TABLE OF CONTENTS

	Page
ABSTRACT (IN THAI)	i
ABSTRACT (IN ENGLISH)	iii
DEDICATION	V
ACKNOWLEDGEMENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvii
CHAPTER I INTRODUCTION	1
CHAPTER II LITERATURE REVIEW	5
2.1 Heavy metals and cyanide	5
2.2 Treatment technologies	9
2.3 Adsorption process	10
2.4 Nano scale zero valent iron (nZVI) and support	10
2.5 Effect adsorption	12
2.6 Equilibrium adsorption models	14
2.7 Kinetic adsorption isotherms	16
2.8 Thermodynamic studies	18
2.9 The mechanisms of lead, arsenic and cyanide removal	19
by nZVI-D	
2.10 Response surface methods	22
2.11 List of abbreviations	28
CHAPTER III PREPARATION AND CHARACTERIZATION	29
OF NANO ZERO-VALENT IRON COATED ON	
DIATOMITE	
3.1 Experimental	29
3.2 Results and discussion	31
3.3 Conclusions	39
3.4 List of abbreviations	39

TABLE OF CONTENTS (Cont.)

		Page
CHAPTER	IV EQUILIBRIUM, KINETICS, AND MECHANISM OF	41
	LEAD ADSORPTION USING NANO ZERO-VALENT	
	IRON COATED ON DIATOMITE	
4.1	Introduction	41
4.2	Objectives	43
4.3	Materials and methods	43
4.4	Results and discussion	45
4.5	Conclusions	59
4.6	List of abbreviations	60
4.7	References	61
CHAPTER	V PARAMETER SCREENING FOR IMPORTANT	67
	FACTORS INFLUENCING THE ARSENATE	
	ADSORPTION USING A PLACKETT-BURMAN	
	DESIGN	
5.1	Introduction	67
5.2	Objectives	68
5.3	Materials and methods	69
5.4	Results and discussion of experimental analysis	70
5.5	Conclusions	77
5.6	List of abbreviations	77
5.7	References	78
CHAPTER	VI RAPID ADSORPTION OF ARSENIC FROM	79
	AQUEOUS SLOUTION USING NANO ZERO-	
	VALENT IRON COATED ON DIATOMITE:	
	MECHANISM, KINETICS, AND RESPONSE	
	SURFACE METHODOLOGY	
6.1	Introduction	80
6.2	Objectives	81

TABLE OF CONTENTS (Cont.)

	Page
6.3 Experimental	81
6.4 Results and discussion of arsenate adsorption	on process 85
6.5 Results and discussion of arsenite adsorption	on process 100
6.6 Conclusions	113
6.7 List of abbreviations	114
6.8 References	115
CHAPTER VII KINETICS, AND ISOTHERM OF CY	YANIDE 123
ADSORPTION USING NANO ZERO	-VALENT
IRON COATED ON DIATOMITE	
7.1 Introduction	123
7.2 Objectives	125
7.3 Materials and methods	125
7.4 Results and discussion	128
7.5 Conclusions	137
7.6 List of abbreviations	138
7.7 References	139
CHAPTER VIII FIXED-BED COLUMN OF ARSENI	C REMOVAL 143
FROM ADUEOUS SLOUTION USI	NG NANO
ZERO-VALENT IRON COATED OF	N DIATOMITE
8.1 Objectives	143
8.2 Materials and methods	143
8.3 Results and discussions	146
8.4 Conclusion	151
8.5 List of abbreviations	151
8.6 References	152
CHAPTER IX CONCLUSIONS	155
REFERENCES	159
RESEARCH PUBLICATIONS	177
VITAE	179

LIST OF TABLES

		Page
Table 4.1	Adsorption isotherm parameters for lead adsorption	49
	onto nZVI-D ₂	
Table 4.2	Comparisons of the maximum lead adsorption capacity	50
	onto different adsorbents	
Table 4.3	Kinetic parameters for the adsorption of lead onto nZVI-D ₂	51
	at the different concentrations	
Table 4.4	Values of thermodynamic parameters for the lead adsorption	55
	onto nZVI-D ₂	
Table 5.1	Experimental range and levels of independent process	69
	variables for arsenate adsorption	
Table 5.2	Placklett-Burman designs with experimental value and	74
	predicted value of arsenate removal	
Table 5.3	Estimated effects and coefficients for arsenate removal	75
	at 10 min (coded units)	
Table 6.1	Experimental range and levels of independent process variables	82
Table 6.2	Central composite design designs with experimental value	83
	and predicted value of arsenate removal	
Table 6.3	Central composite design designs with experimental value	84
	and predicted value of arsenide removal	
Table 6.4	ANOVA for the parameters of response surface quadratic model	86
Table 6.5	Kinetic parameters for the adsorption of arsenate onto $nZVI-D_2$	94
	at the different concentrations	
Table 6.6	Mass fraction of Fe species in nZVI-D2 structures	97
Table 6.7	Central composite design designs with experimental value	101
	and predicted value of arsenite removal	
Table 6.8	ANOVA for the parameters of response surface quadratic	102
	model of arsenite	

LIST OF TABLES (Cont.)

		Page
Table 6.9	Langmuir and Freundlich and Dubinin-Radushkevich	107
	isotherm parameters for arsenite adsorption on $nZVI-D_2$	
	at initial concentration in the range of 1,000-2,000 $\mu g/L$,	
	pH 6 and 30 (±0.5) °C	
Table 6.10	Kinetic parameters for the adsorption of As^{3+} onto $nZVI-D_2$	109
	at the different concentrations	
Table 7.1	Several isotherm model parameters and correlation	132
	coefficients for adsorption of cyanide on nZVI-D2	
Table 7.2	Kinetic parameters for the adsorption of cyanide onto	133
	nZVI-D ₂ at the different concentrations	
Table 8.1	Thomas model parameters at different conditions using	18
	linear regression analysis	
Table 8.2	The Yoon and Nelson model parameters at different	150
	conditions using linear regression analysis	

LIST OF FIGURES

		Page
Figure 2.1	Distribution of Pb ²⁺ species as a function of pH based on	6
	the equilibrium constants	
Figure 2.2	Distribution of (a) arsenate and (b) arsenite species as	8
	a function of pH based on the equilibrium constants	
Figure 2.3	Distribution of cyanide species as a function of pH based	9
	on the equilibrium constants	
Figure 2.4	The mechanism of adsorption Pb ²⁺ from aqueous solution	20
	by nZVI-D	
Figure 2.5	The mechanism of adsorption arsenic from aqueous solution	21
	by nZVI-D	
Figure 2.6	The mechanism of adsorption free cyanide from aqueous	22
	solution by nZVI-D	
Figure 2.7	A modified figure of central composite design for three factors	23
Figure 2.8	Internal standard residual plots versus normal probability,	26
	histogram, fits and order	
Figure 2.9	Response surface plots of response value (<i>Y</i>) versus	27
	variable effect $(X_1 \text{ and } X_2)$	
Figure 2.10	Contour plots of response value (<i>Y</i>) versus variable effect	27
	$(X_1 \text{ and } X_2)$	
Figure 3.1	XRD patterns of diatomite, nZVI, nZVI-D ₁ : single iron oxide	32
	coating, nZVI-D ₂ : double iron oxide coating and nZVI-D ₃ :	
	tripple iron oxide coating	
Figure 3.2	Scanning electron microphotograph of (a) diatomite	34
	(b) $nZVI-D_1$ (c) $nZVI-D_2$ and (d) $nZVI-D_3$	
Figure 3.3	TEM images of (a) nZVI particles and (b) nZVI supported	35
	on diatomite (nZVI-D ₂)	
Figure 3.4	Fourier transforms infrared spectroscopy of (a) diatomite	36
	(b) $nZVI-D_1$ (c) $nZVI-D_2$ and (d) $nZVI-D_3$	

		Page
Figure 3.5	XPS spectra of (a) full survey of nZVI-D ₂ (b) Fe	37
	(c) Si and (d) Al in nZVI-D ₂	
Figure 3.6	Zeta potential charge of nZVI, Diatomite and nZVI-D as	38
	a pH function	
Figure 3.7	Effects of adsorbent type on As ⁵⁺ adsorption, at 30±5 °C,	39
	$1{,}000~\mu g/L,pH$ 4 and $0.085~g$ of nZVI, $1~g$ of nZVI-D,	
	diatomite and SiO ₂	
Figure 4.1	Efficiency adsorption of lead by (a) nZVI-D1, nZVI-D2 and	46
	nZVI-D ₃ and (b) Diatomite, nZVI and nZVI-D ₂ at 100 mg/L	
	of initial lead concentration, pH 5 of initial pH and 30 °C	
Figure 4.2	TEM images of nZVI-D ₃ (triple iron oxide coating)	47
Figure 4.3	Effect of contact time per adsorption captivity on initial	49
	concentration of Pb ²⁺ : 500-1,250 mg/L, 1 g of nZVI-D ₂ at 30°C	
Figure 4.4	Kinetic adsorption isotherm plots (a) Pseudo-first-order	52
	kinetics Model (b) Pseudo- second-order kinetics model	
	and (c) Intraparticle diffusion kinetics model of lead	
	adsorption on nZVI-D ₂ at 30°C	
Figure 4.5	Effect of temperature on the adsorption thermodynamic of Pb ²⁺	54
	by nZVI-D ₂ at 400 mg/L: initial concentration, 1 g/L: nZVI-D ₂	
	and pH 5	
Figure 4.6	XPS spectra of (a) full survey of nZVI-D ₂ before adsorption	57
	(b) iron in nZVI-D ₂ before adsorption (c) iron in nZVI-D ₂ after	
	adsorption (d) lead in nZVI-D2 after adsorption and (e) oxygen	
	in nZVI-D2 after adsorption at 1 mg/L of lead, 60 min	
Figure 4.7	XRD pattern of nZVI-D ₂ reacting with 1 mg/L of lead at 60 min	58
Figure 4.8	The mechanism of adsorption lead from aqueous solution	59
	by nZVI-D ₂	

		Page
Figure 5.1	Pareto charts for the main factors effect on arsenate removal	71
Figure 5.2	Normal probability plot of standardized effects for	71
	percentage arsenate removal (%Y)	
Figure 5.3	Main effect plots for percentage arsenate removal	72
Figure 5.4	Correlation of experimental and predicted removal	75
	efficiency for arsenate with nZVI-D ₂	
Figure 5.5	Internal standardized residual plots versus (a) normal	76
	probability, (b) fits, (c) histogram and (d) observation	
	order for arsenate Removal	
Figure 6.1	Correlation of experimental and predicted removal	87
	efficiency for As ⁵⁺ with nZVI-D ₂	
Figure 6.2	Contour plots for combined effect of (a) pH and adsorbent	88
	dose (b) initial arsenate concentration and adsorbent dose	
	(c) initial concentration and pH on removal efficiency	
	of arsenate at 1 min	
Figure 6.3	(a) adsorption isotherms of initial arsenate concentration:	92
	$1,000$ - $2,000 \mu g/g$, pH 6, adsorbent dose: $0.75 g/L$,	
	equilibrium time: 60 min and temperature: 30 °C (b) effect	
	of time on adsorption value of arsenate at 1,000 $\mu g/g$	
Figure 6.4	(a) adsorption capacity of the initial arsenate concentration	93
	$(250-2,000 \mu g/g)$ at 1 min. (b) rate constant (k_2) of pseudo	
	second-order adsorption (g/ $\mu g \cdot min$) at different initial arsenate	
	concentrations (1,000-2,000 µg/g), pH 6, adsorbent dose:	
	0.75g/L, equilibrium time: 60 min and temperature: 30 °C	
Figure 6.5	XANES spectrum of nZVI-D ₂ with before and after adsorbed	96
	arsenate at 1-20 min. E_0 of Fe foil = 7111.69 eV, FeO =	
	7122 5 eV Fe ₂ O_4 = 7122 5 eV Fe ₂ O_2 = 7127 29 Fy	

		Page
Figure 6.6	XPS spectra of (a) full survey of nZVI-D (b) As 3d (c) Si 2p	98
	(d) Al 2p in after adsorption 100 mg/L of arsenate solution	
	with nZVI-D ₂ with, 24 hr	
Figure 6.7	Mechanism of arsenate adsorption from aqueous solution	99
	by using nZVI-D ₂	
Figure 6.8	Contour plots for combined effect of (a) pH and adsorbent dose	103
	(b) initial arsenite concentration and adsorbent dose (c) initial	
	concentration and pH on removal efficiency of arsenite at 1 min	
Figure 6.9	Adsorption isotherms of arsenite at initial concentration:	106
	1,000-2,000 μg/g, and pH 6	
Figure 6.10	Effect of contact time on adsorption of arsenite (initial	108
	arsenite concentration: 1,000 $\mu g/L$ and adsorbent dose:	
Figure 6.11	(a) Pseudo first-order kinetic (b) Pseudo second-order	110
	Kinetics (c) intra-particle diffusion kinetic model for	
	arsenite adsorption on nZVI-D2 at pH 6, adsorbent dose:	
	0.75 g/L, and temperature: 30 °C	
Figure 6.12	Rate constant of pseudo second-order adsorption for	111
	arsenite adsorption on nZVI-D2 at various concentrations	
	(1,000-2,000 $\mu g/g),pH$ 6, adsorbent dose: 0.75 g/L, and	
	temperature: 30 °C	
Figure 6.13	XPS spectra of (a) full survey of nZVI-D ₂ (b) As 3d	112
	(c) Si 2p (d) Al 2p in after adsorption 100 mg/L of arsenite	
	with nZVI-D at 24 hr	
Figure 6.14	Mechanism of adsorption arsenite from aqueous solution	113
	by using nZVI-D ₂	

		Page
Figure 7.1	Cyanide removal as a function of adsorption time at	129
	Different initial cyanide concentrations. (a) percentages	
	removal (b) adsorption capacity at 0.75 g/L of the nZVI-D ₂ ,	
	pH 6 and 30 °C	
Figure 7.2	(a) Langmuir, (b) Freundlich, (c) Dubinin-Radushkevich,	131
	and (d) Temkin isotherm model for cyanide adsorption on	
	nZVI-D ₂ at 0.75 g/L of the nZVI-D, pH 6 and 30°C	
Figure 7.3	Pseudo second-order kinetics model of cyanide adsorption	134
	on nZVI-D ₂ at 0.75 g/L of the nZVI-D, pH 6 and 30°C	
Figure 7.4	Intra-particle diffusion kinetic model of cyanide adsorption	135
	on nZVI-D ₂ at 0.75 g/L of the nZVI-D, pH 6 and 30°C	
Figure 7.5	Mechanism of cyanide removal by using nZVI-D ₂	137
Figure 8.1	Schematic of the experimental setup for column study	144
Figure 8.2	Ideal breakthrough curve	145
Figure 8.3	Breakthrough curves of (a) As ⁵⁺ and (b) As ³⁺ adsorption	147
Figure 8.4	Thomas model kinetic plots for the adsorption of (a) As ⁵⁺	149
	and (b) As ³⁺ on nZVI-D ₂ (30°C, pH 6, initial concentration:	
	1 mg/L and flow rate: 7.5 mL/min)	
Figure 8.5	Yoon and Nelson model kinetic plot for the adsorption of	150
	(a) As^{5+} and (b) As^{3+} on nZVI-D ₂ (30°C, pH 6, initial	
	concentration: 1 mg/L and flow rate: 7.5 mL/min)	

LIST OF ABBREVIATIONS

% removal	percentages of heavy metal removal
C_0	initial concentration (mg/L)
C_i	remaining concentration at any time (mg/L)
K_L	Langmuir adsorption constant (L/mg)
q_e	amount of adsorption equilibrium (mg/g)
q_m	monolayer adsorption capacity of the adsorbent (mg/g)
C_e	solute concentration at equilibrium (mg/L)
C_o	initial concentration of arsenate solution (mg/L)
R_L	dimensionless separation factor
K_F	Freundlich adsorption constant (L/g)
n	Freundlich constants
q_d	Dubinin-Radushkevich monolayer capacity (mg/g)
β	a constant related to adsorption energy
ε	Polanyi potential
A_T	Tempkin isotherm constants
b	Tempkin isotherm constants
A	Harkin's - Jura isotherm constants
B	Harkin's - Jura isotherm constants
T	absolute temperature
q_t	amounts of solute adsorbed at any time (mg/g)
t	time (min)
k_I	rate constant of pseudo-first-order adsorption (min ⁻¹)
k_2	rate constant of pseudo-second-order adsorption (g/mg·min)
h	initial adsorption rate (mg/g·min)
k_p	intra-particle diffusion rate constant (mmol/g·min ^{1/2})
ΔG^{O}	gibbs free energy change
ΔH^{O}	enthalpy change

 ΔS^{o}

entropy change

LIST OF ABBREVIATIONS (Cont.)

β	a constant related to adsorption energy
ε	Polanyi potential
A	Harkin's - Jura isotherm constants
A_T	Tempkin isotherm constants
B	Harkin's - Jura isotherm constants
b	Tempkin isotherm constants
b_i	linear coefficients
b_0	intercept coefficient
b_{ii}	quadratic coefficients
b_{ij}	interaction term
C_e	equilibrium concentrations solution (mg/L)
C_o	initial solution concentrations (mg/L)
C_t	concentration solution at time (mg/L)
E	mean adsorption energy (kJ/mol)
k_I	rate constant of pseudo-first-order adsorption (min ⁻¹)
k_2	the rate constant of pseudo-second-order adsorption (g/mg·min)
k_D	Dubinin-Radushkevich constant
k_F	Freundlich adsorption constant (L/g)
k_L	Langmuir adsorption constant (L/mg)
k_{i1}	intra-particle diffusion rate constant at slope 1 (mmol/g·min ^{1/2})
k_{i2}	intra-particle diffusion rate constant at slope 2 (mmol/g·min ^{1/2})
M	is mass of adsorbent (g)
n	Freundlich constants
q_e	adsorption capacity at equilibrium (mg/g)
$q_{e.\mathit{exp}}$	adsorption capacity at equilibrium for experimental(mg/g)
$q_{e,cal}$	adsorption capacity at equilibrium for calculated (mg/g)

LIST OF ABBREVIATIONS (Cont.)

 q_D adsorption capacity at equilibrium for Dubinin-Radushkevich

isotherm (mg/g)

 R_L dimensionless separation factor of Langmuir adsorption

 q_{max} adsorption capacity at equilibrium for Langmuir isotherm (mg/g)

 q_t adsorption capacity at time (mg/g)

 R^2 determination coefficients

 R^2_{adj} adjusted determination coefficients R^2_{pre} predicted determination coefficients

SD standard deviation

t time (min)

V volume of the solution (L)

Y response denoted as the predicted As^{5+}/As^{3+} percentage

adsorption

 X_I adsorbent dose (g/L)

 X_2 pH

 X_3 initial concentration (μ g/L)