotContourBasis.m” 
 

%% Find Quantum Dots in Plotting Area 

disp('Check in range dots...'); 

 

%inRangeQuantumDots for collect index of dots in plot area 
inRangeQuantumDots = zeros(1,1); 

 

%Start checking all dots whether in range of contour plot 

for n = 1:numberQuantumDots 
    x = positionQuantumDots(n,1); 

    y = positionQuantumDots(n,2); 

     

    top = topPlot; 
    left = leftPlot; 

    right = rightPlot; 

    bottom = bottomPlot; 

     
    %If this dot in range of plot 

    if ((x >= left) && (x <= right) && (y <= top) && (y >= bottom)) 

        inRangeQuantumDots(end+1,:) = n; 

    end   
end 

inRangeQuantumDots(1,:) = []; %delete first row 
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%% Build Plotting Basis 

disp('Calculating Plotting Basis...'); 
 

listEffectiveQuantumDots = zeros(1,2); 

 

for k = 1:size(inRangeQuantumDots, 1) 
        index = inRangeQuantumDots(k); 

 

        if k > numberEffectiveDots 

            lowEffectDots = 0; 
        else 

            if index > numberEffectiveDots 

                lowEffectDots = -1*numberEffectiveDots; 

            else 

                lowEffectDots = -1*(index-1); 
            end 

        end 

         

        for n = lowEffectDots:1:numberEffectiveDots 
            if ((n >= 0) || (n <= -k))         %check for not 

calculation low triangle of matrix 

                index2 = index+n; 

                 
                Xk = positionQuantumDots(index,1); 

                Yk = positionQuantumDots(index,2); 

                Xn = positionQuantumDots(index2,1); 

                Yn = positionQuantumDots(index2,2); 
                diffX = Xk-Xn; 

                diffY = Yk-Yn; 

                 

                if sqrt(diffX^2 + diffY^2) < 
10*spacingBetweenQuantumDots                  

                    listEffectiveQuantumDots(end+1,:) = [index, 

index2]; 

                 
                    probBasis = zeros(resolutionPlot); %Basis of 

Plotting 
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                    for u = 1:resolutionPlot 

                        for v = 1:resolutionPlot 
                            x = plotX(u); 

                            y = plotY(v); 

                            F = exp((-((x-Xk).^2+(y-Yk).^2+(x-

Xn).^2+(y-Yn).^2)/(2*lambdaElectron.^2))-
(i*chargeElectron*((dotMagnet(index)*(x-Xk)*(y+Yk))-

(dotMagnet(index2)*(x-

Xn)*(y+Yn))))/(2*planckConstantReduced))/(lambdaElectron.^2*pi); 

                             
                            probBasis(v,u) = F; 

                        end 

                    end 

                 

                    cacheName = 
['cache/basis/',num2str(size(listEffectiveQuantumDots,1)-

1),'_','probBasis.mat']; 

                    save(cacheName,'probBasis');  

               
                end 

            end 

        end 

end 
listEffectiveQuantumDots(1,:) = [];    %Delete first row that is 0,0 

 

disp('Completed'); 

 
createPlotContourEachTime 

 

16. Programming code of  “file/createPlotContourEachTime.m” 
 

%Run Time 

disp('Plotting...'); 

 

%Setting color scale for contour plot 
F = @(x,y,Xn,Yn,Xk,Yk)exp((-((x-Xk).^2+(y-Yk).^2+(x-Xn).^2+(y-

Yn).^2)/(2*lambdaElectron.^2))-(i*chargeElectron*magneticField*((x-

Xk)*(y+Yk)-(x-
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Xn)*(y+Yn)))/(2*planckConstantReduced))/(lambdaElectron.^2*pi); 

maxProbPlot = F(0,0,0,0,0,0); 
maxProbPlot = maxProbPlot/4; 

v = 0.2e13:maxProbPlot/75:maxProbPlot; 

 

%fIndex for count frame 
fIndex = 1; 

 

for time = startTime:timeStep:endTime 

    probPlot = zeros(resolutionPlot); 
     

    timeForCoefficient = time; 

    createCoefficientAtTime 

     

    for index = 1:size(listEffectiveQuantumDots,1) 
        k = listEffectiveQuantumDots(index,1); 

        n = listEffectiveQuantumDots(index,2); 

         

        cSquare = CoefficientMatrix(k)'*CoefficientMatrix(n); 
         

        if n > k 

           cSquare = 2*cSquare;  

        end 
         

        cacheName = 

['cache/basis/',num2str(index),'_','probBasis.mat']; 

        load(cacheName); 
 

        probPlot = probPlot + real(cSquare*probBasis); 

    end 

     
    

scatter(positionQuantumDots(:,1),positionQuantumDots(:,2),'x','Marke

rEdgeColor', [.9 .9 .9]); 

    hold on 
    contour(plotX, plotY, probPlot,v); 

    hold off 

    str = ['time = ',num2str(time*1e12, '%2.3f' ),' ps']; 
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    delete(findall(gcf,'Tag','somethingUnique')) 

    hAnnotation = annotation('textbox', [.15 .8, .1, .1], 'String', 
str, 'Tag' , 'somethingUnique' ); 

    axis([leftPlot rightPlot, bottomPlot topPlot]); 

     

    frame(fIndex) = getframe; 
    fIndex = fIndex+1; 

end 

 

disp('Completed'); 
  



 

43 

CURRICULUM VITAE 

 
NAME  : Mr. Chonlathep Kitsinthopchai 

 

BIRTH DATE : Sep 13, 1987 

 

BIRTH PLACE : Bangkok, Thailand 

 

EDUCATION :YEAR INSTITUTE  DEGREE/DIPLOMA 

      2009            Kasetsart Univ.          B.S.(Physics) 

 

SCHOLARSHIP/AWARDS : Development and Promotion of the gifted in Science 

      and Technology Project (DPST) 




